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Abstract—The Kirchhoff model is derived from the vibration
problem of stretchable strings. In this paper, we focus on the
long-term dynamics of higher-order coupled Kirchhoff systems
with nonlinear strong damping. We first proved the existence
and uniqueness of their solutions in different spaces through
prior estimation and the Faedo-Galerkin method. Subsequently,
we proved their family of global attractors using the com-
pactness theorem. In this way, we systematically proposed the
definition and proof process of the family of global attractors,
thus enriching the related conclusions of higher-order coupled
Kirchhoff models and laying a theoretical foundation for future
practical applications.

Index Terms—Higher-Order Coupled Kirchhoff Models, non-
linear strong damping, global well-posedness, global attractor
family.

I. INTRODUCTION

IN this study, we consider the dynamic behaviors of the
following higher-order coupled Kirchhoff models in a

bounded smooth domain Ω ⊂ Rn:

utt +N1(‖∇m1u‖2)(−∆)m1ut+
M(‖∇m1u‖2 + ‖∇m2v‖2)(−∆)m1u+ g1(u, v)

= f1(x),
vtt +N2(‖∇m2v‖2)(−∆)m2vt+

M(‖∇m1u‖2 + ‖∇m2v‖2)(−∆)m2v + g2(u, v)
= f2(x),

(1)

under the following boundary conditions:

u(x) = 0, ∂
iu
∂ni = 0, i = 1, · · · ,m1 − 1,m1 > 1,

v(x) = 0, ∂
jv
∂nj = 0, j = 1, · · · ,m2 − 1,m2 > 1; (2)

and the following initial conditions:

u(x, 0) = u0(x), ut(x, 0) = u1(x), v(x, 0) = v0(x),

vt(x, 0) = v1(x), x ∈ Ω, (3)

where ∆ is the Laplace operator, N1, N2,M1, and M2 are
scalar functions specified later, g1 and g2 are the given source
terms, and f1 and f2 are the given functions.
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(1) is a set of generalized higher-order quasi-linear wave
equations. The proposed equation in this paper originated
from the stretchable string vibration problem established by
Kirchhoff in 1883:

ρh
∂2u

∂t2
= {p0 +

Eh

2L

∫ L

0

(
∂u

∂x
)2dx}∂

2u

∂t2
, (4)

where 0 < x < L, t ≥ 0, u = u(x, t) is the lateral
displacement at space coordinate x and time coordinate t,
E represents the Young’s modulus, ρ represents the mass
density, h represents the cross-sectional area, L represents
the length, and p0 represents the axial tension of the accident.
In recent decades, the long-term behaviors of Kirchhoff
equations in various forms have attracted much academic
attention, and abundant research results have been produced
[1−8].

For instance, Chueshov [1] studied the well-posedness and
long-term dynamic behaviors of the following Kirchhoff
equation with a nonlinear strong damping term:

utt + σ(‖∇u‖2)∆ut − φ(‖∇u‖2)∆u+ f(u) = h(x). (5)

Moreover, Lin, Lv, and Lou [2] studied the global dynamics
of the following generalized nonlinear Kirchhoff-Boussinesq
equations with strong damping:

utt + αut − β∆ut + ∆2u = div(g(|∇u|2)∇u) +

∆h(u) + f(x). (6)

This paper proved that the semi-group conformed to the
squeezing property of the system and demonstrated the exis-
tence of an exponential attractor. Then, the spectral interval
theory proved that the system had an inertial manifold.

Ghisi and Gobbino [3] studied the existence of global and
local solutions to the following Kirchhoff model with strong
damping:

utt(t) + 2δAσut(t) +M(|A1/2u(t)|2)Au(t) = 0. (7)

Nakao [4] proved the initial-boundary value problem of
a quasi-linear Kirchhoff-type wave equation with standard
dissipation ut:

utt − (1 + ‖∇u(t)‖22)∆u+ ut + g(x, u) = f(x).(8)

With the advance of research, scholars began to focus
on the dynamics of higher-order Kirchhoff equations. Ye
and Tao [9] studied the initial-boundary value problem of
the following higher-order Kirchhoff-type equation with a
nonlinear dissipation term:

utt + Φ(‖Dmu‖2)(−∆)mu+ a|ut|q−2ut =

b|u|r−2u. (9)
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Lin and Zhu [10] studied the initial-boundary value
problems of the following nonlinear nonlocal higher-order
Kirchhoff-type equations:

utt +M(‖Dmu‖2)(−∆)mu+ β(−∆)mut +

g(x, ut) = f(x). (10)

In this study, they demonstrated the existence and unique-
ness of the solutions and proved the existence of a global
attractor family using the compact method, thus obtaining
the finite Hausdorff and Fractal dimensions.

Originating from physics, system coupling measures the
dependence of two entities on each other. With suitable
conditions or parameters, a connected system can be coupled,
and its potential energy can enable the generation of new
functions by combining the structural functions of different
systems. As mathematical equations derived from physic-
s, the Kirchhoff model is naturally considered a coupled
system, and Scholars gradually considered the dynamics
of coupled Kirchhoff equations. For example, Wang and
Zhang [11] studied the long-term dynamics of coupled beam
equations with strong damping under nonlinear boundary
conditions. Lin and Zhang [12] studied the initial-boundary
value problem of the following Kirchhoff coupling group
with a source term and strong damping:

utt − β∆ut −M(‖∇u‖2 + ‖∇v‖2)∆u+
g1(u, v) = f1(x),

vtt − β∆vt −M(‖∇u‖2 + ‖∇v‖2)∆v+
g2(u, v) = f2(x).

(11)

The finite Hausdorff dimension of the global attractor was
obtained in a previous work [12].

In recent years, Lin et al. [13−15] focused on the dynamics
of higher-order coupled Kirchhoff equations and obtained a
series of ideal results.

At present, few studies focus on the higher-order coupled
Kirchhoff problems, and higher-order (m1,m2)−coupled
Kirchhoff models with nonlinear strong damping have not
been studied. The main difficulties lie in the estimation
and processing of the harmonic term and the nonlinear
damping term. In addition, the nonlinear damping also
brings challenges when proving the uniqueness. Therefore,
under reasonable assumptions, this paper overcame these
difficulties by using Holder’s inequality, Young’s inequality,
Poincare inequality, and Gagliardo-Nirenberg inequality, thus
obtaining the global solution and the global attractor family.
This study could refine the definition and existence theorem
of the global attractor family. The conclusions could fill the
gap of the global attractor family for higher-order coupled
models (regardless of whether m1 is equal to m2) and lay
the foundation for subsequent engineering applications.

The rest of this paper is organized as follows. Section
II provides the fundamentals for this work, and states the
main results. Section III proves the main results. Finally, the
Summary and Prospect are presented in Section IV.

II. PREPARATORY KNOWLEDGE AND STATEMENT OF
MAIN RESULTS

In this section, we introduce some assumptions that we
will use, and give main results.

In this paper, ‖ · ‖ and (·, ·) denote the norm and the
inner product in H = L2(Ω). Let H1

0 = D((−∆)
1
2 ) be

the scale of the Hilbert space generated by the Laplacian
with Dirichlet boundary condition on H and endowed
with standard inner product and norm, respectively,
(·, ·)H1

0
= ((−∆)

1
2 ·, (−∆)

1
2 ·) and ‖ · ‖H1

0
= ‖(−∆)

1
2 · ‖.

The main goal here is to study the well-posedness and
long-term dynamics of problems (1) to (3) under the
following set of assumptions:
(A1).M(s) is a continuous function on interval [0,+∞),
M(s) ∈ C1(R+), and
1)M ′(s) ≥ 0,
2)M(0) ≡M0 > 0.
(A2). For any u, v ∈ H , let
J(u, v) =

∫
Ω

[G1(u, v) +G2(u, v)]dx,
where G1(u, v) =

∫ u
0
g1(s, v)ds,G2(u, v) =

∫ v
0
g2(u, s)ds,

then for any µ ≥ 0, there exists C1 ≥ 0, Cµ ≥ 0, C ′µ ≥ 0
that
G1(u, v) + G2(u, v) − C1J(u, v) + µ(‖∇m1u‖2 +
‖∇m2v‖2) ≥ −Cµ,
J(u, v) + µ(‖∇m1u‖2 + ‖∇m2v‖2) ≥ −C ′µ.
(A3).gj(u, v)(j = 1, 2) ∈ C1(R), and
|gj(u, v)| ≤ C2(1 + |u|pj + |v|qj );
|gju(u, v)| ≤ C3(1 + |u|pj−1 + |v|qj );
|gjv(u, v)| ≤ C4(1 + |u|pj + |v|qj−1).
Specifically, when n = 1, 2, 1 ≤ pj(qj); when 3 ≤ n ≤ 2m,
1 ≤ pj(qj) ≤ n

n−2 ; when 2m < n, 1 ≤ pj(qj) ≤ n
n−2m ,

where m = min{m1,m2}.
(A4).Nj(sj) ≥ Nj0 and Nj0(j = 1, 2) are positive
constants, and ρ > 0. Thus, M(s1 + s2) − ρN1(s1) −
ρN2(s2) > 0.
Then, the research phase space of this study is obtained:

V0 = H,Vk = Hk(Ω) ∩H1
0 (Ω),

X0×0 = Vm1
(Ω)×H(Ω)× Vm2

×H(Ω),

Xk1×k2 = Vm1+k1(Ω)× Vk1(Ω)× Vm2+k2 × Vk2(Ω),

k1 = 0, 1, 2, · · · ,m1, k2 = 0, 1, 2, · · · ,m2,

and the norms of the corresponding spaces are as follows:

‖(u, y1, v, y2)‖2Xk1×k2
= ‖∇m1+k1u‖2 + ‖∇k1y1‖2 +

‖∇m2+k2v‖2 + ‖∇k2y2‖2.

Meanwhile, the general form of the Poincare inequality is:
λ1‖∇ru‖2 ≤ ‖∇r+1u‖2, where λ1 is the first eigenvalue of
−∆ with a homogeneous Dirichlet boundary on Ω. In this
paper, Ci is a constant, and C(·) is a constant depending on
the parameters in parentheses.

Now, we state the main results of this paper.
Theorem 1. Assume that assumptions (A1) − (A4) hold,
if f1 ∈ Vk1 , f2 ∈ Vk2 and initial data (u0, u1, v0, v1) ∈
Xk1×k2 , k1 = 0, 1, 2, · · · ,m1, k2 = 0, 1, 2, · · · ,m2, then
problems (1) to (3) admit a unique solution (u, v) satisfying

u ∈ L∞(0,∞;Vm1+k1);

ut ∈ L∞(0,∞;H) ∩ L2(0, T ;Vk1);

v ∈ L∞(0,∞;Vm2+k2);

vt ∈ L∞(0,∞;H) ∩ L2(0, T ;Vk2).

Theorem 2. Assume that assumptions (A1) − (A4) hold,
if f1 ∈ Vm1

, f2 ∈ Vm2
and initial data (u0, u1, v0, v1) ∈

Xm1×m2
, then, problems (1) to (3) have a global attractor
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family A in X0×0:

A = {Ak1×k2}, Ak1×k2 = ω(Bk1×k2,0) =⋂
τ≥0

⋃
t≥τ S(t)Bk1×k2,0,

k1 = 1, 2, · · · ,m1, k2 = 1, 2, · · · ,m2,

where Bk1×k2,0 = {(u, ut, v, vt) ∈ Xk1×k2 :
‖(u, ut, v, vt)‖2Xk1×k2

= ‖∇m1+k1u‖2 + ‖∇k1ut‖2 +

‖∇m2+k2v‖2 + ‖∇k2vt‖2 ≤ C(R0) + C(Rk1×k2)} are
bounded absorbing sets in X0×0, Bk1×k2,0 are compact in
X0×0, Ak1×k2 ⊂ X0×0.
(1) S(t)Ak1×k2 = Ak1×k2 , (for all t ≥ 0),
(2) Ak1×k2 attract all bounded sets in X0×0, i.e.,
for all Bk1×k2 ⊂ X0×0 are bounded sets in X0×0, and

dist(S(t)Bk1×k2 , Ak1×k2) =

sup
x∈Bk1×k2

inf
y∈Ak1×k2

‖S(t)x− y‖X0×0 → 0(t→∞),

where {S(t)}t≥0 is the solution semi-group generated by
problems (1) to (3).

III. MAIN STEPS OF RESULTS

In this section, we present the proof process to the ex-
istence and uniqueness of the solutions and the family of
global attractors to problem (1)-(3).

Let ε > 0 be small enough and λm1
1 N10− 2− 4ε− 2ε2 ≥

0, λm2
1 N20 − 2− 4ε− 2ε2 ≥ 0.

Lemma 1.[16] Let y : R+ → R+ be an absolutely continuous
positive function on [0,+∞), which satisfies the following
differential inequality for some δ > 0:

d

dt
y(t) + 2δy(t) ≤ g(t)y(t) +K, t > 0,

where K ≥ 0, and a ≥ 0 if t ≥ s ≥ 0 so that
∫ t
s
g(τ)dτ ≤

δ(t− s) + a. Then,

y(t) ≤ eay(0)e−δt +
Kea

δ
, t ≥ 0.

Lemma 2.[10] Let X be a Banach space, and the continuous
operator semi-group {S(t)}t≥0 satisfies the following:
(1) semi-group {S(t)}t≥0 is uniformly bounded in X , i.e.,
for all R0 > 0, there exists a positive constant C0(R0) that
when ‖u‖X ≤ R0,

‖S(t)u‖X ≤ C0(R0), (for all t ∈ [0,+∞));

(2) there exists a bounded absorbing set B0 in X , and for
any bounded set B ⊂ X , there exists a moment t0 that

S(t)B ⊂ B0(t ≥ t0);

(3) if t > 0, and S(t) is a fully continuous operator,
then semi-group {S(t)}t≥0 has a global attractor A in X ,
and

A = ω(B0) =
⋂
τ≥0

⋃
t≥τ

S(t)B0.

Lemma 3. Assume that assumptions (A1) − (A4) hold, if
fj ∈ H(j = 1, 2) and initial data (u0, u1, v0, v1) ∈ X0×0,
then for R0 > 0, there exist positive constants C(R0) and t0

so that when t ≥ t0, (u, y1, v, y2) determined by problems
(1) to (3) satisfies

‖(u, y1, v, y2)‖2X0×0
= ‖∇m1u‖2 + ‖y1‖2 +

‖∇m2v‖2 + ‖y2‖2 ≤ C(R0), (12)

where y1 = ut + εu, y2 = vt + εv.
Proof: Multiplying the first equation of (1) by y1 in H and
the second one by y2 in H , we have

1

2

d

dt

[
‖y1‖2 + ‖y2‖2 +

∫ ‖∇m1u‖2+‖∇m2v‖2

0

M(τ)dτ

+2J(u, v)
]

+ εM(‖∇m1u‖2 + ‖∇m2v‖2) ·
(‖∇m1u‖2 + ‖∇m2v‖2)− ε(‖y1‖2 + ‖y2‖2) +

ε2((u, y1) + (v, y2)) +N1(‖∇m1u‖2)‖∇m1y1‖2 +

N2(‖∇m2v‖2)‖∇m2y2‖2 −
εN1(‖∇m1u‖2)(∇m1y1,∇m1u)−
εN2(‖∇m2v‖2)(∇m2y2,∇m2v) + ε(g1(u, v), u) +

ε(g2(u, v), v) = (f1, y1) + (f2, y2). (13)

By Holder’s inequality, Young’s inequality, Poincare inequal-
ity, etc., we have

−ε(‖y1‖2 + ‖y2‖2) + ε2((u, y1) + (v, y2)) ≥

(−ε− ε2

2
)(‖y1‖2 + ‖y2‖2)− ε2

2
(‖u‖2 + ‖v‖2) ≥

(−ε− ε2

2
)(‖y1‖2 + ‖y2‖2)− ε2

2
λ−m1

1 ‖∇m1u‖2 −

ε2

2
λ−m2

1 ‖∇m2v‖2, (14)

N1(‖∇m1u‖2)‖∇m1y1‖2 +N2(‖∇m2v‖2)‖∇m2y2‖2

−εN1(‖∇m1u‖2)(∇m1y1,∇m1u)−
εN2(‖∇m2v‖2)(∇m2y2,∇m2v) ≥
1

2
N1(‖∇m1u‖2)‖∇m1y1‖2 +

1

2
N2(‖∇m2v‖2) ·

‖∇m2y2‖2 −
ε2

2
N1(‖∇m1u‖2)‖∇m1u‖2 −

ε2

2
N2(‖∇m2v‖2)‖∇m2v‖2 ≥ 1

2
λm1

1 N1(‖∇m1u‖2) ·

‖y1‖2 +
1

2
λm2

1 N2(‖∇m2v‖2)‖y2‖2 −

ε2

2
N1(‖∇m1u‖2)‖∇m1u‖2 − ε2

2
N2(‖∇m2v‖2) ·

‖∇m2v‖2, (15)
(f1, y1) + (f2, y2) ≤ ‖f1‖‖y1‖+ ‖f2‖‖y2‖ ≤
1

2
‖y1‖2 +

1

2
‖y2‖2 +

1

2
‖f1‖2 +

1

2
‖f2‖2, (16)

Inserting the above estimates into (13), we have

1

2

d

dt

[
‖y1‖2 + ‖y2‖2 +

∫ ‖∇m1u‖2+‖∇m2v‖2

0

M(τ)dτ

+2J(u, v)
]

+
1

2
λm1

1 N1(‖∇m1u‖2)‖y1‖2 −

(
1

2
− ε− ε2

2
)‖y1‖2 +

1

2
λm2

1 N2(‖∇m2v‖2)‖y2‖2 −

(
1

2
− ε− ε2

2
)‖y2‖2 +

εM(‖∇m1u‖2 + ‖∇m2v‖2)(‖∇m1u‖2 + ‖∇m2v‖2)

−(
ε2

2
N1(‖∇m1u‖2) +

ε2

2
λ−m1

1 )‖∇m1u‖2 −
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(
ε2

2
N2(‖∇m2v‖2) +

ε2

2
λ−m2

1 )‖∇m2v‖2 ≤ −

ε(g1(u, v), u)− ε(g2(u, v), v) +
1

2
‖f1‖2 +

1

2
‖f2‖2. (17)

According to (A1),

εM(‖∇m1u‖2 + ‖∇m2v‖2)(‖∇m1u‖2 + ‖∇m2v‖2)

≥ ε

4

∫ ‖∇m1u‖2+‖∇m2v‖2

0

M(τ)dτ +

3ε

4
M(‖∇m1u‖2 + ‖∇m2v‖2) ·

(‖∇m1u‖2 + ‖∇m2v‖2), (18)

and according to (A2),

−ε(g1(u, v), u)− ε(g2(u, v), v) ≤ −εC1J(u, v) +

εµ(‖∇m1u‖2 + ‖∇m2v‖2) + εCµ. (19)

Inserting (18) and (19) into (17), we have

d

dt

[
‖y1‖2 + ‖y2‖2 +

∫ ‖∇m1u‖2+‖∇m2v‖2

0

M(τ)dτ

+2J(u, v)
]

+ (λm1
1 N1(‖∇m1u‖2)− 1− 2ε− ε2)‖y1‖2

+(λm2
1 N2(‖∇m2v‖2)− 1− 2ε− ε2)‖y2‖2 +

ε

2

∫ ‖∇m1u‖2+‖∇m2v‖2

0

M(τ)dτ + 2εC1J(u, v) +

(
3ε

2
M(‖∇m1u‖2 + ‖∇m2v‖2)− 2εµ−

ε2N1(‖∇m1u‖2)− ε2λ−m1
1 )‖∇m1u‖2 +

(
3ε

2
M(‖∇m1u‖2 + ‖∇m2v‖2)− 2εµ−

ε2N2(‖∇m2v‖2)− ε2λ−m2
1 )‖∇m2v‖2 ≤

2εCµ + ‖f1‖2 + ‖f2‖2. (20)

Let H1(t) = ‖y1‖2+‖y2‖2+
∫ ‖∇m1u‖2+‖∇m2v‖2

0
M(τ)dτ+

2J(u, v) and σ1 = min{λm1
1 N10 − 1 − 2ε − ε2, λm2

1 N20 −
1− 2ε− ε2, ε2 , εC1}, we can infer from (20) that

d
dtH1(t) + σ1H1(t) ≤ 2εCµ + ‖f1‖2 + ‖f2‖2. (21)

According to Gronwall’s inequality, we have

H1(t) ≤ H1(0)e−σ1t +
2εCµ+‖f1‖2+‖f2‖2

σ1
, (22)

and

H1(t) ≥ ‖y1‖2 + ‖y2‖2 +M0(‖∇m1u‖2 + ‖∇m2v‖2)

+2J(u, v) ≥ ‖y1‖2 + ‖y2‖2 +
M0

2
(‖∇m1u‖2 +

‖∇m2v‖2)− 2C ′µ ≥ C5(‖y1‖2 + ‖y2‖2 +

‖∇m1u‖2 + ‖∇m2v‖2)− 2C ′µ (23)

according to (A1)(A2), where µ = M0

4 , C5 = min{1, M0

2 },
then,

‖(u, y1, v, y2)‖2X0×0
= ‖∇m1u‖2 + ‖y1‖2 + ‖∇m2v‖2

+‖y2‖2 ≤
(H1(t) + 2C ′µ)

C5
≤

H1(0)e−σ1t + 2C ′µ
C5

+
2εCµ + ‖f1‖2 + ‖f2‖2

σ1C5
, (24)

i.e.,

lim
t→∞
‖(u, y1, v, y2)‖2X0×0

≤
2C ′µ
C5

+

2εCµ + ‖f1‖2 + ‖f2‖2

σ1C5
= R0. (25)

Therefore, there exist positive constants C(R0) and t0 that
when t ≥ t0,

‖(u, y1, v, y2)‖2X0×0
= ‖∇m1u‖2 + ‖y1‖2 + ‖∇m2v‖2

+‖y2‖2 ≤ C(R0). (26)

Thus, Lemma 3 is proved.
Lemma 4. Assume that assumptions (A1) − (A4) hold, if
f1 ∈ Vk1 , f2 ∈ Vk2 , k1 = 1, 2, · · · ,m1, k2 = 1, 2, · · · ,m2,
and initial data (u0, u1, v0, v1) ∈ Xk1×k2 . Then, for
Rk1×k2 > 0, there exist positive constants C(Rk1×k2) and
tk1×k2 that when t ≥ tk1×k2 , (u, y1, v, y2) determined by
problems (1)-(3) satisfies

‖(u, y1, v, y2)‖2Xk1×k2
= ‖∇m1+k1u‖2 + ‖∇k1y1‖2 +

‖∇m2+k2v‖2 + ‖∇k2y2‖2 ≤ C(Rk1×k2), (27)

where y1 = ut + εu, y2 = vt + εv.
Proof: Multiplying the first equation of (1) by (−∆)k1y1,
k1 = 1, 2, · · · ,m1 in H and the second one by (−∆)k2y2,
k2 = 1, 2, · · · ,m2 in H and then integrating over Ω, we have

1

2

d

dt

[
‖∇k1y1‖2 + ‖∇k2y2‖2 +

M(‖∇m1u‖2 + ‖∇m2v‖2) ·
(‖∇m1+k1u‖2 + ‖∇m2+k2v‖2)

]
+

εM(‖∇m1u‖2 + ‖∇m2v‖2) ·
(‖∇m1+k1u‖2 + ‖∇m2+k2v‖2)−
ε(‖∇k1y1‖2 + ‖∇k2y2‖2) +

ε2((∇k1u,∇k1y1) + (∇k2v,∇k2y2)) +

N1(‖∇m1u‖2)‖∇m1+k1y1‖2 +

N2(‖∇m2v‖2)‖∇m2+k2y2‖2 −
εN1(‖∇m1u‖2)(∇m1+k1y1,∇m1+k1u)−
εN2(‖∇m2v‖2)(∇m2+k2y2,∇m2+k2v) +

(g1(u, v), (−∆)k1y1) + (g2(u, v), (−∆)k2y2)

=
‖∇m1+k1u‖2 + ‖∇m2+k2v‖2

2
·

d

dt
M(‖∇m1u‖2 + ‖∇m2v‖2) +

(f1, (−∆)k1y1) + (f2, (−∆)k2y2). (28)

According to Holder’s inequality, Young’s inequality,
Poincare inequality, etc., we have

−ε(‖∇k1y1‖2 + ‖∇k2y2‖2) + ε2((∇k1u,∇k1y1) +

(∇k2v,∇k2y2)) ≥ (−ε− ε2

2
)(‖∇k1y1‖2 +

‖∇k2y2‖2)− ε2

2
(‖∇k1u‖2 + ‖∇k2v‖2) ≥

(−ε− ε2

2
)(‖∇k1y1‖2 + ‖∇k2y2‖2)−

ε2

2
λ−m1

1 ‖∇m1+k1u‖2 − ε2

2
λ−m2

1 ‖∇m2+k2v‖2, (29)

N1(‖∇m1u‖2)‖∇m1+k1y1‖2 +
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N2(‖∇m2v‖2)‖∇m2+k2y2‖2 −
εN1(‖∇m1u‖2)(∇m1+k1y1,∇m1+k1u)−
εN2(‖∇m2v‖2)(∇m2+k2y2,∇m2+k2v)

≥ 1

2
N1(‖∇m1u‖2)‖∇m1+k1y1‖2 +

1

2
N2(‖∇m2v‖2)‖∇m2+k2y2‖2 −

ε2

2
N1(‖∇m1u‖2)‖∇m1+k1u‖2 −

ε2

2
N2(‖∇m2v‖2)‖∇m2+k2v‖2, (30)

(g1(u, v), (−∆)k1y1) + (g2(u, v), (−∆)k2y2) ≤
‖g1(u, v)‖‖∇2k1y1‖+ ‖g2(u, v)‖‖∇2k2y2‖ ≤
N10

4
‖∇m1+k1y1‖2 +

λk1−m1
1

N10
‖g1(u, v)‖2 +

N20

4
‖∇m2+k2y2‖2 +

λk2−m2
1

N20
‖g2(u, v)‖2, (31)

(f1, (−∆)k1y1) + (f2, (−∆)k2y2) ≤
‖∇k1f1‖‖∇k1y1‖+ ‖∇k2f2‖‖∇k2y2‖ ≤
1

2
‖∇k1y1‖2 +

1

2
‖∇k2y2‖2 +

1

2
‖∇k1f1‖2 +

1

2
‖∇k2f2‖2, (32)

and

‖g1(u, v)‖2 =

∫
Ω

|g1(u, v)|2dx ≤∫
Ω

|C2(1 + |u|p1 + |v|q1)|2dx ≤

C6

∫
Ω

(1 + |u|2p1 + |v|2q1)dx ≤

C7(1 + ‖u‖2p12p1
+ ‖v‖2q12q1

),

‖g2(u, v)‖2 ≤ C8(1 + ‖u‖2p22p2
+ ‖v‖2q22q2

) (33)

according to (A3). Furthermore, based on the Gagliardo-
Nirenberg inequality, we can conclude that ‖u‖

2pj
2pj
≤ C9j‖∇m1u‖

n(pj−1)

m1 ‖u‖
2m1pj−n(pj−1)

m1 ,

‖v‖2qj2qj
≤ C10j‖∇m2v‖

n(qj−1)

m2 ‖v‖
2m2qj−n(qj−1)

m2 .

Thus, we have

‖g1(u, v)‖2 + ‖g2(u, v)‖2 ≤ C(R0). (34)

Inserting (30) to (32) and (34) into (28), we have

1

2

d

dt

[
‖∇k1y1‖2 + ‖∇k2y2‖2 +

M(‖∇m1u‖2 + ‖∇m2v‖2) ·
(‖∇m1+k1u‖2 + ‖∇m2+k2v‖2)

]
+

(2N1(‖∇m1u‖2)−N10)λm1
1 − 2− 4ε− 2ε2

4
‖∇k1y1‖2

+
(2N2(‖∇m2v‖2)−N20)λm2

1 − 2− 4ε− 2ε2

4
·

‖∇k2y2‖2 + (εM(‖∇m1u‖2 + ‖∇m2v‖2)−
ε2

2
N1(‖∇m1u‖2)− ε2

2
λ−m1

1 )‖∇m1+k1u‖2 +

(εM(‖∇m1u‖2 + ‖∇m2v‖2)−
ε2

2
N2(‖∇m2v‖2)− ε2

2
λ−m2

1 )‖∇m2+k2v‖2 ≤

‖∇m1+k1u‖2 + ‖∇m2+k2v‖2

2
·

d

dt
M(‖∇m1u‖2 + ‖∇m2v‖2) +

1

2
‖∇k1f1‖2 +

1

2
‖∇k2f2‖2 + C(R0, λ1) ≤

(‖∇m1+k1u‖2 + ‖∇m2+k2v‖2) ·
M ′(‖∇m1u‖2 + ‖∇m2v‖2) ·
((∇m1u,∇m1ut) + (∇m2v,∇m2vt)) +
1

2
‖∇k1f1‖2 +

1

2
‖∇k2f2‖2 + C(R0, λ1) ≤

C9(‖∇m1ut‖+ ‖∇m2vt‖) ·

(‖∇m1+k1u‖2 + ‖∇m2+k2v‖2) +
1

2
‖∇k1f1‖2 +

1

2
‖∇k2f2‖2 + C(R0, λ1). (35)

Let H2(t) = ‖∇k1y1‖2 + ‖∇k2y2‖2 + M(‖∇m1u‖2 +
‖∇m2v‖2)(‖∇m1+k1u‖2 + ‖∇m2+k2v‖2) and σ2 =

min{λ
m1
1 N10−2−4ε−2ε2

2 ,
λ
m2
1 N20−2−4ε−2ε2

2 , ε2}, we have
d
dtH2(t) + σ2H2(t) ≤ C10(‖∇m1ut‖+ ‖∇m2vt‖)H2(t)

+‖∇k1f1‖2 + ‖∇k2f2‖2 + C(R0, λ1). (36)

Taking the scalar product of (1) in H with ut, vt, we have

1

2

d

dt

[
‖ut‖2 + ‖vt‖2 +

∫ ‖∇m1u‖2+‖∇m2v‖2

0

M(τ)dτ +

2J(u, v)− 2(f1, u)− 2(f2, v)
]

+

N1(‖∇m1u‖2)‖∇m1ut‖2 +

N2(‖∇m2v‖2)‖∇m2vt‖2 = 0, (37)

and integrating (37) in dt on (0, t) derives∫ t

0

(‖∇m1ut(τ)‖2 + ‖∇m2vt(τ)‖2)dτ ≤

1

min{N10, N20}

∫ t

0

(N1(‖∇m1u(τ)‖2)‖∇m1ut(τ)‖2 +

N2(‖∇m2v(τ)‖2)‖∇m2vt(τ)‖2)dτ ≤
1

min{N10, N20}
(‖u1‖2 + ‖v1‖2 +∫ ‖∇m1u0‖2+‖∇m2v0‖2

0

M(τ)dτ +

2J(u0, v0)− 2(f1, u0)− 2(f2, v0)) ≤ C11. (38)

Then,

C10

∫ t

s

((‖∇m1ut(τ)‖+ ‖∇m2vt(τ)‖))dτ ≤
σ2

2
(t− s) + a (39)

for t > s ≥ 0 and some a > 0. Together with (36), (39) and
Lemma 1, we can obtain that

H2(t) ≤ C12H2(0)e−
σ2
2 t + C13. (40)

According to (A1), we have

H2(t) ≥ ‖∇k1y1‖2 + ‖∇k2y2‖2 +

M(‖∇m1u‖2 + ‖∇m2v‖2) ·
(‖∇m1+k1u‖2 + ‖∇m2+k2v‖2) ≥
C14(‖∇k1y1‖2 + ‖∇k2y2‖2 +

‖∇m1+k1u‖2 + ‖∇m2+k2v‖2), (41)
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then,

‖(u, y1, v, y2)‖2Xk1×k2
= ‖∇k1y1‖2 + ‖∇k2y2‖2 +

‖∇m1+k1u‖2 + ‖∇m2+k2v‖2 ≤
C12H2(0)e−

σ2
2 t + C13

C14
, (42)

i.e.,

lim
t→∞
‖(u, y1, v, y2)‖2Xk1×k2

≤ Rk1×k2 . (43)

Therefore, there exist positive constants C(Rk1×k2) and
tk1×k2 that when t ≥ tk1×k2 , (u, y1, v, y2) satisfies

‖(u, y1, v, y2)‖2Xk1×k2
= ‖∇k1y1‖2 + ‖∇k2y2‖2 +

‖∇m1+k1u‖2 + ‖∇m2+k2v‖2 ≤ C(Rk1×k2),

k1 = 1, 2, · · · ,m1, k2 = 1, 2, · · · ,m2. (44)

Thus, Lemma 4 is proved.
Proof of Theorem 1: According to previous findings [10] and
the Faedo-Galerkin method, problems (1) to (3) have global
solutions combining with Lemma 3 and Lemma 4.
Let u1, v1 and u2, v2 be two solutions of problems (1) to
(3) corresponding to the same initial data, respectively, w =
u1 − u2, z = v1 − v2. Then, (w, z) solves

wtt + 1
2σ12(t)(−∆)m1wt + 1

2Φ12(t)(−∆)m1w+
G1(u1, u2, v1, v2; t) = 0,

ztt + 1
2σ34(t)(−∆)m2zt + 1

2Φ12(t)(−∆)m2z+
G2(u1, u2, v1, v2; t) = 0,

(45)

where σ12 = σ1(t)+σ2(t), Φ12(t) = Φ1(t)+Φ2(t), σi(t) =
N1(‖∇m1ui‖2), Φi(t) = M(‖∇m1ui‖2 + ‖∇m2vi‖2),i =
1, 2, σ34 = σ3(t) + σ4(t), σj(t) = N2(‖∇m2vj‖2), j = 3, 4,
G1(u1, u2, v1, v2; t) = 1

2{[σ1(t)−σ2(t)](−∆)m1(u1
t +u2

t )+
[Φ1(t)−Φ2(t)](−∆)m1(u1 +u2)}+g1(u1, v1)−g1(u2, v2),
G2(u1, u2, v1, v2; t) = 1

2{[σ3(t)−σ4(t)](−∆)m2(v1
t +v2

t )+
[Φ1(t)−Φ2(t)](−∆)m2(v1 +v2)}+g2(u1, v1)−g2(u2, v2).
According to Lemma 3, σ′12 ≤ C(R0)(‖∇m1u1

t‖ +
‖∇m1u2

t‖), σ′34 ≤ C(R0)(‖∇m2v1
t ‖+ ‖∇m2v2

t ‖).
Taking the scalar product of (45) in H with wt, zt, we can

obtain that
1

2

d

dt
[‖wt‖2 + ‖zt‖2 +

1

4
Φ0 · (‖∇m1w‖2 + ‖∇m2z‖2)]

+
1

2
σ12(t)‖∇m1wt‖2 +

1

2
σ34(t)‖∇m2zt‖2 +

(G1(u1, u2, v1, v2; t), wt) +

(G2(u1, u2, v1, v2; t), zt) = 0. (46)

According to Lemma 3 and (A1), M0 ≤ M ≤
C(R0, H1(0)) ≡M1. When d

dt (‖∇
m1w‖2 +‖∇m2z‖2) ≥ 0,

Φ0 = 2M0; otherwise Φ0 = 2M1.
Let (G1(u1, u2, v1, v2; t), wt) = G11 + G12 + G13 and
(G2(u1, u2, v1, v2; t), zt) = G21 +G22 +G23, we have

G11 =
1

2
(σ1(t)− σ2(t))(∇m1(u1

t + u2
t ),∇m1wt) ≤

C(R0)(‖∇m1u1
t‖+ ‖∇m1u2

t‖)‖∇m1w‖‖∇m1wt‖
≤ σ120

8
‖∇m1wt‖2 +

2C(R0)

σ120
(‖∇m1u1

t‖2 + ‖∇m1u2
t‖2)‖∇m1w‖2, (47)

G12 =
1

2
(Φ1(t)− Φ2(t))(∇m1(u1 + u2),∇m1wt) ≤

C(R0)(‖∇m1w‖+ ‖∇m2z‖)‖∇m1wt‖
≤ σ120

8
‖∇m1wt‖2 +

2C(R0)

σ120
(‖∇m1w‖2 + ‖∇m2z‖2), (48)

G13 = (g1(u1, v1)− g1(u2, v2), wt) ≤
C(R0)(‖wt‖2 + ‖∇m1w‖2 + ‖∇m2z‖2), (49)

G21 =
1

2
(σ3(t)− σ4(t))(∇m2(v1

t + v2
t ),∇m2zt) ≤

C(R0)(‖∇m2v1
t ‖+ ‖∇m2v2

t ‖) ·
‖∇m2z‖‖∇m2zt‖ ≤

σ340

8
‖∇m2zt‖2 +

2C(R0)

σ340
(‖∇m2v1

t ‖2 + ‖∇m2v2
t ‖2)‖∇m2z‖2, (50)

G22 =
1

2
(Φ1(t)− Φ2(t))(∇m2(v1 + v2),∇m2zt) ≤

C(R0)(‖∇m1w‖+ ‖∇m2z‖)‖∇m2zt‖
≤ σ340

8
‖∇m2zt‖2 +

2C(R0)

σ340
(‖∇m1w‖2 + ‖∇m2z‖2), (51)

G23 = (g2(u1, v1)− g2(u2, v2), zt) ≤
C(R0)(‖zt‖2 + ‖∇m1w‖2 + ‖∇m2z‖2), (52)

where σ120 = 2N10, σ340 = 2N20.
Inserting (46) to (52) into (45), we have

1

2

d

dt
[‖wt‖2 + ‖zt‖2 +

1

4
Φ0 · (‖∇m1w‖2 + ‖∇m2z‖2)]

≤ C14(1 + ‖∇m2v1
t ‖2 + ‖∇m2v2

t ‖2) ·

[‖wt‖2 + ‖zt‖2 +
1

4
Φ0 · (‖∇m1w‖2 + ‖∇m2z‖2)].(53)

Solving this differential inequality yields

[‖wt‖2 + ‖zt‖2 +
1

4
Φ0 · (‖∇m1w‖2 + ‖∇m2z‖2)] ≤

[‖w1‖2 + ‖z1‖2 +
1

4
Φ0 · (‖∇m1w0‖2 + ‖∇m2z0‖2)] ·

exp(

∫ t

0

C15(1 + ‖∇m2v1
t ‖2 + ‖∇m2v2

t ‖2)ds). (54)

Thus, the uniqueness of the solution is proved.
Therefore, problems (1) to (3) possess a unique solution u, v.
Theorem 1 is proved.

According to Theorem 1, we define a nonlinear oper-
ator {S(t)}t≥0 on space X0×0 : S(t)(u0, u1, v0, v1) =
(u, ut, v, vt), for all t ≥ 0. Theorem 1 shows that {S(t)}t≥0

compose a continuous semi-group in X0×0. Before proving
the family of global attractors, we first give their definition.
Definition 1. Let X0 be a Banach space and {S(t)}t≥0 be
a continuous operator semi-group, if there exists a compact
set Ak1×k2 satisfying
(i) Invariance: all Ak1×k2 are invariant sets under the action
of semi-group {S(t)}t≥0,

S(t)Ak1×k2 = Ak1×k2 ;∀t ≥ 0;

(ii) Attractiveness: all Ak1×k2 attract all bounded sets in X0,
i.e., for any bounded B ⊂ X0,

dist(S(t)B,Ak1×k2) =

sup
x∈B

inf
y∈Ak1×k2

‖S(t)x− y‖X0
→ 0, t→∞.
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In particular, when t → ∞, all trajectories S(t)u0 from u0

converge to Ak1×k2 , i.e.,

dist(S(t)u0, Ak1×k2)→ 0, t→∞.

Then, compact set Ak is the global attractors of semi-
group {S(t)}t≥0. Let A = {Ak1×k2 ⊂ X0 : k1 =
1, 2, · · · ,m1, k2 = 1, 2, · · · ,m2} be a subset family in X0,
A is the global attractor family in X0.
Proof of Theorem 2: According to Lemma 3, for all R0 >
0, ‖(u0, u1, v0, v1)‖X0×0

≤ R0. Thus,

‖S(t)(u0, u1, v0, v1)‖2X0×0
= ‖u‖2Vm1

+ ‖ut‖2V0
+

‖v‖2Vm2
+ ‖vt‖2V0

≤ C(R0),

indicating that {S(t)}t≥0 are uniformly bounded in X0×0;
further, Bk1×k2,0 = {(u, ut, v, vt) ∈ Xk1×k2 :
‖(u, ut, v, vt)‖2Xk1×k2

= ‖∇m1+k1u‖2 + ‖∇k1ut‖2 +

‖∇m2+k2v‖2 + ‖∇k2vt‖2 ≤ C(R0) + C(Rk1×k2)} are
bounded absorbing sets of semi-group {S(t)}t≥0 in X0×0;
because Xk1×k2 ↪→↪→ X0×0 are compactly embedding, i.e.,
the bounded sets in Xk1×k2 are compact sets in X0×0,
solution semi-group {S(t)}t≥0 is a fully continuous operator.
To sum up, we obtained the global attractor family A =
{Ak1×k2} of solution semi-group {S(t)}t≥0 in X0×0, and

Ak1×k2 = ω(Bk1×k2,0) =
⋂
τ≥0

⋃
t≥τ

S(t)Bk1×k2,0,

Ak1×k2 ⊂ X0×0, k1 = 1, 2, · · · ,m1, k2 = 1, 2, · · · ,m2.

Theorem 2 is proved.
Note 1 Lemma 4 and Theorem 2 show that bounded
absorbing sets Bk1×k2,0 = {(u, ut, v, vt) ∈ Xk1×k2 :
‖(u, ut, v, vt)‖2Xk1×k2

= ‖∇m1+k1u‖2 + ‖∇k1ut‖2 +

‖∇m2+k2v‖2 + ‖∇k2vt‖2 ≤ C(R0) + C(Rk1×k2)} are
compact bounded absorbing sets in X0×0. Therefore,
based on condition 3 in Lemma 2, the operator semi-
group {S(t)}t≥0 only needs to be a continuous operator.
According to Theorem 1, semi-group {S(t)}t≥0 is already
a continuous semi-group. Thus, the global attractor family
A = {Ak1×k2} of problems (1) to (3) in X0×0 can also be
obtained.

IV. SUMMARY AND PROSPECT

In this paper, we studied higher-order coupled Kirchhoff
systems with nonlinear strong damping. For the first time, we
systematically defined the global attractor family of problems
(1) to (3) and proved its existence. The findings enriched
the related conclusions of higher-order coupled Kirchhoff
models and laid a theoretical foundation for future practical
applications.

Despite the defined and proven global attractor family of
the higher-order coupled Kirchhoff system, many questions
concerning such models still require further investigation.
1. The higher-order coupled Kirchhoff system in this paper
is autonomous, while the relatively complex non-autonomous
coupled Kirchhoff systems have not been studied. Thus, it is
very meaningful to study the asymptotic behaviors of such
systems;
2. This paper mainly studies the global attractor family
of dynamic systems, while many other properties are not

explored, such as the dimension estimation, the exponential
attractor family, and the inertial manifold family. The scarce
relevant theoretical results warrant further research efforts.
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