
The Time-Varying Backward Hyperpath with the
Maximum Capacity in the Backward Hypergraph

Zhile Xing, Shurong Zhang∗, Lin Chen

Abstract—With the rapid development of information tech-
nology, the hypergraph has gradually become an important
model that can truly reflect the complex network. Especially
time-varying directed hypergraphs can better represent dynam-
ic networks and have more important research significance.
As an important class of directed hypergraphs, barkward
hypergraphs (BHs) have a variety of applications in urban
traffic and information transmission. The problem of finding the
time-varying backward hyperpath (TV-B-hyperpath) with the
maximum capacity in the time-varying BH (TV-BH) is the core
of many network optimization problems. However, due to the
special structure of TV-BH and TV-B-hyperpath, this problem
has not yet been investigated. In this paper, we consider a model
of weighted TV-BH. Then, we propose polynomial algorithm
to find maximum capacity TV-B-hyperpath in the weighted
TV-BH. Moreover, in order to further reduce the complexity
of algorithm, we use the time discretization and hypergraph
pruning techniques. Simulation results show that, by using
the two methods, the computation time of the algorithm are
significantly reduced.

Index Terms—The maximum capacity, time-varying net-
works, backward hypergraphs, hyperpath optimization, time
discretization.

I. INTRODUCTION

AS the core of many network optimization problems, the
maximum capacity path problem (MCP) was proposed

by Pollack [19] as early as 1960 and has widely been used
to tackle a number of network problems [6], [14], [25].
Specifically, the MCP problem is to find a path between two
given nodes such that the capacity of the path is maximal,
where the capacity of a path is defined as the minimum
capacity of edges and nodes on this path. Gabow et al. proved
in [12], [16], [20] that the MCP problem is polynomially
solvable in static networks, where the weights of each arc are
static constants. However, many real-life problems tend to be
dynamic in nature. For example, the dynamic management
of a traffic system provides real-time traffic information to
users, the channel bandwidth between stations in the com-
munication network is time-dependent. Therefore, scholars
began to study the time-varying maximum capacity problem
(TVMCP), in which the transmission time and capacity of
each arc in the network change dynamically over time. At the
same time, the TVMCP may appear as a sub-problem in the
process of solving other time-varying network optimization
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problems, such as the time-varying maximum flow problem
[10] and the problem of improving network transmission
capacity [9].

MCP and TVMCP are usually solved in general graph.
In fact, the real network is a complex system composed of
multiple subjects and relationships. Different system struc-
tures exhibit different properties between nodes and arcs.
Then, the general graph cannot fully describe the network
characteristics of the real world. In particular, in real life,
the relationships between objects are often complex. For
example, the general graph can indicate whether authors have
collaborated, but it cannot indicate whether three or more
authors have collaborated on a paper. Then solving this kind
of problem can only be done in the hypergraph. As early as
the 1960s, hypergraphs became an independent theory [8].

Originally, developed in France by Berge [4], the hy-
pergraph is a general structure in discrete mathematics.
Furthermore, Gallo et al. [13] gave the concept of directed
hypergraphs. It can be used to deal with specific problems in
computer science and combinatorial optimization. Moreover,
the backward hypergraph (BH), in which each hyperarc has
only one head node and multiple tail nodes, is an important
kind of directed hypergraph. This topology is widely used
in many practical problems [21], [23]. For example, in the
communication network, the central node (head node) in each
area needs to receive data information from all other nodes
(tail nodes) in this area before data can be forwarded. Due
to the limitation of channel bandwidth (capacity) between
nodes, the problem of how to transmit more information
to the destination within the specified time motivates us
consider the maximum capacity backward hyperpath (B-
hyperpath) problem. Since the communication network is
dynamic in practical applications, we mainly consider the
time-varying backward hypergraph (TV-BH). Therefore, we
model the weighted TV-BH and solve the maximum capacity
TV-B-hyperpath problem in this TV-BH.

A. Related work.

In the general graph G, the MCP problem was proposed
by Pollack in 1960 [19]. The well-known algorithm used to
solve this problem was proposed by Gabow [12] with the
complexity of O(min{m+ nlogn,mlognW}), where W is
the maximum edge weight of the graph G. Punnen [20] used
a binary search method to propose an algorithm with the
complexity of O(m), where m is the number of edges in G.
In [16], Kaibel et al. gave an algorithm with the complexity
of O(m) in undirected graphs, and proposed a modified
Dijkstra algorithm with bucket structure in directed graphs
to solve the MCP problem. When the weights associated
with the edges in the graph change over time, the problem
has been studied in [10] and shown to be NP-complete. The
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authors in [10] used the approach of time discretization to
propose approximate algorithms. When the capacities are
considered to be the generalized trapezoidal fuzzy number
and no waiting is allowed at any node, an exact algorithm for
finding the optimal path within a time limit D was proposed
in [22]. Therefore, we can know that different time-varying
weights associated with edges will affect the complexity of
the problem, and the approach of time discretization is an
important method to solve time-dependent problems.

The directed hypergraph, a generalization of the directed
graph [7], has been widely and deeply studied in [1], [3], [4],
[5], [13], [24] and quite often been used in various area of
computer science and discrete mathematics as a modelling
and algorithmic tool. However, the backward hyperpath in
directed hypergraph is not a trivial extension of directed path.
In the work of Ausiello et al. [2], the study of the shortest
backward hyperpath problem for directed hypergraphs has
been approached for a variety of cost measures. Ausiello et
al. [3] introduced weighted directed hypergraphs and given
different calculation methods about the cost of backward
hyperpath. In [13], the authors porposed various algorithms
in weighted hypergraphs. These algorithms are all based on
static hypergraph. To the authors’ knowledge, the problem
of finding the maximum capacity TV-B-hyperpath in the TV-
BH has not been considered. Therefore, we will study this
problem in this paper.

B. Our Contributions.

The main contributions of this paper are as follows.
• Mathematical model of TV-BH. We model a weighted

TV-BH. All channels in each area may have approxi-
mately the same transmission time and bandwidth. Then
this case is modeled as the weighted TV-BH H 1, where
each hyperarc is assigned a delay and a time-varying
capacity function.

• Maximum capacity TV-B-hyperpath problems. For
the problem of information transmission in time-varying
communication networks, the channel bandwidth (ca-
pacity) between nodes varies with time, and the central
nodes (head node) in each area (hyperarc) must receive
all information from all other nodes (tail nodes) in the
area before data can be forwarded. Then, the infor-
mation is sent to the central node only after all other
nodes have received the information. This is defined as a
Capacity Model for calculating the capacity of a TV-B-
hyperpath in H 1. According to this model, we propose
a polynomial algorithm to find the maximum capacity
TV-B-hyperpath in TV-BH.

• The main technical methods in the algorithms.
Firstly, we propose polynomial algorithm by using the
method of time discretization. Then, we prune the TV-
BH by using the bidirectional search and update the
already discretized time set by removing times that are
unreachable at any node. These methods are able to op-
timize our algorithm. In general graphs, many scholars
have used bidirectional Dijkstra Algorithm, bidirectional
A* Algorithm, and bidirectional ALT Algorithm to find
the shortest path [11], [15], [17], [18]. These studies
have shown that bidirectional search can reduce the
search space and thus reduce the operation time of

the algorithm. Therefore, in this paper, the method
is applied to prune the TV-BHs, which significantly
speeds up the running speed of our algorithms. Then
the effectiveness of the algorithms are compared and
analyzed by simulation experiments.

The rest of the paper is organized as follows. In sec-
tion II, we define the weighted TV-BH and develop the
Capacity Model for calculating the capacity of the TV-B-
hyperpath. Then we propose the mathematical model of the
main problem. In Sections III, we design algorithms to find
maximum capacity TV-B-hyperpath in above weighted TV-
BH, and analyze their correctness and complexity. Then, we
give experiments in Section IV. Finally, we conclude this
paper in Section V.

II. NETWORK TOPOLOGY AND PROBLEM
FORMULATION

A. Directed hypergraph.

For hypergraph-theoretical terminologies and notations
defined here we follow [13]. A hypergraph is an ordered
pair H = (V ,E ), where V is the set of nodes, and E
is a family of subsets of V . The elements of E are called
hyperedges. For each hyperedge E ∈ E , if E is divided into
two nonempty subsets T (E) and H(E), then E is a dircted
hyperedge from T (E) to H(E), where T (E) denotes the
set of tail nodes and H(E) denotes the set of head nodes.
Then E is called a hyperarc and is noted as (T (E), H(E)).
Furthermore, H is called the directed hypergraph (DH). The
cardinality of a hyperarc E ∈ E is the number of nodes it
contains, denoted by |E|. When |E| = 2 for each E ∈ E ,
the DH H is a general directed graph. The size of H is
size(H ) =

∑
E∈E

|E|.

Define a hyperarc E = (T (E), H(E)) with |H(E)| = 1
as a backward arc (B-arc). A backward hypergraph, or
simply BH, is a directed hypergraph whose hyperarcs are
all B-arcs. An example of a BH is illustrated in Fig.
1, which contains 10 nodes v1, v2, . . . , v10 and 16 B-arcs
E1, E2, . . . , E16, and B-arcs E1 and E4 have 1 and 3 tail
nodes, respectively.

Fig. 1: A backward hypergraph

Let FS(v) = {E ∈ E |v ∈ T (E)} and BS(v) = {E ∈
E |v ∈ H(E)} be the forward star and backward star of v,
respectively. In a DH H , a hyperpath Pvsvt of length q is
a sequence of nodes and hyperarcs:

Pvsvt = (vs = v1, E1, v2, E2, . . . , Eq, vq+1 = vt)
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where Ei ∈ E for i = 1, 2, . . . , q, vs ∈ T (E1), vt ∈ H(Eq)
and vi ∈ H(Ei−1) ∩ T (Ei) for each i ∈ [2, q]. Node vt is
connected to node vs in H if a hyperpath Pvsvt exists. If
vt ∈ T (E1), then Pvsvt is a cycle in H . The hyperpath Pvsvt
is cycle-free if it does not contain any sub-hyperpath which
is a cycle. If H contains no cycles, it is called acyclic.

B. The TV-BH and a transmission model.

As explained in the Intruduction, we are interested in the
TV-BH, which is defined as follows.

Definition 1 (TV-BH H 1). Given a BH H = (V ,E )
with a node set V = {v1, v2, . . . , vn} and a B-arc set
E = {E1, E2, . . . , Em}, then the TV-BH with time-varying
B-arc capacity is defined by a quintuple (V ,E , T ∗,∆,Λ),
where
• T ∗ is the time horizon;
• ∆ = {d(Ei) : Ei ∈ E } and d(Ei) ∈ N+ is the delay to

traverse each Ei ∈ E ;
• Λ = {ci(Ei, t) : Ei ∈ E } and ci(Ei, t) > 0 is the time-

varying capacity function for each Ei ∈ E , where t ∈
[0, T ∗].

The characteristic of time-varying capacity functions in
TV-BH H 1 is that each B-arc is assigned exactly one ca-
pacity function. For the BH H given in Fig. 1, in following
example, we will define the weight function for each B-arc
in H and obtain a H 1.

Example 1. Observe that the hypergraph H in Fig. 1 is
a TV-BH with 10 nodes and 16 B-arcs. The time-varying
capacity functions of some B-arcs E1, E5, E6, E8, E9,
E10, E11, E12, E13, E14, E15 are shown in Fig. 2 (a)-
(d) and the time-varying capacity functions of other B-arcs
are defined as the following constant functions: c2(E2, t) =
c3(E3, t) = c7(E7, t) = c16(E16, t) = 3, c4(E4, t) = 5,
where t ∈ [0, T ∗]. The delay of each B-arc is set as follows:
d(E1) = 2, d(E2) = 1, d(Ei) = 2 for i = 3, 4, . . . , 15,
d(E16) = 1. Then, the TV-BH H 1 can be obtained.

(a) The time-varying capacity
functions of B-arcs E1, E5,
E12, E13, E15

(b) The time-varying capacity
functions of B-arcs E6 and E8

(c) The time-varying capacity
functions of B-arcs E9 and
E11

(d) The time-varying capacity
functions of B-arcs E10 and
E14

Fig. 2: The time-varying capacity functions of some B-arcs

In this paper, we mainly consider the case that the time-
varying capacity functions are piecewise linear functions.
Based on the application background from the Introduction,
we can know the way of information transmission in H 1.

In the following, we describe the model of this information
transmission.
• [Capacity Model] For any TV-BH H 1 and Ei =

(T (Ei), {v}) ∈ E , without loss of generality, suppose Ei
has two tail nodes vj and vk, which receive the information
at times t1 and t2, respectively, where t1 < t2. So vj
receives the information first. At this time it cannot transmit
the information to v immediately and needs to wait until
time t2. That is vj waits until the other tail node vk
has received the information. At time t2, vj and vk start
transmitting information to v. The time to arrive at v is
max{t1, t2}+ d(Ei).

C. Time-varying backward hyperpath.

According to the above transmission model, for any B-
arc E = (T (E), {v}), v can receive information only if the
information will be transmited to all tail nodes in T (E).
This leads us to focus on the backward hyperpath which is
a special kind of the hyperpath and is defined as follows.

Definition 2 (B-hyperpath [13]). Given a DH H = (V ,E )
with a source vs and a sink vt, a backward hyperpath (B-
hyperpath) πvsvt is a DH (Vπ,Eπ) with the least number of
hyperarcs and satisfying the following conditions:
• Eπ ⊆ E ,Vπ =

⋃
E∈Eπ

E ⊆ V ;

• vs, vt ∈ Vπ;
• for each v ∈ Vπ , πvsvt has a cycle-free hyperpath from
vs to v.

Fig. 3: BH H

Given a BH H in Fig. 3, then a TV-BH H 1

can be obtained. There are two hyperpaths Pv1v2 =
(v1, E2, v3, E13, v2) and Pv1v6 = (v1, E7, v4, E16, v3, E5,
v6) with departure time t1. Assume that, passing through
Pv1v2 , the times of arriving nodes v3 and v2 are t3 and t2,
respectively. Moreover, passing through Pv1v6 , the times of
arriving at nodes v4, v3 and v6 are t4, t′3 and t6, respectively.
Note that E2, E5, E7, E13 and E16 are general edges. Then
Pv1v2 and Pv1v6 are general paths as well. Combining this
with the definition of the time-varying path capacity [10],
suppose that Pv1v2 and Pv1v6 are the maximum capacity
paths arriving at v2 and v6, respectively. Assume that t6 > t2
and the minimum capacity value of B-arc E3 in time period
[t6, t6 + d(E3)] is larger than any other time periods. Then,
if the information start from v1 at time t1 and pass through
H = Pv1v2 + Pv1v6 + E3, then the amount of information
transmitted to v5 can be maximized, which leads to reaching
v3 twice at times t3 and t′3 passing through Pv1v2 and
Pv1v6 , respectively. Then, we can observe that H is not
a B-hyperpath because it contradicts the minimality in the
definition of the B-hyperpath. In addition, if v3 at times t3
and t′3 are seemed as two different nodes, then Pv1v2 and
Pv1v6 are two internally disjoint paths and H becomes a
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B-hyperpath. This will be explained in Example 2. Now we
give the useful terminologies as follows. After that, we will
propose an appropriate general definition of the time-varying
backward hyperpath.

In a TV-BH, similar to the node v3 in Fig. 3, each node
v may have multiple arrival times passing through different
hyperpaths. We denote the set of times when the information
can arrive at v by Tv . For any t ∈ Tv , the B-arc E ∈ BS(v)
that enables the information to pass through E and arrive
node v at time t is called a B-arc of v at time t. We denote
the set of all these B-arcs by BS(v, t). Therefore, for each
t ∈ Tv , we have a two-tuples (t, BS(v, t)).

Next we can construct the corresponding BH H ′ of
a TV-BH H 1 as follows. Firstly, for each node v with
Tv = {t1, t2, . . . , tr} in H 1 for some r ≥ 1, we replace
the node v with |Tv| = r copies which are denoted by
v(t1), v(t2), . . . , v(tr), respectively. For any B-arc E ∈
BS(v, ti), the head node of E (i.e. v) is replaced by v(ti).
Then the corresponding BH H ′ is obtained and an example
is as follows.

Example 2. Recall that in the H given in Fig. 3, when
the departure time is t1, the hyperpaths Pv1v2 and Pv1v6
pass through v3 at times t3 and t′3, respectively. Then
Tv3 = {t3, t′3} and we discretize v3 into two nodes v3(t3)
and v3(t′3). For each node vi, where i ∈ {1, 2, 4, 5, 6}, since
|Tvi | = 1 and Tvi = {ti}, each vi is replaced by the node
vi(ti). Then, the set of nodes of the corresponding BH H ′

is obtained and we can note that the B-arcs E2, E7, E16, E3

are replaced by ({v1(t1)}, {v3(t3)}), ({v1(t1)}, {v4(t4)}),
({v4(t4)}, {v3(t′3)}) and ({v2(t2), v6(t6)}, {v5(t5)}), re-
spectively. As the time passing through v3 along Pv1v2 is
t3 and the path Pv1v6 passes through E5 in the time period
[t′3, t6], E13 and E5 are replaced with ({v3(t3)}, {v2(t2)})
and ({v3(t′3)}, {v6(t6)}), respectively. Then the correspond-
ing BH H ′ of TV-BH H 1 defined based on BH H in Fig.
3 is constructed and is shown in Fig. 4. We can observe
that H ′ is a static B-hyperpath which has the maximum
information capacity from v1 to v5 with departure time t1
although H in Fig. 3 is not a B-hyperpath. Therefore, we
need to propose the definition of time-varying B-hyperpath
to maximize capacity.

Fig. 4: The corresponding BH H ′

Definition 3 (TV-B-hyperpath). Given a TV-BH H 1 =
(V ,E , T ∗,∆1,Λ1) with a source vs and a sink vt, the
departure time is t0. If the corresponding BH of H 1 is a
B-hyperpath from vs to vt, then H 1 is called a time-varying
B-hyperpath (or, for short, TV-B-hyperpath) and is denoted
by Πvsvt .

If there is a TV-B-hyperpath Πvsvt from vs to vt in a TV-
BH, then vt is reachable. Let the departure time and arrival
time of Πvsvt be t0 and t, respectively. We define the delay of

Πvsvt as D(Πvsvt , t) = t− t0. For any node v in Πvsvt , let
Tv(Πvsvt) be the set of arrival times of node v in Πvsvt .
Since the corresponding BH of Πvsvt is a B-hyperpath,
according to the minimality of the B-hyperpath, there is
exactly one TV-B-hyperpath in Πvsvt from vs to v at each
time t ∈ Tv(Πvsvt) and it is called a TV-B-subhyperpath
which is denoted by Πvsv(t). Similarly, following result can
be obtain directly.

Observation 1. For any v in a TV-B-hyperpath Πvsvt , if
t ∈ Tv(Πvsvt), then there is only one B-arc E ∈ BS(v, t) in
Πvsvt . Furthermore, for each w ∈ T (E), Tw(Πvsv(t)) has
exactly one time.

D. The capacity of a TV-B-hyperpath and problem formula-
tion.

For any BH H , since the capacity function in TV-BH H 1

is time-varying, the minimum capacity value of the B-arc is
time dependent. So we firstly give following notation.

In the TV-BH H 1, for any Ei = (T (Ei), {v}) ∈ E ,
the minimum capacity value of the B-arc Ei in time period
[t1, t2] is l(Ei, t1, t2) = min

t∈[t1,t2]

{
ci(Ei, t)

}
.

Example 3. As shown in Fig. 2, we have:

l(E1, 2, 4) = min
t∈[2,4]

{
c1(E1, t)

}
= 2.

Next, combining the Capacity Model and Observation 1,
we will give definition of the capacity of the TV-B-hyperpath
Πvsvt in H 1.

Definition 4 (C(Πvsvt)). Given a TV-B-hyperpath Πvsvt

from vs to vt at time exactly t∗, the capacity of Πvsvt

is denoted as C(Πvsvt). For each node v in Πvsvt and
t ∈ Tv(Πvsvt), the capacity of the TV-B-subhyperpath
Πvsv(t) is denoted by C(Πvsv(t)). Let C(Πvsvs) =∞. Then
the iterative formula for computing C(Πvsvt) is C(Πvsvt) =

min
{

min
vk∈T (Ej)

{
C(Πvsvk(tk))

}
, l(Ej , t − d(Ej), t)

}
, where

Ej is the only one B-arc in both BS(vt, t
∗) and Πvsvt , and

for each vk ∈ T (Ej), let Tvk(Πvsvt) = {tk}.
Next, we formulate an optimization problem about the

time-varying maximum capacity B-hyperpath (TV-MCBH)
in H 1.

Problem 1 (TV-MCBH I). Given a TV-BH H 1, a source
vs, a sink vt, and a positive integer D, we want to find
the maximum capacity TV-B-hyperpath Πvsvt with departure
time t0 from vs to vt in H 1 such that the delay is not more
than D.

III. ALGORITHM DESIGN FOR TV-MCBH I

In this section, we will discuss how to find the TV-MCBH
in H 1 = (V ,E , T ∗,∆,Λ), where E = {E1, E2, . . . , Em}
is the set of B-arcs in H 1. Firstly, according to the ∆ in Def-
inition 1 and the D in Problem 1, we discretize the interval
[t0, t0+D] into a set T = {t0, t0+1, t0+2, . . . , t0+D}. For
any t ∈ T and v ∈ V , if there exists Ej ∈ BS(v, t), then
the latest time to reach the set of tail nodes is Fj = t−d(Ej).
The maximum capacity of the TV-B-hyperpath from vs to v
at time exactly t is denoted by ξ(v, t). In order to calculate
ξ(v, t), we give the following theorem.
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Theorem 1. Given a TV-BH H 1, for any t ∈ T and vi ∈
V , assume that there is at least one B-arc Ej ∈ BS(vi, t),
let

ξvk = max
t′≤t−d(Ej)

{
ξ(vk, t

′)
}
, (1)

ξj(v) = min
{
ξ(v, t− d(Ej)), min

vj∈T (Ej)\{v}
ξvj
}
,

for each v ∈ Q, (2)

ξT (Ej) = max
v∈Q

{
ξj(v)

}
, (3)

where Q is the set of nodes in T (Ej) that can be reached
at time t−d(Ej). Then, the maximum capacity of the TV-B-
hyperpath from vs to vt at time exactly t is

ξ(vi, t) = max
Ej∈BS(vi,t)

min
{
ξT (Ej), l(Ej , t− d(Ej), t)

}
.

(4)

Proof: First, we claim that there exists a TV-B-
hyperpath from vs to vi at time exactly t with capacity
ξ(vi, t). Without loss of generality, let Ej = argmax

{
min{ξT (E), l(E, t − d(E), t) : E ∈ BS(vi, t)}

}
(see Fig.

5 (a)) and let vl = argmax
{
ξj(v) : v ∈ Q

}
. Then, by Eq.

(2) and Eq. (3),

ξT (E) = ξj(vl)

= min
{
ξ(vl, t− d(Ej)), min

vj∈T (Ej)\{vl}
ξvj
}

(5)

Furthermore, by the existence of Ej and the definition of
TV-B-hyperpath, there is a TV-B-hyperpath Πvsvk(tk) from
vs to each vk ∈ T (Ej)\{vl} at some time tk ≤ t − d(Ej)
with capacity ξvk . By the choice of vl, there exists a TV-B-
hyperpath Πvsvl(t− d(Ej)) from vs to vl at time t− d(Ej)
with capacity ξ(vl, t− d(Ej)).

Let the union of all TV-B-hyperpaths in the set P ={
Πvsvl(t − d(Ej))

}
∪
{

Πvsvk(tk) : vk ∈ T (Ej)\{vl}
}

be
the TV-BH Π(vs → T (Ej)). Set tl = t − d(Ej). That is
Πvsvl(t − d(Ej)) can be rewritten as Πvsvl(tl). Therefore,
the minimum capacity of TV-B-hyperpaths in P is

min
vk∈T (Ej)

C(Πvsvk(tk))

= min
{
C(Πvsvl(tl), min

vk∈T (Ej)\{vl}
C(Πvsvk(tk)))

}
= min

{
ξ(vl, t− d(Ej)), min

vk∈T (Ej)\{vl}
ξvk
}}
.

Then, combining this with Eq. (5), we have that

min
vk∈T (Ej)

C(Πvsvk(tk)) = ξT (Ej). (6)

According to the definition of TV-B-hyperpath, it can be
seen that the TV-BH consisting of Π(vs → T (Ej)) and
Ej is a TV-B-hyperpath from vs to vi at time t and it is
denoted by Πvsvi . The node vl is called the fixed node of
Ej in Πvsvi . Now, by Definition 4 and Eq. (6), we can
see that C(Πvsvi) = min

{
min

vk∈T (Ej)
C(Πvsvk(tk)), l(Ej , t −

d(Ej), t)
}

= min
{
ξT (Ej), l(Ej , t− d(Ej), t)

}
.

Then, the choice of Ej implies that

C(Πvsvi) = max
Ej∈BS(vi,t)

min
{
ξT (Ej), l(Ej , t− d(Ej), t)

}
Therefore, the claim holds.

The above proof yields a TV-B-hyperpath Πvsvi from vs
to vi at time t and C(Πvsvi) = ξ(vi, t). In the following, it’s

enough to prove that for any other TV-B-hyperpath Π∗vsvi
from vs to vi at time t, C(Π∗vsvi) ≤ ξ(vi, t). Now, this will
be proved by induction on the number of B-arcs of the TV-
B-subhyperpath in Π∗vsvi . According to the Definitions 2 and
3, for each vj in Π∗vsvi and tj ∈ Tvj (Π∗vsvi), there is only
one TV-B-hyperpath Π∗vsvj (tj) in Π∗vsvi from vs to vj at time
tj (see Fig. 5 (b)).

First, the result holds obviously when vi = vs. The only
one B-arc of BS(vi, t) in Π∗vsvi is denoted by Ek. By the Ca-
pacity Model, without loss of generality, let tl∗ = t−d(Ek).
That is vl∗ is the fixed node of Ek in Π∗vsvi . Observe that
Π∗vsvi is the union of all TV-B-hyperpaths in the set P ∗ ={

Π∗vsvl∗ (t− d(Ek))
}
∪
{

Π∗vsvj (tj) : vj ∈ T (Ek)\{vl∗}
}

.
By induction, we have that C(Π∗vsvl∗ (tl∗)) = C(Π∗vsvl∗ (

t − d(Ek))) ≤ ξ(vl∗ , t − d(Ek)) = ξ(vl∗ , tl∗) and
C(Π∗vsvj (tj)) ≤ ξ(vj , tj). Hence,

min
vj∈T (Ek)

{
C(Π∗vsvj (tj))

}
≤ min

{
ξ(vl∗ , tl∗), min

vj∈T (Ej)\{vl∗}
{ξ(vj , tj)}

}
≤ min

{
ξ(vl∗ , tl∗), min

vj∈T (Ej)\{vl∗}
{ max
t′≤t−d(Ek)

ξ(vj , t
′)}
}

= min
{
ξ(vl∗ , tl∗), min

vj∈T (Ek)\{vl∗}
ξ∗vj
}

= ξk(vl∗) (7)

where ξ∗vj = max
t′≤tl∗

ξ(vj , t
′). Thus, by the Definition 4 and

Eq. (7), we have that

C(Π∗vsvi) = min
{

min
vk∈T (Ek)

C(Π∗vsvk(tk), l(Ek, tl∗ , t))
}

≤ min
{
ξk(vl∗), l(Ek, t− d(Ek), t)

}
.

Then, by the Eq. (3), C(Π∗vsvi) ≤ min
{
ξT (Ek),

l(Ek, tl∗ , t)
}

. Therefore, the choice of Ej implies that

C(Π∗vsvi) ≤ max
Ej∈BS(vi,t)

min
{
ξT (Ej), l(Ej , t− d(Ej), t)}

= ξ(vi, t) = C(Πvsvi).

Then, Πvsvi is the maximum capacity of the TV-B-hyperpath
from vs to vi at time exactly t and so the result holds.

(a) Πvsvi (b) Π∗
vsvi

Fig. 5: Illustration of Theorem 1

According to Theorem 1, if we want to get ξ(vi, t), we
need to calculate ξ(vk, t′) for each vk ∈ T (Ej) and t′ ≤ Fj ,
where Ej ∈ BS(vi). The computational complexity of this
process is undoubtedly huge. Due to the restriction of D,
some nodes are unreachable at some times. Therefore, we
will remove these nodes in next subsection and can greatly
reduce the computational complexity.

A. Hypergraph Pruning and Time Discretization.

1) Hypergraph Pruning: The primary goal of using Hy-
pergraph Pruning is to remove as many nodes as possible that
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do not belong to any TV-B-hyperpath. In this subsection, we
propose a bidirectional pruning algorithm (see Algorithm 1).

Recall that the sink vt should be arrived in the time period
[t0, t0+D]. Under this constraint, let fv be the earliest arrival
time at node v, gv be the latest departure time at node v.
[fv, gv] is called the reachable time interval of v. We use
forward search and backward search to obtain the fv and gv
respectively. In the forward search, the calculation of fv is
mainly based on procedure SBT in [13]. In the backward
search, we use the method similar to Dijkstra’s Algorithm to
calculate ĝv , which is a upper bound of gv . This is because
the Dijkstra’s Algorithm can only be used to construct
general paths and maybe not suitable for constructing B-
hyperpaths. When fv and ĝv are obtained for each node
v, [fv, ĝv] is an estimate of the reachable time interval and
contains all the arrival and departure times of v. Noting that
ĝv ≥ gv , we can check and delete some useless nodes in the
main algorithm. Furthermore, in order to better achieve the
purpose of pruning, we removes the following two categories
of nodes:
• The node that cannot be reached from vs before time
t0 +D;

• The node v that satisfies ĝv < fv .
According to the above discussion, we propose Algorithm

1. The main steps of the algorithm are as follows.
Algorithm 1. First, the algorithm perform initialization

in lines 1-9. Let
−→
Q = {vs} and

←−
Q = {vt}. For each B-arc

Ej , kj is the counter which is used to provide the number
of its tail nodes already removed from

−→
Q . We initialize

kj to 0. Then, we perform the forward search in lines 10-
22 in Algorithm 1, and it is based on Procedure SBT in
[13]. The difference from Procedure SBT is that if v is not
reachable from vs within D, then fv − t0 > D and we can
safely remove v from H 1. Lines 23-32 in Algorithm 1 are
backward search. Since we consider the latest departure time
gv at each node v and we have got the ĝv which is the upper
bound of gv , the algorithm first select and remove the node v
with the largest ĝv from the set

←−
Q (see line 24). if there exists

a node v such that ĝv < fv , that is, for the TV-B-hyperpath
passing through the node v at time fv , this hyperpath cannot
transmit information to vt before time t0 +D, then we can
thus remove v from H 1. The above pruning process removes
the second category of nodes (see lines 25-27). Otherwise,
the algorithm checks and possibly updates ĝy for every node
y ∈ T (Ej)\{vs} and Ej ∈ BS(v). More precisely, a new
time ĝv − d(Ej) is compared to the currently time ĝy . If
ĝv − d(Ej) is larger, then the algorithm adds node y to the
set
←−
Q and increases the value of ĝy (see line 32). Finally,

the algorithm terminates when
←−
Q = φ.

Correctness. According to the correctness of the Proce-
dure SBT, fv obtained by the forward search is indeed the
earliest arrival time at node v. Moreover, since the node v
such that fv − t0 > D is not reachable within D, removing
these nodes will not affect the calculation of fv .

For backward search, we claim that ĝv obtained by the
Alogrithm 1 is the upper bound of the latest departure time
gv at v. By contradiction, suppose that there is a TV-B-
hyperpath Πvivt from vi to vt satisfying the following two
conditions:
• the time to arrive at vt is t ∈ [t0, t0 +D];

Algorithm 1: Hypergraph pruning in H 1

Input: H 1, t0, D, vs, vt
Output: H 1

t0 and [fvi , ĝvi ] for each vi ∈ V \{vs}
1 Initialization:

−→
Q = {vs};

←−
Q = {vt}; kj = 0 for each

Ej ∈ E ;
2 for each v ∈ V do
3 if v = vs then
4 fv = t0; ĝv = −1;
5 else
6 if v = vt then
7 ĝv = t0 +D; fv =∞;
8 else
9 fv =∞; ĝv = −1;

10 while
−→
Q 6= φ do

11 v = argmin{fu : u ∈
−→
Q};

−→
Q =

−→
Q\{v};

12 if fv − t0 > D then
13 remove v and the related B-arcs;
14 else
15 for each Ej = (T (Ej), {y}) ∈ FS(v) do
16 kj = kj + 1;
17 if kj = |T (Ej)| then
18 t′ = max

vi∈T (Ej)
fvi ;

19 if t′ + d(Ej) < fy then
20 if y /∈

−→
Q then

21
−→
Q =

−→
Q ∪ {y};

22 fy = t′ + d(Ej);

23 while
←−
Q 6= φ do

24 v = argmax{ĝu : u ∈
←−
Q};

←−
Q =

←−
Q\{v};

25 if ĝv < fv then
26 remove v and the related B-arcs;
27 else
28 for each Ej ∈ BS(v) do
29 for each y ∈ T (Ej) such that

ĝv − d(Ej) > ĝy and y 6= vs do
30 if y /∈

←−
Q then

31
←−
Q =

←−
Q ∪ {y};

32 ĝy = ĝv − d(Ej);

• there is a internal node u in Πvivt such that the departure
time at u is g′u > ĝu and for any other node v in the
TV-B-subhyperpath Πuvt(t), g′v ≤ ĝv .

Assume that Ej is the B-arc in Πvivt such that u ∈ T (Ej).
Then ĝH(Ej) − d(Ej) ≥ g′H(Ej)

− d(Ej) ≥ g′u > ĝu.
Therefore, ĝu < ĝH(Ej) − d(Ej), which contradicts line 32.
Then the claim holds.
Complexity. The initialization requires O(n + m)

time. Since the complexity of forward search is the
same as that of the Procedure SBT, lines 10-22 need
O(max{n2, size(H 1)}) time, so the complexity of forward
search is O(max{n2, size(H 1)}). For the backward search,
we firstly need to choose a node v from

←−
Q . Then we consider

all of its neighbours. These steps take at most O(n2) time.
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So, the overall time needed to compute ĝv for each node v is
O(n2). Therefore, the complexity of Alogrithm 1 is O(m+
n+ max{n2, size(H 1)}+ n2)=O(max{n2, size(H 1)}).

2) Time Discretization: By Algorithm 1, we obtain the
time interval [fvi , ĝvi ] for each node vi ∈ V . Then we
propose the improvement of T as follows.

Observation 2. For each vi ∈ V , if vi = vs, let Tvi = {t0};
otherwise, let Tvi = {fvi , fvi +1, fvi +2, . . . , ĝvi}. Then T
can be updated to

⋃
vi∈V Tvi which contains a finite number

of discrete times.

Note that ĝvi is the upper bound of gvi . There may be
some time t ∈ Tvi such that vi can not be arrived at time t.
However, by Observation 2, the updated T can also be used
to reduce the time complexity significantly. Now we arrang
all different times in T in ascending order and then T is
written as {t0, t1, . . . , tn}, where t0 ≤ t1 ≤ · · · ≤ tn and
n = |T |.

B. Algorithm scheme.

Armed with the pruned hypergraph H 1
t0 output by Algo-

rithm 1 and the set T derived in last subsection, we develop
Algorithm 2 in this subsection to get the maximum capacity
of TV-B-hyperpath from vs to vt at time exactly t. The main
steps of the algorithm are as follows.
Algorithm 2. We describe the algorithm steps according

to the following three parts.
• Input and Output: The input of this algorithm contains

the pruned hypergraph H 1
t0 , start time t0 and T . Algorithm

2 outputs a capacity table M , such as TABLE I. The first
column in this table represents each time t ∈ T , and the
first row represents each node vi ∈ V . Each entry ξ(v, t) in
this table represents the the maximum capacity of the TV-B-
hyperpath from vs to v at time exactly t.
• Initialization: For any t ∈ T , the set of nodes that

may be arrived at time t is denoted by Vt. Let ξvi = 0 for
each node vi ∈ V and ξT (Ej) = 0 for each B-arc Ej ∈ E .
Since vs can only be reached at time t0, let ξ(vs, t0) = ∞,
Vt0 = {vs} and ξ(vs, t) = NULL for each t ∈ T \{t0}.
For each vi ∈ V \{vs}, vi may be reached at each time
t ∈ Tvi . Therefore, the algorithm initializes ξ(vi, t) to 0
for each t ∈ Tvi . In addition, by using Tvi of each vi, we
can obtain the set Vt for each t ∈ T . In line 5, we set
ξ(vi, t) = NULL for each t ∈ T \Tvi .
• Main Steps: Firstly, we introduce two important labels.

For any vi ∈ V and t ∈ T , the maximum capacity TV-
B-hyperpath to vi at time exactly t is denoted by Πvsvi . In
this hyperpath, the B-arc whose head node is vi is denoted
by Pe(vi, t). Then, for example, suppose that Pe(vi, t) =
Ej , let Pv(Ej , t) = argmax

v∈Q

{
ξj(v)

}
, where Q is the set of

nodes in T (Ej) that can be reached at time Fj = t− d(Ej).
Algorithm 2 performs the following steps for each time

t = t1, t2, . . . , tn. For any vi ∈ Vt, the algorithm visits each
B-arc Ej in BS(vi). The latest departure time at tail nodes
of Ej is Fj = t− d(Ej). Then we can get Q = {vk : vk ∈
T (Ej), Fj ∈ Tvk , ξ(vk, Fj) 6= NULL} (see lines 11-12).
Next we calculate ξvk according to Eq. (1) in Theorem 1
(line 13).

Here, we will have two cases that make it impossible to
pass through the B-arc Ej ∈ BS(vi) to reach vi.

Algorithm 2: Solving the TV-MCBH

Input: H 1
t0 , t0, T

Output: A capacity table M
1 Initialization: ξT (Ej) = 0 for each Ej ∈ E ;
2 ξvi = 0 for each vi ∈ V ; ξ(vs, t0) =∞; Vt0 = {vs};
3 ξ(vs, t) = NULL for each t ∈ T \{t0};
4 ξ(vi, t) = 0, Vt = Vt ∪ {vi} for each vi ∈ V \{vs},
t ∈ Tvi ;

5 ξ(vi, t) = NULL for each vi ∈ V \{vs}, t ∈ T \Tvi ;
6 for each t = t1, . . . , tn do
7 for each vi ∈ Vt do
8 for each Ej ∈ BS(vi) do
9 Q = φ; Fj = t− d(Ej)

10 for each vk ∈ T (Ej) do
11 if Fj ∈ Tvk and ξ(vk, Fj) 6= NULL

then
12 Q = Q ∪ {vk};
13 ξvk = max

t′≤Fj

{
ξ(vk, t

′)
}

;

14 if Q = φ then
15 ξT (Ej) = NULL; continue;
16 else
17 for each v ∈ Q do
18 if T (Ej)\{v} = φ then
19 ξT (Ej) = ξ(v, Fj);
20 Pv(Ej , t) = v;
21 else
22 for each vj ∈ T (Ej)\

{
v
}

do
23 if ξvj = 0 then
24 ξT (Ej) = NULL;
25 break for loop in line 17;

26 ξj(v) =
min

{
ξ(v, Fj), min

vj∈T (Ej)\{v}
ξvj
}

;

27 if ξj(v) > ξT (Ej) then
28 ξT (Ej) = ξj(v);
29 Pv(Ej , t) = v;

30 ξ′(vi, t) =
min

ξT (Ej)
6=NULL

{
ξT (Ej), l (Ej , Fj , t)

}
;

31 if ξ′(vi, t) > ξ(vi, t) then
32 ξ(vi, t) = ξ′(vi, t);
33 Pe(vi, t) = Ej ;

34 if ξ(vi, t) = 0 then
35 ξ(vi, t) = NULL;

• case 1: There is no tail node can be reached at time Fj
(see lines 14-15).

• case 2: Although there is at least one node v ∈ T (Ej)
that can be reached at time Fj , T (Ej)\{v} has a tail
node vj such that the TV-B-hyperpath to vj at any time
t′ ≤ Fj does not exist (see lines 23-25).

Based on the above two cases, we give the following steps
to compute the maximum capacity ξ(vi, t).

When Q = φ (i.e. case 1), no node in T (Ej) can be
reached at time Fj . According to the Capacity Model, we can
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TABLE I: The capacity table M in H 1

t\v v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

0 ∞ NULL NULL NULL NULL NULL NULL NULL NULL NULL

1 NULL NULL 3 NULL NULL NULL NULL NULL NULL NULL

2 NULL 3 NULL 3 NULL NULL NULL NULL NULL NULL

3 NULL 2 3 NULL NULL 2 NULL NULL NULL NULL

4 NULL NULL NULL NULL NULL NULL 1 3 NULL NULL

5 NULL 2 NULL NULL 2 2 2 2 2 NULL

6 NULL NULL NULL NULL 1 NULL NULL NULL 1 1
7 NULL NULL NULL NULL 2 NULL 1 NULL 2 2
8 NULL NULL NULL NULL NULL NULL NULL NULL NULL 1
9 NULL NULL NULL NULL NULL NULL NULL NULL NULL 2

only wait until all tail nodes have received the information.
So we cannot transmit information to vi at time t passing
through the B-arc Ej . Now ξT (Ej) = NULL and we will
go back to line 8 to continue considering the next B-arc in
BS(vi).

When Q 6= φ, for each v ∈ Q, if T (Ej)\{v} = φ,
then ξT (Ej) = ξ(v, Fj) and Pv(Ej , t) = v (lines 19-20).
Otherwise, if there is a node vj in T (Ej)\{v} such that
ξvj = 0 (i.e. case 2), then there is no TV-B-hyperpath to vj
at each time t′ ≤ Fj . According to the Capacity Model, the
information can be transmitted to the head node vi only after
all tail nodes have received the information. Therefore, it is
impossible to arrive vi at time t passing through the B-arc
Ej . So we get ξT (Ej) = NULL at time t and break out of
the for loop in line 17.

In addition, if Q 6= φ and ξvj 6= 0 for each tail node vj in
T (Ej)\{v}, then we can reach vi at time t passing through
Ej . Thus by Theorem 1, we can calculate ξT (Ej) and ξ(vi, t).
At the same time, Pv(Ej , t) and Pe(vi, t) can be obtained.
(see lines 26-33).

By Observation 2, the set Tvi of each vi contains all arrival
and departure times at vi. But there may be a time t ∈ Tvi

such that there is no TV-B-hyperpath to vi at time exactly
t because of the using of ĝvi in Tvi . Then we cannot reach
vi at time t passing through each B-arc Ej ∈ BS(vi). In
this case, after the for loop in line 8, ξ(vi, t) is still equal
to the initial value 0, and then let ξ(vi, t) = NULL (see
lines 34-35). Finally, Algorithm 2 will return the true value
of ξ(vi, t).

Example 4. For the TV-BH H 1 in Example 1, assume that
t0 = 0 and D = 9. Let v1 be the source node. Then we will
seek the maximum capacity TV-B-hyperpath from v1 to v10

and the results obtained by Algorithms 1 and 2 are shown
in TABLE I.

In this table, for each vi ∈ V and t ∈ T , if t ∈ Tvi , then
the font of ξ(vi, t) is enlarged and bolded, which means that
this value needs to be considered in Algorithm 2. Otherwise,
the value is NULL with the normal font. It can be seen
that the hypergraph prunning in Algorithm 1 can effectively
reduce the complexity of Algorithm 2. Moreover, since ĝvi ≥
gvi , there exist some NULLs in the table whose fonts are
enlarged and bolded. Take the node v2 as an example, the
set Tv2 = {2, 3, 4, 5, 6, 7} and the node v2 is reachable at
times 2, 3, 5, but not at times 4, 6, 7. So we get ξ(v2, 4) =

ξ(v2, 6) = ξ(v2, 7) = NULL

Now, we will prove the correctness and complexity of
Algorithm 2 in the following theorems.

Theorem 2. For each vi ∈ V and t ∈ T , the ξ(vi, t)
obtained by Algorithm 2 is the maximum capacity of the
TV-B-hyperpath from vs to vi at time exactly t.

Proof: For any vi ∈ V and t ∈ T , since the delay for
each B-arc Ej ∈ BS(vi) is d(Ej) > 0, the arrival time to
be considered for each tail node of Ej must be less than t
when we compute ξ(vi, t). We iteratively consider time t in
ascending order in the for loop in line 6, assume that the
maximum capacity ξ(vk, t′) for each vk ∈ T (Ej) and t′ < t
has been calculated. Therefore, for some tail node vk and
some t′ < t, if ξ(vk, t′) = NULL or ξ(vk, t′) = 0, then
there is no TV-B-hyperpath that can reach vk at time t′.

According to Theorem 1, if there is a B-arc Ej ∈ BS(vi)
such that Q 6= φ and ξvk 6= 0 for each vk ∈ T (Ej), then the
ξ(vi, t) obtained by lines 13, 26-29 and 30-33 in Algorithm
2 is the maximum capacity of the TV-B-hyperpath from vs
to vi at time exactly t.

Now, it is enough to consider the case that for each Ej ∈
BS(vi), either Q = φ or ξvk = 0 for some vk ∈ T (Ej)\Q.

If Q = φ, then there is no tail node in Ej that can be
reached at time Fj = t − d(Ej). By lines 14-15, we get
ξT (Ej) = NULL.

If ξvk = 0 for some vk ∈ T (Ej)\Q, then there is at least
one node in T (Ej)\Q that cannot be reached at time t′ ≤ Fj .
By lines 23-25, ξT (Ej) = NULL.

Therefore, for each Ej ∈ BS(vi), ξT (Ej) = NULL in
above two cases. According to Capacity Model, vi cannot be
reached at time t. By lines 34-35, ξ(vi, t) is updated from
initial value 0 to NULL, which completes the proof.

Theorem 3. The time complexity of Algorithm 2 is
O(|T |nm(|T |l + l2)).

Proof: Assume that |T (Ej)| ≤ l for each B-arc Ej .
Since we need to initialize ξ(vi, t) for each vi ∈ V and t ∈
T and initialize ξT (Ej) for each Ej ∈ E , our initialization
can be done in O(|T |n+m) time.

For each t ∈ T and vi ∈ Vt, we need to visit each B-arc
Ej ∈ BS(vi). Then Algorithm 2 firstly computes the ξvk by
considering each vk ∈ T (Ej) and t ≤ Fj = t − d(Ej) in
line 13. This process requires at most O(|T |l) time. Next,
the algorithm computes ξT (Ej) by iterating over each v ∈ Q
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and vj ∈ T (Ej)\{v} in lines 17-29. These can be done in
O(l2) time. Therefore, the complexity of the Algorithm 2 is
O(|T |n+m+|T |nm(|T |l+l2)) = O(|T |nm(|T |l+l2)).

Hyperpath Recovery. According to the capacity table M
obtained by Algorithm 2, we can get that the maximum ca-
pacity of the TV-B-hyperpath satisfying the delay constraint
from vs to vt is ξ(vt) = max

t∈Tvt
{ξ(vt, t) : ξ(vt, t) 6= NULL}.

If there are two times t1, t2 ∈ Tvt such that ξ(vt, t1) =
ξ(vt, t2) = ξ(vt), then, without loss of generality, suppose
that t1 − t0 < t2 − t0. Let the optimal arrival time at vt be
t∗ = t1. That is, when the corresponding capacities of the t1
and t2 are the same, we choose to the time with the shorter
delay as the optimal arrival time.

Note that Algorithm 2 outputs the Pe(vi, t) and
Pv(Pe(vi, t), t) for each t ∈ T and vi ∈ Vt. By back-
tracking from the node vt at time t∗, we can get the
maximum capacity TV-B-hyperpath that reaches vt at time
t∗. The specific steps of hyperpath recovery are shown in the
Appendix and an example is given as follows.

Example 5. By the capacity table M in TABLE I,

ξ(v10) = max{ξ(v10, 6), ξ(v10, 7), ξ(v10, 8), ξ(v10, 9)}
= 2.

Since t0 = 0, ξ(v10, 7) = ξ(v10, 9) = 2 and 7−t0 = 7 < 9 =
9− t0, the optimal arrival time of v10 is t∗ = 7. According
to the Pe(vi, t) and Pv(Pe(vi, t), t) obtained by Algorithm
2 for each t ∈ T and vi ∈ Vt, we get the maximum
capacity TV-B-hyperpath that reaches v10 at time 7. The
corresponding BH of this TV-B-hyperpath is shown in Fig.
6.

Fig. 6: The corresponding BH of TV-MCBH for Problem 1

IV. EXPERIMENTS

In this section, we test the algorithms mentioned above.
For Problem 1, given a TV-BH H 1 and T = {t0, t0 +
1, t0 + 2, . . . , t0 +D}, we can get H 1

t0 and the improvement
of T by Algorithm 1 and Observation 2. When the input
of Algorithm 2 includes a TV-BH H 1 and T , the time to
find the desired TV-B-hyperpath is denoted by MC1B. And
when the input includes a TV-BH H 1

t0 and the updated T ,
the time to find the desired TV-B-hyperpath is denoted by
MC1-BH.

A. Experiment setup.

For the TV-MCBH, we randomly generate the ten classes
of TV-BHs given in TABLE II with the number of nodes

varying from 20 to 300 and the number of B-arcs varying
from 60 to 900. In addition, the number of cycles in the TV-
BH does not exceed 10% of the number of B-arcs. Assume
that the number of tail nodes of each B-arc is not larger
than l = 3. The third row of TABLE II refers to the average
proportion of B-arcs with more than one tail node. The range
of time-varying capacity function for each B-arc is [50, 100].
We set the delay of each B-arc between 10 and 20. Note
that the average proportion of B-arcs with more than one
tail node is larger than 55% and the number of B-arcs is 3
times the number of nodes. Therefore, this simulation can
truly reflect the effect of the B-arc with more than one tail
node on the complexity of the Algorithm 2.

B. Experiment 1 (Hypergraph-Scalability).

We set D = 200 for Problem 1. Then we consider
following 3 parameters.

(1) The size of TV-BHs.
If the size of a TV-BH belonging to class H 1(i) is denoted

by Si for i = 1, 2, . . . , 10, then with the size increasing from
S1 to S10, the average processing time is shown in Fig. 7.
Note that the average processing time is proportional to the
value of size and MC1-BH clearly outperforms MC1B. It
shows that using hypergraph pruning (i.e. Algorithm 1) can
greatly reduce the average processing time of Algorithm 2.

Fig. 7: Vary size(H 1) (Time).

(2) The number of B-arcs.
We vary the density of the TV-BH H 1 by fixing the

number of nodes as 100 and changing the number of B-
arcs. 10 classes of TV-BHs are generated with 200, 300, 400,
450, 500, 550, 600, 700, 800 and 900 B-arcs, respectively.
We report the average processing time in Fig. 8. The aver-
age processing time increases when the number of B-arcs
increases. Note that the more B-arcs in TV-BH, the larger
number of discrete times in the interval [fv, ĝv] of node v
and so T is larger as well. This will affect the effect of
the pruning algorithm. Therefore, when the number of B-
arcs changes from 200 to 900, the average processing time
MC1B and MC1-BH increase gradually. However, MC1-BH
is also outperforms MC1B, obviously.

(3) The upper bound l of the number of tail nodes in each
B-arc.

We will consider the TV-BHs belonging to the class
H 1(4) which has been defined in TABLE II. Then, by
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TABLE II: Datasets 1

H 1(1) H 1(2) H 1(3) H 1(4) H 1(5) H 1(6) H 1(7) H 1(8) H 1(9) H 1(10)

|V | 20 50 80 100 120 150 180 200 250 300

|E | 60 150 240 300 360 450 540 600 750 900

Average
rate(%)

57.3 60.0 61.5 60.7 59.7 61.7 60.1 58.6 58.0 59.4

Fig. 8: Vary |E | in H 1 (Time).

changing l, 8 classes of TV-BHs are generated with l = 2,
l = 3, l = 4, l = 5, l = 6, l = 7, l = 8 and l = 9,
respectively. In Fig. 9, MC1-BH outperforms MC1B and the
average processing time increases when l increases. This is
because that when l is larger, more tail nodes in each B-arc.
Therefore, we can see that l is an important parameter that
affects the running speed of Algorithm 2.

Fig. 9: Vary l in H 1 (Time)

C. Experiment 2 (Query-Scalability).

We further test the effectiveness of algorithm by changing
the parameter D of the Problem 1. Let l = 3 and D > fvt
which can ensure that there exists TV-B-hyperpath to vt.

We change the parameter D from 100 to 600 for the TV-
BHs belonging to H 1(4) and report the average processing
time in Fig. 10. The number of times in T increases caused
by the increased D. So the average processing time of MC1B
and MC1-BH are proportional to D. As shown in Fig. 10,
we can get that MC1-BH clearly outperforms MC1B. In

addition, as D increases, the effect of the restriction of D
gradually weakens, and so the average processing time of
Algorithm 2 tends to be stable.

Fig. 10: Vary D in H 1 (Time)

According to the above analysis, when the TV-BH is as
sparse as possible and the fewer the number of tail nodes in
each B-arc, the average processing time of Algorithm 2 is
shorter. In addition, from the above Fig. 7-Fig. 10, we can
know that using hypergraph pruning can greatly reduce the
computation time.

V. CONCLUSION

In this paper, according to the application background,
we designed the TV-BH H 1 and studied the maximum
capacity TV-B-hyperpath problem in H 1 by using the model
of information transmission. Then we proposed effective
algorithm to compute the maximum capacity. Next, in order
to further reduce the complexity of computation, we gave
Algorithm 1 to prune hypergraphs. After that, our algorithm
was improved significantly. Then, by the method of the
hyperpath backtracking, we can get the maximum capacity
TV-B-hyperpath Πvsvt with the optimal arrival time t∗ and
the delay of Πvsvt is not more than D. Finally, we conducted
extensive experiments and confirmed that our algorithm can
obtain the maximum capacity TV-B-hyperpath efficiently.

The results in this paper provide a theoretical basis for fur-
ther research, especially the calculation of hyperpath capacity
in time-varying hypergraph. In addition, for the hypernetwork
with long delay time, we will research the multi-criteria time-
varying scenarios, where both the capacity function and delay
function are time-varying.

APPENDIX

In this section, we will give the processes of the hyperpath
backtracking in H 1.
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Algorithm 3 returns the maximum capacity TV-B-
hyperpath Πvsvt from vs to vt at time exactly t∗ in H 1.
The main steps of the algorithm are as follows.

Input ξ(vt), the optimal arrival time t∗ and the capacity
table M obtained by Algorithm 2. Output the following sets:
the node set VΠt of the required TV-B-hyperpath Πvsvt , the
set Tvi of each vi ∈ VΠt , the set BSΠt(vi, t) consists of all
B-arcs of BS(vi, t) in Πvsvt .

In the while loop in line 2, a new set Q2 and T 1
vi will be

used to ensure that we can traverse all candidate nodes of
Q1 and the times in Tvi . If Q1 6= φ, then let Q2 = φ and the
algorithm performs the following steps for each vi ∈ Q1.

(1) If vi /∈ VΠt , then we put it in VΠt .
(2) For each t ∈ T 1

vi , the algorithm removes t from T 1
vi .

If Pe(vi, t) exists, then let BSΠt(vi, t) = Pe(vi, t) and
u = Pv(Pe(vi, t), v). In the next step, we add all nodes
in T (Pe(vi, t)) to Q2. Then, we get the arrival time tu
at u in line 13, and add tu to T 1

u and Tu. After that, the
algorithm calculates the arrival time tvk at each node vk in
T (Pe(vi, t))\{u} and then puts them into both T 1

vk
and Tvk

(see lines 16-18).
Finally, after the for loop in line 4, the nodes in Q1 will

be replaced by the new candidate nodes in Q2. So the Q1 is
updated. Then the algorithm stops when Q1 = Q2 = φ.

Algorithm 3: Hyperpath Recovery in H 1

Input: The capacity table M , ξ(vt), t∗

Output: VΠt , Tvi for each vi ∈ VΠt , BSΠt(vi, t) for
each vi ∈ VΠt and t ∈ Tvi

1 Initialization:Q1 = {vt}, VΠt = φ, Tvt = {t∗},
T 1
vt = {t∗}

2 while Q1 6= φ do
3 Q2 = φ;
4 for each vi ∈ Q1 do
5 if vi /∈ VΠt then
6 VΠt = VΠt ∪ {vi}
7 for each t ∈ T 1

vi do
8 T 1

vi = T 1
vi\{t};

9 if Pe(vi, t) exists then
10 BSΠt(vi, t) = Pe(vi, t);
11 u = Pv(Pe(vi, t), t);
12 Q2 = Q2 ∪ T (Pe(vi, t));
13 tu = t− d(Pe(vi, t)); T 1

u = T 1
u ∪ {tu};

14 Tu = Tu ∪ {tu};
15 for each vk ∈ T (Pe(vi, t))\{u} do
16 tvk = argmax

t′≤tu

{
ξ(vk, t

′)
}

;

17 T 1
vk

= T 1
vk
∪ {tvk};

18 Tvk = Tvk ∪ {tvk};

19 Q1 = Q2;
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