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Abstract—We have obtained exact values for some special
kinds of secure domination parameters - secure domination
number, co-secure domination number, complete co-secure
domination number and perfect secure domination number in
the Sierpiński graphs and in the Hanoi graphs.
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I. INTRODUCTION

Over the past 25 years, there has been a lot of research
done on graphs whose drawings can be considered as approx-
imate representations of the well-known Sierpiński triangle.
The topological study of Lipscomb’s space, which showed
that this space is a generalisation of the Sierpiński triangular
curve (Sierpiński gasket), served as the inspiration for the
development of Sierpiński graphs S(n, t). Sierpiński graphs
are well studied graphs of fractal nature with applications
in topology, computer science, and mathematics of Tower of
Hanoi [11]. Switching the Tower of Hanoi for n pegs and
t discs is a variant of the Tower of Hanoi that Klavžar and
Milutinović introduced in [10], and they called its state graph
S(n, t), the Sierpiński graph.

A well-known puzzle called the Tower of Hanoi is said
to have originated from the legend of theTower of Brahma.
This legend describes three diamond needles and a tower of
64 golden discs that must be transferred, one disc at a time,
to another needle by a group of Brahmin monks. Since the
discs all have different diameters, no larger disc may ever
be stacked on a smaller one. The world will come to an end
after the monks finish their task. Fortunately, even moving a
disc per second and executing the right strategy would still
take 40 times as much time as the universe has been known
to exist.[14].

All graphs considered in this paper are finite, simple, and
undirected. For notations, definitions, and terminologies in
graph theory that are not explained in this paper, see [2]. By
G in this paper, we mean G = (V,E), where V = V (G),
the set of vertices and E = E(G), the set of edges.

A vertex u is a neighbour of v in G if uv is an edge of
G. The set of all neighbours of v is the open neighbourhood
of v, and is denoted by N(v). The set N [v] = N(v)∪{v} is
the closed neighbourhood of v in G. The number of edges
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incident at v ∈ G is called the degree of the vertex v in G,
and is denoted by d(v). Let S ⊆ V and v ∈ S, a vertex u ∈
V is an S-private neighbour of v if N(u)∩S = {v}. The set
of all S-private neighbours of v is denoted by PN(v, S). If
u ∈ V \ S, then u is called an S-external private neighbour
of v. The set of all S-external private neighbours of v is
denoted by EPN(v, S). A set S ⊆ V is a dominating set
of G if every vertex u ∈ V \ S has at least one neighbour
v ∈ S. The minimum cardinality of a dominating set is the
domination number of G, γ(G).

A dominating set S ⊆ V is a secure dominating set (SDS)
of G if for each u ∈ V \ S, there exists a vertex v such that
v ∈ N(u) ∩ S and (S \ {v})

⋃
{u} is a dominating set of

G (in which case v S-defends u). The minimum cardinality
of an SDS of G is the secure domination number of G,
γs(G) and the corresponding set is γs-set [4]. The following
circumstance serves as inspiration for the idea of a secure
domination number. In the case of a graph G = (V,E), we
want to position a guard at each vertex of a set S ⊆ V
such that S is a dominating set of G and that, if a guard
at v moves down an edge to defend an unguarded vertex u,
the new arrangement of guards likewise forms a dominating
set [12]. This idea was introduced by E. J. Cockayne, P. J.
P. Grobler, W. R. Gründlingh, J. Munganga, and J. H. Van
Vuuren in [5] and has been investigated by several authors
[3], [4], [6].

A set S is a perfect secure dominating set (PSDS) of G
if for each vertex v ∈ V \ S, there exists a unique vertex
u ∈ S such that u and v are adjacent and (S \ {u})∪{v} is
a dominating set. The minimum cardinality of a PSDS of G
is the perfect secure domination number of G, γps(G) [13].

There are a number of real-world scenarios where one
guard must be replaced by another. In other sense, the
group of guards must constitute a dominating set S with the
condition that for every guard u ∈ S, there exists v ∈ V \S
such that v ∈ N(u) and (S\{u})∪{v} is a dominating set of
G. So, every guard u can be swapped out with another guard,
and the new group of guards will still be able to keep G safe.
This observation resulted in the definition of the co-secure
domination number [1]. A dominating set S is called a co-
secure dominating set (CSDS) if for each u ∈ S there exists
v ∈ V \S such that v is adjacent to u and (S \{u})∪{v} is
a dominating set of G. The minimum cardinality of a CSDS
in G is the co-secure domination number γcs(G) of G and
the corresponding set is called γcs-set [1]. For u ∈ S, if
there exists v ∈ V \ S such that u and v are adjacent and
(S \ {u}) ∪ {v} is a dominating set, we say that u protects
v or v replaces u.
As we can easily see, γs(P5) = 3 and γcs(P5) = 2.

A guard in the aforementioned domination parameters can
only guarantee the safety of one of its neighbouring un-
guarded vertex. This inspired us to define a new domination
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parameter called the complete co-secure domination number,
which allows a guard to move to any of its neighbouring
unguarded vertices without compromising the safety of G. A
co-secure dominating set S is a complete co-secure dominat-
ing set (CCSDS) if for every u ∈ S and for every v ∈ V \S
such that u is adjacent to v and (S\{u})∪{v} is a dominating
set. The minimum cardinality of a CCSDS is the complete
co-secure domination number of G, γccs(G). For any graph
G, a CCSDS will be a CSDS. Hence, γcs(G) ≤ γccs(G).

Fig. 1. G

In Fig 1., {1, 3} forms a minimal CCSDS whereas
{1, 2, 3, 4} forms a minimal PSDS of G. Hence, γccs(G) =
2, and γps(G) = 4.

S. Klavžar, and U. Milutinović [10] introduced the
Sierpiński graph of dimension t, S(Kn, t), t ≥ 1, as the
graph with vertex set the set of t-tuples on {1, 2, . . . , n},
V t = {1, 2, . . . , n}t and the edge set defined as follows:
two vertices (i1i2 . . . it) and (j1j2 . . . jt) are adjacent if and
only if there exists h ∈ {1, 2, . . . , t} such that

1) ik = jk for all k < h
2) ih 6= jh
3) ik = jh and jk = ih for all k > h.

When h is equal to t, the condition (3) is trivially true being
empty. The graphs S(3, t) are isomorphic to the graphs of
the Tower of Hanoi problem.
Fig. 2. shows S(4, 3) as an example.

Fig. 2. S(4, 3)

Clearly,
∣∣S(n, t)

∣∣ = nt. Let i ε {1, 2, . . . , n}, then the
vertices of the form ii . . . i of S(n, t) are called the extreme
vertices. Clearly, there are n extreme vertices and they are

of degree n − 1, while all the other n(nt−1 − 1) vertices
are of degree n. Let r ε {1, 2, . . . , t} and let i1, i2, . . . , ir
ε {1, 2, . . . , n}. Then the subgraph of S(n, t) induced by
vertices whose first r co-ordinates are i1i2 . . . ir will be
denoted by S(n, t, i1i2 . . . ir). Note that S(n, t, i1i2 . . . ir) is
isomorphic to S(n, t−r). A subgraph S(n, t, i) contains one
extreme vertex of S(n, t) namely ii . . . i and n− 1 vertices
of the form ijj . . . j, j 6= i that are respectively adjacent to
vertices jii . . . i of subgraphs S(n, t, j). Hence, in S(n, t),
there is exactly one edge between each pair of n subgraphs
S(n, t, i), for i = 1, 2, . . . , n. In S(n, t), the vertices which
are either of the form it−1j or ijt−1, where i 6= j are
called almost extreme vertices of S(n, t). In general, for any
subgraph S(n, t, i1i2 . . . ir) of S(n, t), r = 1, 2, . . . , (t− 1),
a vertex of the form i1i2 . . . irjj . . . j where j is taken t− r
times, is an extreme vertex of S(n, t, i1i2 . . . ir). Note that
each S(n, t) contains nr copies of S(n, t− r) [9].
In [9], the existence of 1-perfect code in the Sierpiński graphs
have been studied. The authors of [8] deduced explicit for-
mulae to calculate the distance in Sierpiński graphs between
an arbitrary vertex and an almost-extreme vertex. They also
provide a formula of the metric dimension of S(n, t). It was
shown in [10] that S(3, t) is isomorphic to Ht

3 for any t,
where Ht

n denotes the Hanoi graphs. Although for any n,
t > 1, the graphs S(n, t) and Ht

n are defined on the same
vertex set, they are not isomorphic for n > 3 and t > 1 [7].
In this paper, we have evaluated the above-mentioned param-
eters in the Sierpiński graphs and in the Hanoi graphs. We
have obtained exact values for all the four parameters. Even
though the choice of vertices is different, we have proved
that all the four secure domination parameters have the same
value in the celebrated Sierpiński networks and in the Hanoi
graphs.

II. PRELIMINARY RESULTS

Theorem 2.1: [1] γcs(Kn) = 1.
Theorem 2.2: [5] γs(Kn) = 1.
Theorem 2.3: [13] Let G be any graph of order n, then

γps(G) = 1 if and only if G = Kn.
Theorem 2.4: [1] Let S be a CSDS of G. A vertex v ∈

V \ S replaces (refer introduction) u ∈ S if and only if
v ∈ N(u) and EPN(u, S) ⊆ N [v].

Theorem 2.5: [1] For any graph G with δ(G) ≥ 2,
γcs(G) ≤ γs(G), where δ(G) denotes the minimum degree
of G.

Remark 2.6: For any graph G, a PSDS will be an SDS.
Hence, γs(G) ≤ γps(G).

III. CO-SECURE DOMINATION NUMBER OF SIERPIŃSKI
GRAPHS

Theorem 3.1: For n ≥ 3, γcs{S(n, t)} = nt−1.
Proof: For t = 1, S(n, 1) = Kn. Hence, by Theorem 2.1,
γcs{S(n, 1)} = 1.
For t = 2, let Sω =

{
iω/i ε {1, 2, . . . , n}

}
, for a fixed ω ε

{1, 2, . . . , n}. Clearly, Sω forms a dominating set of S(n, 2).
For any u = iω ε Sω , there exists v = ij ε V \ Sω , where u
and v belongs to the same Kn, such that (Sω \ {u}) ∪ {v}
is a dominating set of S(n, 2). Hence, Sω forms a CSDS of
S(n, 2). Hence,

γcs(S(n, 2)) ≤ n (1)
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Clearly, any copy of Kn ε S(n, 2) contains an extreme vertex
ii where i ε {1, 2, . . . , n}, which is not adjacent to any other
copy of Kn. In order to dominate these extreme vertices, we
need to take at least one vertex from each Kn of S(n, t).
Hence,

γcs(S(n, 2)) ≥ n (2)

From (1) and (2) we get,

γcs{S(n, 2)} = n.

Fig. 3. S(3, 2)

As we can see in Fig 3., the red vertices indicate the
minimum CSDS for S(3, 2).
Now consider S(n, t) for t > 2. Let Sω =

{
i1i2 . . . it−1ω/ij

ε {1, 2, . . . , n}, for j = 1, 2, . . . , (t − 1)
}

, for a fixed ω
ε {1, 2, . . . , n}. Sω contains one vertex from each copy
of Kn in S(n, t). Hence, Sω forms a dominating set of
S(n, t). Also for any u = i1i2 . . . it−1ω ε Sω , there exists
v = i1i2 . . . it−1j ε V \ Sω , for j ε {1, 2, . . . , n}, j 6=
ω, where u and v belongs to the same Kn, such that
(Sω \ {u}) ∪ {v} is a dominating set of S(n, t). Hence, Sω

forms a co-secure dominating set of S(n, t). Thus,

γcs{S(n, t)} ≤ nt−1. (3)

Let S be the minimal CSDS of S(n, t). We have,
S(n, t, i1i2 . . . it−2) denotes the subgraph of S(n, t), which
is isomorphic to S(n, 2). Take any arbitrary Kn (without
containing extreme vertices) from S(n, t). We can view each
copy of Kn in S(n, t) as a subgraph of S(n, t, i1i2 . . . it−2),
by changing the choice of i1, i2, . . . , it−2. Let the copies
of Kn in S(n, t, i1i2 . . . it−2) be denoted by 1Kn,
2Kn, . . . , nKn, where the vertex set of iKn is given
by {i1i2 . . . it−2i1, i1i2 . . . it−2i2, . . . , i1i2 . . . it−2in}, i ε
{1, 2, . . . , n}. Without loss of generality, let the arbitrary Kn

which we have already taken be 1Kn. Suppose |V (1Kn) ∩
S| = φ. Then the vertices of 1Kn are dominated by
the vertices of other copies of Kn’s which are adjacent
to 1Kn. The vertices of 1Kn is given by i1i2 . . . it−211,
i1i2 . . . it−212, . . ., i1i2 . . . it−21n, where i1i2 . . . it−212 is
adjacent to i1i2 . . . it−221 of 2Kn, i1i2 . . . it−213 is adjacent
to i1i2 . . . it−231 of 3Kn . . . , i1i2 . . . it−21n is adjacent
to i1i2 . . . it−2n1 of nKn. Also i1i2 . . . it−211 is adja-
cent to a vertex of Kn of S(n, t, j1j2 . . . jt−2) for some
j1, j2, . . . , jt−2. Let that vertex be x.

Fig 4. shows a portion of S(4, 3), in which the copy
of Kn in green colour is the 1Kn defined in the proof.
The vertices of other copies of Kn that are adjacent to the
vertices of 1Kn can be easily understood from the picture.

Fig. 4.

According to Fig 4., the vertex x in the proof is 133.
Claim: Each vertex of 1Kn replaces the corresponding
adjacent vertex in other Kn’s.
Clearly, {i1i2 . . . it−221, i1i2 . . . it−231, i1i2 . . . it−2n1, x} ⊆
S. Hence, they dominate their corresponding adjacent
vertices in 1Kn. Here, i1i2 . . . it−212 replaces
i1i2 . . . it−221, since there does not exists any vertex
v ε V \ S other than i1i2 . . . it−212, such that
EPN(i1i2 . . . it−221, S) ⊆ N [v]. Similarly i1i2 . . . it−213
replaces i1i2 . . . it−231, . . . , i1i2 . . . it−21n replaces
i1i2 . . . it−2n1, i1i2 . . . it−211 replaces x.
If i1i2 . . . it−212 replaces i1i2 . . . it−221 then there
exists at least one vertex to dominate i1i2 . . . it−222,
i1i2 . . . it−223, . . . , i1i2 . . . it−22n. Then, either S ∩
{i1i2 . . . it−222, i1i2 . . . it−223, . . ., i1i2 . . . it−22n} 6= ∅, or
the vertices adjacent to i1i2 . . . it−222, i1i2 . . . it−223, . . .,
i1i2 . . . it−22n belongs to S. Similar argument holds for
the vertices i1i2 . . . it−213, . . ., i1i2 . . . it−21n. In any of
the cases, we get

∣∣S ∩ V (S(n, t, i1i2 . . . it−2))
∣∣ ≥ n. Thus,

|S| ≥ nt−1. ie,

γcs(S(n, t)) ≥ nt−1. (4)

Now (3) and (4) implies

γcs(S(n, t)) = nt−1.

Corollary 3.2: In Hanoi graphs, γcs{Ht
3} = 3t−1.

IV. SECURE DOMINATION NUMBER OF SIERPIŃSKI
GRAPHS

Theorem 4.1: For n ≥ 3, γs{S(n, t)} = nt−1.
Proof: By Theorem 2.5, γcs{S(n, t)} ≤ γs{S(n, t)}.
Hence, by Theorem 3.1,

γs{S(n, t)} ≥ nt−1. (5)

For t = 1, S(n, 1) = Kn. Since γs(Kn) = 1, we get
γs{S[n, 1]} = 1.
Consider S(n, t) for t > 1. Let Sω =

{
i1i2 . . . it−1ω/ij

ε {1, 2, . . . , n}, j = 1, 2, . . . , (t − 1)
}

for a fixed ω ε
{1, 2, . . . , n}. Sω contains one vertex from each copy of
Kn in S(n, t). Clearly, Sω forms a dominating set of
S(n, t). For any v = i1i2 . . . it−1it ε V \ Sω , there exists
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u = i1i2 . . . it−1ω ε Sω , for it 6= ω, where u and v belongs
to the same Kn, such that (Sω \ {u})∪ {v} is a dominating
set of S(n, t). Hence, Sω forms an SDS of S(n, t), where
|S| = nt−1.

γs{S(n, t)} ≤ nt−1. (6)

From (5) and (6), we get

γs{S(n, t)} = nt−1.

Corollary 4.2: In Hanoi graphs, γs{Ht
3} = 3t−1.

V. COMPLETE CO-SECURE DOMINATION NUMBER OF
SIERPIŃSKI GRAPHS

Theorem 5.1: γccs(G) = 1 if and only if G = Kn.
Proof: Let γccs(G) = 1. Then there is a CCSDS S = {u}
such that u dominates every vertex in V \ S, which implies
d(u) = n− 1.
Since S is a CCSDS, for every v ε V \ S, (S \ {u}) ∪ {v}
is a dominating set. Hence, d(v) = n− 1 for all v ε V (G).
Thus, G = Kn.
Let G = Kn. Then by Theorem 2.1, S = {u} forms a CSDS,
and for all v ε V \ S, (S \ {u}) ∪ {v} forms a dominating
set of Kn, which implies γccs(G) = 1.

Theorem 5.2: For n ≥ 3, γccs{S(n, t)} = nt−1.
Proof: We have, γcs(G) ≤ γccs(G), for any graph G. By
Theorem 3.1,

γccs{S(n, t)} ≥ nt−1. (7)

For t = 1, the result is obvious, since S(n, 1) = Kn and
Hence, by Theorem 5.1, γccs{S(n, 1)} = γccs(Kn) = 1.
For t = 2, define S =

{
ii/i ε {1, 2, . . . , n}

}
, the set of

extreme vertices of S(n, 2). S is clearly a dominating set of
S(n, 2). Moreover, by Theorem 3.1, S is a CSDS of S(n, 2).
From the definition of S, for every u ε S, and for every v ε
V \S, such that u and v are adjacent, the set (S \{u})∪{v}
is a dominating set. Hence, S forms a CCSDS of S(n, 2).
Hence, γccs{S(n, 2)} ≤ n. Using (7) (for t =2) we get,

γccs{S(n, 2)} = n.

Consider S(n, t), t > 2. We are going to find a CCSDS
having cardinality nt−1, such that, γccs{S(n, t)} ≤ nt−1.
Here, we will select one vertex from each Kn in a specific
way to form a CCSDS.
Case 1: n is odd.
Define S1 =

{
i1i2 . . . it−2ij, i1i2 . . . it−2ji/i 6= j, and no

two vertices belongs to the same Kn, i, j, ik ε {1, 2, . . . , n}
for k = 1, 2, . . . , (t − 2) and neither of them are ad-
jacent to the extreme vertices of any S(n, t − r), for
t − r ≥ 3

}
. In S1, whenever i1i2 . . . it−2ij belongs to

S1, the vertex i1i2 . . . it−2ji also belongs to S1. There
exists (nt−1 − nt−2) vertices in S1. Now, consider Kn’s
having vertices with i = j = it−2 6= it−3. Define S2 ={
i1i2 . . . it−3iii, i1i2 . . . it−4iit−3it−3it−3/i 6= it−3; i, it−3

ε {1, 2, . . . , n} for k = 1, 2, . . . , (t − 3)
}

. There exists
(nt−2−nt−3) vertices in S2. Similarly consider Kn’s having
vertices with i = j = it−2 = it−3 6= it−4. Define
S3 =

{
i1i2 . . . it−4iiii, i1i2 . . . it−5iit−4it−4it−4it−4/i 6=

it−4; i, ik ε {1, 2, . . . , n} for k = 1, 2, . . . , (t−4)
}

. There ex-
ists (nt−3−nt−4) vertices in S3. Proceeding like this, define
St−2 =

{
ijj . . . j, jii . . . i/i 6= j; i, j ε {1, 2, . . . , n}

}
, the

set of almost extreme vertices. There exists (n2−n) vertices
in St−2. Finally, define St−1 =

{
ii . . . i/i ε {1, 2, . . . , n}

}
,

the set of extreme vertices of S(n, t). There exists n vertices
in St−1. Now, define S = S1 ∪ S2 ∪ . . . ∪ St−1, where |S|
= nt−1. Since we have selected one vertex from each Kn in
S(n, t), S forms a dominating set of S(n, t). Moreover, by
Theorem 3.1, S forms a CSDS.
Take any u ε S. Consider the set of vertices in V \ S, that
are adjacent to u. By the definition of S, these vertices are
those that belong to the same Kn that contains u. From a
different Kn, no vertex in V \S is adjacent to u. Hence, for
every u ε S and for every v ε V \S, (S \{u})∪{v} forms a
dominating set. Hence, S forms a CCSDS of S(n, t). Hence,

γccs{S(n, t)} ≤ nt−1 (8)

From (7) and (8), we get

γccs{S(n, t)} = nt−1.

Fig. 5. S(5, 2)

Case 2: n is even.
Since n is even, each S(n, t, i1i2 . . . it−2)
contains even number of Kn’s. Define S ={
i1i2 . . . it−2ij, i1i2 . . . it−2ji/i 6= j, and no two vertices

belongs to the same Kn; ik, i, j ε {1, 2, . . . , n}, for
k = 1, 2, . . . , (t − 2)

}
. In S, whenever i1i2 . . . it−2ij

belongs to S, the vertex i1i2 . . . it−2ji should also be in S.
Here, S contains n vertices from each S(n, t, i1i2 . . . it−2).
ie, one vertex from each Kn. Evidently, S forms a
dominating set of S(n, t). Moreover, by Theorem 3.1, S
forms a CSDS of S(n, t). As in Case 1, for each u ε S and
for every v ε V \ S, (S \ {u}) ∪ {v} forms a dominating
set. Hence, S forms a CCSDS of S(n, t). Thus,

γccs{S(n, t)} ≤ nt−1 (9)

From (7) and (9), we get

γccs{S(n, t)} = nt−1.

In Fig. 5., the set of red vertices indicates a CCSDS of
minimum cardinality for S(5, 2).

Corollary 5.3: In Hanoi graphs, γccs{Ht
3} = 3t−1.

VI. PERFECT SECURE DOMINATION NUMBER OF
SIERPIŃSKI GRAPHS

Theorem 6.1: For n ≥ 3, γps{S(n, t)} = nt−1.
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Proof: Clearly, γs(G) ≤ γps(G), for any graph G. Then by
Theorem 4.1,

γps{S(n, t)} ≥ nt−1. (10)

We will now look for a PSDS with cardinality nt−1 such
that γps{S(n, t)} ≤ nt−1. Here, we are selecting one vertex
from each Kn in the same way mentioned in the proof of
Theorem 5.2.
Case 1: n is odd.
Here, the set S = S1 ∪ S2 ∪ . . . ∪ St−1 (as defined
in Theorem 5.2) forms a dominating set of S(n, t), since
we have selected one vertex from each Kn. Moreover, by
Theorem 4.1, S forms an SDS of S(n, t).
Let v ε V \ S. Because S contains one vertex from each
copy of Kn, for any vertex v ∈ V \ S there exists a vertex
u ε S where both u and v belong to the same Kn, such
that (S \ {u}) ∪ {v} is a dominating set. And it is obvious
from the definition of S that the vertex u is unique. Hence,
S forms a PSDS of S(n, t). Thus,

γps{S(n, t)} ≤ nt−1. (11)

From (10) and (11) we get,

γps{S(n, t)} = nt−1.

Case 2: n is even.
S =

{
i1i2 . . . it−2ij, i1i2 . . . it−2ji/i 6= j, and no two ver-

tices belong to the same Kn; ik, i, j ε {1, 2, . . . , n}, for
k = 1, 2, . . . , (t − 2)

}
. If the vertex i1i2 . . . it−2ij belongs

to S, then the vertex i1i2 . . . it−2ji does as well. This is the
same set as defined in Case 2 of Theorem 5.2. Clearly, S
forms a dominating set of S(n, t), since we have selected
one vertex from each Kn. Moreover, by Theorem 4.1, S
forms a secure dominating set of S(n, t).
Let v ε V \S; then, as in Case 1, there exists a unique vertex
u ε S such that (S \ {u})∪ {v} is a dominating set. Hence,
S forms a PSDS of S(n, t). Thus,

γps{S(n, t)} ≤ nt−1. (12)

From (10) and (12) we get,

γps{S(n, t)} = nt−1.

In Fig. 5., the set of red vertices indicates a PSDS of
minimum cardinality for S(5, 2).

Corollary 6.2: In Hanoi graphs, γps{Ht
3} = 3t−1.

VII. CONCLUSION

In this paper, we have computed the exact values of
the secure domination parameters in the Sierpiński graphs
and in the Hanoi graphs. For n ≥ 3, we have obtained
that, γcs{S(n, t)} = γs{S(n, t)} = γccs{S(n, t)} =
γps{S(n, t)} = nt−1. Also, we have proved that in the Hanoi
graphs, for t ≥ 1; γcs{Ht

3} = γs{Ht
3} = γccs{Ht

3} =
γps{Ht

3} = 3t−1. In several classes of graphs, the secure
domination number and the co-secure domination number
have been examined, and the values vary frequently. The
equality of all four parameters in the Sierpiński graphs thus
surprised us. Exploring the conditions in which these factors
are equivalent will be fascinating. It will be interesting to
examine the secure domination number in some different
well-known kinds of graphs and networks as the challenge
of finding the secure domination number for bipartite graphs
and split graphs is NP-complete.
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[10] Klavžar S., and Milutinović U., “Graphs S(n, k) and a varient of the
Tower of Hanoi problem”, Czechoslovak Mathematical Journal, Vol.
47, pp. 95-104, 1997.
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