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Abstract—In this paper, we introduce a new concept of
an orthogonal partial order metric space. We also establish
some new fixed point theorems for an orthogonal rational
type contraction mapping in orthogonal partial ordered metric
space. Moreover, some examples and applications are provided
to exhibit the utility of these obtained results.

Index Terms—Partially ordered metric space, orthogonal
rational contractions, orthogonal Singh and Chatterjee contrac-
tion, fixed point.

I. INTRODUCTION

THERE are several uses for Banach’s contraction prin-
ciple in fixed point and approximation theory. It has

a significant impact on a wide range of mathematical is-
sues, both theoretical and applied. Technical expansions and
generalizations to the Banach contraction principle can be
found in [ [1], [2], [3], [4]], among other places. Nearly every
discipline of practical mathematics uses iteration algorithms
to prove convergence and estimate error processes, often by
applying Banach’s fixed point theorem. Using fixed points
of mappings in ordered metric spaces to solve nonlinear
equations has recently become quite popular in several areas
of mathematical analysis. Wolk [5] and Monjardet [6] were
the first to produce results in this direction in partially
ordered sets.

Fixed points for specific mappings in partially ordered
metric spaces were examined by Ran and Reurings [7],
and their results were then applied to matrix equations as
a result of their work. After that Nieto et al. [8] expand the
non-descending map results for periodic boundary conditions
(see [9], [10]). In 2008, Agarwal et al. [11] discussed the
generalized contractions in partially ordered metric spaces
results. Some of these generalization of fixed point and
common fixed point results improvement for single and
multi-valued operators in a variety of ordered spaces can
be found in ( [12], [13], [14], [15], [16] [17]). Paiwan
[20] initiated SP-type extra-gradient iterative methods for
finding fixed point problem. In 2021, Phannipa Worapun
and Atid Kangtunyakarn [21] finding fixed point by using an
approximation method. The solution of non-linear equations
in a higher order iterative scheme method was introduced by
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Waikhom et al. [22]. In 2022, Karim Ivaz et al. [23] proved
the Hilfer fractional Volterra-Fredholm Integro differential
equation.

Gordji et al. [24] initiated an orthogonality notion in metric
spaces. The fixed point results in generalized orthogonal
metric space and various metric spaces were proved by many
researchers (see [25], [26], [27], [28], [29], [30], [31] , [32],
[33]).

In this paper, we prove some fixed point results of a
mapping satisfying nonlinear orthogonal rational type con-
traction conditions in the context of a orthogonal complete
partially ordered metric spaces. However, our results are
suitably validated by constructive examples. Moreover, we
investigate for existence and uniqueness of solution for a
Volterra integral type equation.

II. PRELIMINARIES

Following are some definitions that appeared frequently
throughout our results; we begin this section with them.

In 2004, partial ordered set concept was introduced by Ran
and Reurings [7] as follows:

Definition 1. [7] A (K, ∂,⪯) is said to be partially ordered
metric spaces, if (K,⪯) is a partially ordered set in addition
to (K, ∂) is a metric space.

In 2004, Ran and Reurings [7] developed the concept of
a complete metric space as follows:

Definition 2. [7] If (K, ∂) is a complete metric space, then
triplet (K, ∂,⪯) is said to be complete partially ordered
metric spaces.

Arshad et al. [17] introduced the concept of an ordered
complete as follows:

Definition 3. [17] Let (K, ∂,⪯) be a partially ordered
metric spaces is said to be ordered complete, if for every con-
vergent sequence {νa}∞0 ⊂ K, the following circumstance
exists:

1) if {νa} ∈ K be a non-descending sequence such that
νa → ν =⇒ νa ⪯ ν, for all ν ∈ N that is,
ν = sup{νa},
(or)

2) if {νa} is a non-increasing sequence in K such that
νa → ν =⇒ νa ⪯ ν, for all ν ∈ N that is,
ν = inf{νa}.

In 1975, Wolk [5] develop the concept of converges as
follows:

Definition 4. [5] Let (K, ∂,⪯) be a partially ordered metric
spaces. And {νa} be any sequence in K is said to be
convergent to a point ν ∈ K if, for every ϵ > 0 there
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exists a0 ∈ N such that ∂(νa, ν) < ϵ for all a > a0. The
convergence is also represented as

lim
a→∞

νa = ν or νa → ν as , a → ∞.

Gordji [24] proposed an orthogonal sets and generalized
Banach fixed point theorems in 2017.

Definition 5. [24] Let K be a non-void and ⊣ ⊆ K×K be
a binary relation. If ⊣ fulfill the below axiom:

∃ ν0 ∈ K : (∀ ν ∈ K, ν ⊣ ν0) or (∀ ν ∈ K, ν0 ⊣ ν),

then (K,⊣) be an orthogonal set (Os).

The following orthogonal sequence definition was intro-
duced by Gordji et al. [24] which will be utilized in this
paper.

Definition 6. [24] Let (K,⊣) be an Os. A sequence {νa}a∈N
is called an orthogonal sequence (Oseq) if

(∀ a ∈ K, νa ⊣ νa+1) or (∀ a ∈ K, νa+1 ⊣ νa).

Again, the concepts of orthogonal continuous also intro-
duced by Gordji et al. [24].

Definition 7. [24] Let (K, ∂⊣) be an orthogonal metric
space. Then a map Z : K → K is called orthogonally
continuous (Ocon) in ν ∈ K if for each Oseq {νa} ∈ K
with ∂⊣(νa, ν) → 0, we get ∂⊣(Zνa, Zν) → 0 as a → ∞.

Gordji et al. [24] introduced the concept of an orthogonal
complete as follows:

Definition 8. [24] Let (K,⊣, ∂⊣) be an orthogonal set with
the metric ∂. Then K says that an orthogonal complete if
for each orthogonal Cauchy sequence is convergent.

Definition 9. [24] Let (K,⊣, ∂⊣) be an orthogonal metric
space and 0 < λ < 1. A map Z : K → K is said to be
an orthogonal contraction (Ocontr) with Lipschitz constant
λ if, ∀ ν, µ ∈ K with ν ⊣ µ,

∂(Zν, Zµ) ≤ λ∂(ν, µ).

Finally, the following orthogonal preserving concepts in-
troduced by Gordji et al. [24] is of importance in this paper.

Definition 10. [24] Let (K,⊣, ∂⊣) be an orthogonal metric
space. A map Z : K → K is said to be orthogonal-preserving
(Op) if Zν ⊣ Zµ, whenever ν ⊣ µ.

In our main result, inspired by the notions of an rational
type contraction mapping, Singh and Chatterjee contraction
mapping defined Rao [19], we introduce a new orthogonal
rational type contraction mapping, new orthogonal Singh and
Chatterjee contraction and prove some fixed point theorems
for these contraction mappings in orthogonal complete par-
tially ordered metric spaces.

III. MAIN RESULTS

Now, we generalize and improve our fixed point theorems
from Rao [19] by introducing the concept of an orthogonal
rational type contraction mapping in orthogonal complete
partially ordered metric spaces.

Theorem 1. Let (K,⊣, ∂⊣) be an orthogonal complete
partially ordered metric spaces. A function Z : K → K
be an Op and Ocon so that, ∀ ν, µ ∈ K with ν ⊣ µ,

∂⊣(Zν, Zµ) ≤

ℜ∂⊣(ν, µ) + ℑ[∂⊣(ν, Zν)

+∂⊣(ν, Zµ)]

+℘∂⊣(ν,Zν)∂⊣(ν,Zµ)+∂⊣(µ,Zν)∂⊣(µ,Zµ)
∂⊣(µ,Zν)+∂⊣(ν,Zµ)

if A ̸= 0

0, if A = 0,

(1)

where

A = ∂⊣(µ, Zν) + ∂⊣(ν, Zµ),

and there exists ℜ,ℑ, ℘ ∈ [0, 1) such that 0 ≤ ℜ+2ℑ+℘ <
1.

If ∃ ν0 ∈ K such that ν0 ⪯ Zν0, then Z has a unique
fixed point in K.

Proof: Since (K,⊣) is an Os, there exists

ν0 ∈ K : (∀ ν ∈ K, ν ⊣ ν0) (or) (∀ ν ∈ K, ν0 ⊣ ν).

It follows that

ν0 ⊣ Zν0 (or) Zν0 ⊣ ν0.

Let νa = Zνa for all a ∈ N ∪ {0}. If νa = νa+1 for any
a ∈ N ∪ {0}, then it is clear that νa is a fixed point of Z.

Assume that

νa+1 ̸= νa ∀ a ∈ N ∪ {0}.

Since Z is Op, we have

νa+1 ⊣ νa (or) νa = νa+1 ∀ a ∈ N ∪ {0}.

This implies that {νa} is an Oseq .
As νa and νa+1 are comparable for a ≥ 1, we get the

below cases:
Case 1 : If

A = ∂⊣(νa−1, Zνa) + ∂⊣(νa, Zνa−1) ̸= 0,

then from contraction condition (1), we have

∂⊣(νa+1, νa) = ∂⊣(Zνa, Zνa−1)

≤ ℜ∂⊣(νa, νa−1)

+ ℑ[∂⊣(νa, Zνa) + ∂⊣(νa, Zνa−1)]

+ ℘

[
∂⊣(νa, Zνa)∂⊣(νa, Zνa−1)

∂⊣(νa−1, Zνa) + ∂⊣(νa, Zνa−1)

+
∂⊣(νa−1, Zνa)∂⊣(νa−1, Zνa−1)

∂⊣(νa−1, Zνa) + ∂⊣(νa, Zνa−1)

]
,

which implies

∂⊣(νa+1, νa) ≤ ℜ∂⊣(νa, νa−1) + ℑ∂⊣(νa, νa+1)

+ ℘

[
∂⊣(νa, νa+1)∂⊣(νa, νa)

∂⊣(νa−1, νa+1) + ∂⊣(νa, νa)

+
∂⊣(νa−1, νa+1)∂⊣(νa−1, νa)

∂⊣(νa−1, νa+1) + ∂⊣(νa, νa)

]
.
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Finally, we get

∂⊣(νa+1, νa) ≤
(ℜ+ ℘

1−ℑ

)a
∂⊣(ν1, ν0).

Put D =
(ℜ+ ℘

1−ℑ

)
∈ [0, 1). Moreover, by triangular inequal-

ity for n ≥ a, we have

∂⊣(νn, νa) ≤ ∂⊣(νn, νn−1) + ∂⊣(νn−1, νn−2)

+ ....+ ∂⊣(νa+1, νa)

≤ Da

1− D
∂⊣(ν1, ν0),

as n, a → +∞, ∂⊣(νn, νa) → 0. So, {νa} is a Cauchy Oseq

in orthogonal complete metric space K. Hence there exists
v ∈ K such that

lim
a→+∞

νa = v.

Further, the Ocon of Z implies that

Zv = Z
(

lim
a→+∞

νa

)
= lim

a→+∞
Zνa

= lim
a→+∞

νa+1

= v,

hence v is a fixed point of Z ∈ F.
Case 2 : If

A = ∂⊣(νa−1, Zνa) + ∂⊣(νa, Zνa−1) = 0,

then

∂⊣(νa+1, νa) = 0,

from (1) =⇒ νa = νa+1, a contradiction as the Oseq points
are comparable.

Thus ∃ v of Z. Next, we demonstrate its uniqueness. Let
ν2 ∈ K be a fixed point of Z. So, we have Zaν∗ = ν∗ and

Zaν∗2 = ν∗2 , ∀ a ∈ N.

By an orthogonality definition, there is ν1 ∈ K so that

[ν1 ⊣ ν∗ and ν1 ⊣ ν∗2 ]

or [ν∗ ⊣ ν1 and ν∗2 ⊣ ν1].

Since Z is Op, one can write

[Zaν1 ⊣ Zaν∗ and Zaν1 ⊣ Zaν∗2 ]

or [Zaν∗ ⊣ Zaν1 and Zaν∗2 ⊣ Zaν1], ∀ a ∈ N.

Therefore, by Definition 1, we have

∂⊣(ν
∗
1 , ν

∗
2 ) = ∂⊣(Z

aν∗1 , Z
aν∗2 )

= ∂⊣(Z
aν∗1 , Z

aν1) + ∂⊣(Z
aν1, Z

aν∗2 )

≤ ∂⊣(ν
∗
1 , ν1) + ∂⊣(ν1, ν

∗
2 ).

Taking limit as a → ∞, we get

∂⊣(ν
∗
1 , ν

∗
2 ) = 0,

and so ν∗1 = ν∗2 .
Relaxing Z in Theorem 1 continuity condition yields the

following theorem.

Theorem 2. Let (K,⊣, ∂⊣) be an orthogonal complete
partially ordered metric spaces. Assume that K satisfies if a
increasing Oseq

{νa} → ν ∈ K, then ν = sup{νa}. (2)

Let Z : K → K be an Op and Ocon monotone increasing
function holds the contraction condition 1. If ∃ ν0 ∈ K
with ν0 ≤ Zν0, then Z has a unique fixed point.

Proof: We check the following condition only v = Zv.
Using Theorem 1, we get a increasing Oseq , {νa} ∈ K such
that νa → v ∈ K. Thus,

v = sup{νa}, ∀ a ≥ 0,

by (2). Since Z is a increasing mapping, then Zνa ⪯
Zv, ∀ a ∈ N, equivalently, νa+1 ⪯ Zv, ∀ a ∈ N. Further,

ν0 < ν1 ≤ Zv and v = sup{νa},

we get v ≤ Zv.

Assume that v < Zv. Proceeding like this way at proof of
Theorem 1 for ν0 ≤ ν0, we have a increasing Oseq {Zav} ∈
K such that Zav → u ∈ K.

Again using (2), we get that u = sup{Zav}. Moreover,
from ν0 ⪯ v, we obtain that

νa = Zaν0 ≤ Zav ∀ a ≥ 1 and νa < Zav, ∀ a ≥ 1

because νa ⪯ v < Zv ⪯ Zav, ∀ a ≥ 1.
As νa and Zav are clearly different for a ≥ 1, assume the

below cases.
Case A : Assume that

∂⊣(Z
av, Zνa) + ∂⊣(νa, Z

a+1v) ̸= 0,

then from contraction condition (2), we have

∂⊣(νa+1, Z
a+1v) = ∂⊣(Zνa, Z(Z

av))

≤ ℜ∂⊣(νa, Zav) + ℑ[∂⊣(νa, νa+1) + ∂⊣(νa, Z
a+1v)]

+ ℘

[
∂⊣(νa, νa+1)∂⊣(νa, Z

a+1v)

∂⊣(Zav, νa+1) + ∂⊣(νa, Za+1v)

+
∂⊣(Z

av, νa+1)∂⊣(Z
av, Za+1v)

∂⊣(Zav, νa+1) + ∂⊣(νa, Za+1v)

]
.

On letting a → ∞ in the above equation, we get

∂⊣(v, u) ≤ (ℜ+ ℑ)∂⊣(v, u).

As ℜ + ℑ < 1, we obtain ∂⊣(v, u) = 0, thus v = u.
Particularly, v = u = sup{Zav} and consequently, Zv ≤ v,
which contradicts that Zv < v.

Hence, we have Zv = v.
Case B : If

∂⊣(Z
av, Zνa) + ∂⊣(νa, Z

a+1v) = 0,

then

∂⊣(νa+1, Z
a+1v) = 0.

Letting a → ∞, we obtain that ∂⊣(v, u) = 0. Then
v = u = sup{Zav}, which implies that Zv ≤ v, this is
contradiction. Therefore, Zv = v.
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Next, we demonstrate its uniqueness. Let ν2 ∈ K be a
fixed point of Z. So, we obtain

Zaν∗ = ν∗ and Zaν∗2 = ν∗2 , ∀ a ∈ N.

By the definition of orthogonality, there is ν1 ∈ K so that

[ν1 ⊣ ν∗ and ν1 ⊣ ν∗2 ]

or [ν∗ ⊣ ν1 and ν∗2 ⊣ ν1].

Since Z is Op, we can write

[Zaν1 ⊣ Zaν∗ and Zaν1 ⊣ Zaν∗2 ]

or [Zaν∗ ⊣ Zaν1 and Zaν∗2 ⊣ Zaν1],

∀ a ∈ N.

Therefore, by Definition 1, we have

∂⊣(ν
∗
1 , ν

∗
2 ) = ∂⊣(Z

aν∗1 , Z
aν∗2 )

= ∂⊣(Z
aν∗1 , Z

aν1) + ∂⊣(Z
aν1, Z

aν∗2 )

≤ ∂⊣(ν
∗
1 , ν1) + ∂⊣(ν1, ν

∗
2 ).

Taking limit as a → ∞, we get

∂⊣(ν
∗
1 , ν

∗
2 ) = 0,

and so ν∗1 = ν∗2 .

Now, we show that Theorems 1 and 2 do not ensure fixed
point uniqueness.

Example 1. Let [(1, 0), (0, 1)] = K ⊆ R2 with ∂⊣. We
consider an orthogonal partial order U ∈ K as below:
U : (v, u) ≤ (q, r) ⇐⇒ v ≤ q and u ≤ r with v ⊣ q and
u ⊣ r, ∀ u, v, q, r ∈ K. Define the binary relation ⊣ on K
by ν ⊣ µ if ν, µ ≥ 0. Let Z : K → K by Z(ν, µ) = (ν, µ) be
a Op and Ocon. Then Z has a fixed points in K.

Proof: Given Z : K → K be an Op It is clearly
(K,⊣, ∂⊣) is a orthogonal complete partially ordered metric
spaces. Besides, the identity mapping Z(ν, µ) = (ν, µ) is
trivially Ocon and holds the contraction condition.

∂⊣(Z(v, u), Z(q, r)) ≤ ℜ∂⊣((v, u), (q, r))
≤ ℜ∂⊣((v, u), (q, r)) + ℑ[∂⊣((v, u), Z(v, u))
+ ∂⊣((v, u), Z(q, r))]

+ ℘

[
∂⊣((v, u), Z(v, u))∂⊣((v, u), Z(q, r))

∂⊣((q, r), Z(v, u)) + ∂⊣((v, u), Z(q, r))

+
∂⊣((q, r), Z(v, u))∂⊣((q, r), Z(q, r))

∂⊣((q, r), Z(v, u)) + ∂⊣((v, u), Z(q, r))

]
,

∀ v ⊣ u for any ℜ,ℑ, ℘ ∈ [0, 1) with 0 ≤ ℜ+2ℑ+℘ < 1.
K only compares to itself.

Moreover, (1, 0) ≤ Z(1, 0). Theorem 1 criteria is met, and
Z has (1, 0) and (0, 1) are the fixed points.

Example 2. Let us consider in Example 1 and a increas-
ing Oseq {(νa, µa)} ⊆ K converging to (ν, µ). Then
necessarily, {(νa, µa)} is a constant Oseq and (νa, µa) =
(ν, µ), ∀ a ∈ N.

As a result, the upper bound for all terms in the Oseq is
given by the limit (ν, µ). Theorem 2 hypotheses are fulfilled,
and the fixed points of Z in K are (1, 0) and (0, 1).

Now, we give a hypotheses that is enough to show that
the fixed point in Theorem 1 and Theorem 2 are unique.

Every pair of elements has a lower bound or an upper bound.
(3)

In [8], it is proved that the condition is equivalent to for
each ν, µ ∈ K, ∃ ς ∈ K which is comparable to ν and µ.

Example 3. Prove that the space C[0, 1] = {ν : [0, 1] → R,
Ocon} and define binary relation ⊣ on K by ν ⊣ µ if ν, µ ≥ 0
with the orthogonal partially ordered metric spaces given
by ν ≤ µ ⇐⇒ ν(z) ≤ µ(z), for z ∈ [0, 1], and the metric
given by

∂⊣(ν, µ) = sup{|ν(z), µ(z)| : z ∈ [0, 1]}, ∀ ν, µ ∈ [0, 1]

holds (2). Moreover, as for ν, µ ∈ [0, 1], the function is
Op and max(ν, µ)(z) = max{ν(z), µ(z)} is Ocon. Also
(C[0, 1],⊣) holds (3).

IV. RESULTS FOR AN ORTHOGONAL SINGH AND
CHATTERJEE CONTRACTIONS

The almost Singh and Chatterjee contractions introduced
by Singh et. al. [18], we extend this into an orthogonal
concept as follows.

Definition 11. Let (K,⊣, ∂⊣) be an orthogonal partially
ordered metric spaces. A mapping Z : K → K is said to
be an orthogonal almost Singh and Chatterjee contractions,
if there exist ℓ, ı, ȷ ∈ [0, 1) with 0 ≤ ℓ+2ı+ȷ < 1 and λ ≥ 0
such that

∂⊣(Zν, Zµ) ≤ ℓ
(∂⊣(ν, Zν) + ∂⊣(µ, Zµ)

∂⊣(ν, µ)

)
+ ı[∂⊣(ν, Zµ)

+ ∂⊣(µ, Zν)] + ȷ∂⊣(ν, µ)

+ λmin{∂⊣(ν, Zµ), ∂⊣(µ, Zν), ∂⊣(ν, Zν)},
(4)

for all distinct ν, µ ∈ K with ν ≤ µ and ν ⊣ µ.

Now, we generalize and improve our fixed point theorem
from Rao [19] by introducing the concept of an orthogonal
Singh and Chatterjee contractions mapping in orthogonal
complete partially ordered metric spaces.

Theorem 3. Suppose that (K,⊣, ∂⊣) be a orthogonal com-
plete partially ordered metric spaces. Let Z : K → K be an
orthogonal almost Singh and Chatterjee contractions and, Z
is non-decreasing Op and Ocon. If ∃ ν0 ∈ K such that
ν0 ≤ Zν0, then Z has a unique fixed point in K.

Proof: Since (K,⊣) is an Os, ∃ ν0 ∈ K : (∀ ν ∈
K, ν ⊣ ν0) or (∀ ν ∈ K, ν0 ⊣ ν)

It follows that ν0 ⊣ Zν0 or Zν0 ⊣ ν0.
Let νa = Zνa for all a ∈ N ∪ {0}. If νa = νa+1 for any

a ∈ N ∪ {0}, then it is clear that νa is a fixed point of Z.
Assume that νa+1 ̸= νa ∀ a ∈ N∪{0}. Since Z is Op, we

have

νa+1 ⊣ νa or νa = νa+1, ∀ a ∈ N ∪ {0}.
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Since Z is Op, {νa} is an Oseq .

∂⊣(νa+1, νa) = ∂⊣(Zνa, Zνa−1)

≤ ℓ

(
∂⊣(νa, Zνa) + ∂⊣(νa−1, Zνa−1)

∂⊣(νa, νa−1)

)
+ ı[∂⊣(νa, Zνa−1) + ∂⊣(νa−1, Zνa)]

+ ȷ∂⊣(νa, νa−1)

+ λmin{∂⊣(νa, Zνa), ∂⊣(νa−1, Zνa), ∂⊣(νa, Zνa)}.

Which implies that

∂⊣(νa+1, νa) ≤
( ı+ ȷ

1− ℓ− ı

)
∂⊣(νa, νa−1)

≤
( ı+ ȷ

1− ℓ− ı

)2
∂⊣(νa−1, νa−2)

...

≤

(
ı+ ȷ

1− ℓ− ı

)a

∂⊣(ν1, ν0).

Therefore, by the triangular inequality for µ ≥ ν, we have

∂⊣(νa, νn) = ∂⊣(νa, νa+1) + ∂⊣(νa+1, νa+2)

+ ........+ ∂⊣(νn−1, νn)

≤ (sa + sa+1 + ......+ sn−1)∂⊣(ν0, Zν0)

≤
( sa

1− s

)
∂⊣(ν1, ν0),

where s =
( ı+ ȷ

1− ℓ− ı

)
∈ [0, 1). Letting limit as n, a → +∞

in the above equation, we get ∂⊣(νa, νn) = 0. Thus, {νa}
is a Cauchy Oseq in K. Since K is a orthogonal complete
partially ordered metric spaces, then ∃ v ∈ K such that
lim

a→+∞
νa = v. From the Ocon of Z, we get

Zv = Z
(

lim
a→+∞

νa
)

= lim
a→+∞

Zνa

= lim
a→+∞

νa+1 = v.

Hence, v is a fixed point of Z ∈ K.
Next, we demonstrate its uniqueness. Let ν2 ∈ K be a fixed

point of Z. So, we obtain Zaν∗ = ν∗ and Zaν∗2 = ν∗2 , ∀ a ∈
N. By the definition of orthogonality, there is ν1 ∈ K so that

[ν1 ⊣ ν∗ and ν1 ⊣ ν∗2 ]

or [ν∗ ⊣ ν1 and ν∗2 ⊣ ν1].

Since Z is Op, we can write

[Zaν1 ⊣ Zaν∗ and Zaν1 ⊣ Zaν∗2 ]

or [Zaν∗ ⊣ Zaν1 and Zaν∗2 ⊣ Zaν1], ∀ a ∈ N.

Therefore, by Definition 1, we have

∂⊣(ν
∗
1 , ν

∗
2 ) = ∂⊣(Z

aν∗1 , Z
aν∗2 )

= ∂⊣(Z
aν∗1 , Z

aν1) + ∂⊣(Z
aν1, Z

aν∗2 )

≤ ∂⊣(ν
∗
1 , ν1) + ∂⊣(ν1, ν

∗
2 ).

Taking limit as a → ∞, we get

∂⊣(ν
∗
1 , ν

∗
2 ) = 0,

and so ν∗1 = ν∗2 . Hence Z has a unique fixed point.

We prove the existence of a monotone sequence holds for
contraction condition 1.

Theorem 4. Let (K,⊣, ∂⊣) be an orthogonal complete
partially ordered metric spaces. Assume that K satisfies if a
increasing Oseq {νa} → ν ∈ K, then

ν = sup{νa}. (5)

Let Z : Z → Z be a Op and Ocon monotone increasing
function holds the condition (4). If there exists ν0 ∈ K with
ν0 ≤ Zν0, then Z has a unique fixed point in K.

Proof: The demonstration supports the Theorem 2.

Now, we provide the example for Theorem 3.

Example 4. Let {(2, 0), (0, 2)} = K ⊆ R2 with ∂⊣. Define
the binary relation ⊣ on K by ν ⊣ µ if ν, µ ≥ 0. We assume
an orthogonal partial order in K as below:

(ν1, µ1) ≤ (ν2, µ2) ⇐⇒ ν1 ≤ ν2 and µ1 ≤ µ2,

∀ ν1 ⊣ µ1 and ν2 ⊣ µ2.

Thus, (K,⊣, ∂⊣) is a orthogonal complete partially ordered
metric spaces. The function Z(ν, µ) = (ν, µ) is an Ocon,
non-decreasing and the contraction condition

∂⊣(Z(ν1, µ1), Z(ν2, µ2)) ≤ ȷ∂⊣((ν1, µ1), (ν2, µ2))

≤ ℓ
(∂⊣((ν1, µ1), Z(ν1, µ1))∂⊣((ν2, µ2), Z(ν2, µ2))

∂⊣((ν1, µ1), (ν2, µ2))

)
+ ı[∂⊣((ν1, µ1), Z(ν2, µ2))

+ ∂⊣((ν2, µ2), Z(ν1, µ1))] + ȷ∂⊣((ν1, µ1), (ν2, µ2))

+ λmin{∂⊣((ν1, µ1), Z(ν2, µ2)), ∂⊣((ν2, µ2), Z(ν1, µ1)),

∂⊣(ν1, µ1), Z(ν1, µ1)}, ∀ ν1 ⊣ µ1,

holds for any ℓ, ı, ȷ ∈ [0, 1) with 0 ≤ ℓ + 2ı + ȷ < 1 and
for any λ ≥ 0. Clearly K is an Op and Ocon.
K elements are solely similar to themselves. Moreover,
(0, 2) ⪯ Z(0, 2). Here all the axioms of Theorem 3 are hold,
(2, 0) and (0, 2) are the fixed points of Z.

In 1988 Singh and Chatterjee [1] introduced the concept
of Singh and Chatterjee contractions. We modified that
contraction as below:

Definition 12. Let (K,⊣, ∂⊣) be an orthogonal partially
ordered metric spaces. A self-mapping Z on K is said to
be an orthogonal Singh and Chatterjee contractions, if
∃ ℓ, ı, ȷ ∈ [0, 1) with 0 ≤ ℓ+ 2ı+ ȷ < 1 such that

∂⊣(Zν, Zµ) ≤ ℓ
(∂⊣(ν, Zν)∂⊣(µ, Zµ)

∂⊣(ν, µ)

)
+ ı[∂⊣(ν, Zµ) + ∂⊣(µ, Zν)] + ȷ∂⊣(ν, µ), (6)

for all distinct ν, µ ∈ K with ν ⊣ µ and ν ≤ µ.

Corollary 1. Let (K,⊣, ∂⊣) be an orthogonal partially
ordered metric spaces. A self-mapping Z on K be a orthog-
onal Singh and Chatterjee contractions, non-decreasing and
Ocon. If ∃ ν0 ∈ K such that ν0 ≤ Zν0, then Z has a unique
fixed point in K.

Proof: Set λ = 0 in Theorem 3.

If ν0 ≥ Zν0, in Theorem 3, then we obtain the following
result:
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Theorem 5. Let (K,⊣, ∂⊣) be an orthogonal partially or-
dered metric spaces. Assume that either Z is Ocon or K
is such that if a decreasing Oseq {νa} → ν ∈ K, then
ν = inf{νa}. Let Z : K → K be a Op and monotone
increasing function holds the contraction (4) (or) (6). If
∃ ν0 ∈ K with ν0 ≥ Zν0, then Z has a unique fixed point in
K.

Proof: The proof follows a similar pattern to prior
Theorem 3, with the exception of a few minor differences.

Theorem 6. Let (K,⊣, ∂⊣) be an orthogonal partially
ordered metric spaces. Suppose that Z : K → K be an
orthogonal almost Singh and Chatterjee contractions and
increasing. Also, suppose ∃ ν0 ∈ K such that ν0 ≤ Zν0.
If the function Zq is Ocon for some non-negative integer q,
then Z has a unique fixed point in K.

Proof: Based on the proof of Theorem 3, we construct
a increasing Oseq {νa} ∈ K such that νa → ν1, for some
ν1 ∈ K. Also, its subsequences νaξ

(aξ = ξq) converges to
the same point ν1.
Therefore,

Zqν1 = Zq
(

lim
a→+∞

νaξ

)
= lim

a→+∞
νaξ+1

= ν1.

Thus, ν1 is a fixed point of Zq.
Next, we prove ν1 is a fixed point of Z. Let n be the small
non-negative integer such that Znν1 = ν1 and
Zsν1 ̸= ν1 (s = 1, 2, ...., n− 1). If n > 1, then

∂⊣(Zν1, ν1) = ∂⊣(Zν1, Z
nν1)

≤ ℓ
(∂⊣(ν1, Zν1) + ∂⊣(Z

n−1ν1, Z
nν1)

∂⊣(ν1, Zn−1ν1)

)
+ ı[∂⊣(ν1, Z

nν1) + ∂⊣(Z
n−1ν1, Zν1)]

+ ȷ∂⊣(ν1, Z
n−1ν1)

+ λmin{∂⊣(ν1, Znν1), ∂⊣(Zn−1ν1, Zν1),

∂⊣(ν1, Zν1)},

which implies that

∂⊣(Zν1, ν1) ≤
( ı+ ȷ

1− ℓ− ı

)
∂⊣(ν1, Z

n−1ν1).

Again from contraction condition (4), we have

∂⊣(ν1, Z
n−1ν1) = ∂⊣(Z

nν1, Z
n−1ν1)

≤ ℓ
(∂⊣(Zn−1ν1, Z

nν1) + ∂⊣(Z
n−2ν1, Z

n−1ν1)

∂⊣(Zn−1ν1, Zn−2ν1)

)
+ ı[∂⊣(Z

n−1ν1, Z
n−1ν1)

+ ∂⊣(Z
n−2ν1, Z

nν1)] + ȷ∂⊣(Z
n−1ν1, Z

n−2ν1)

+ λmin{∂⊣(Zn−1ν1, Z
nν1), ∂⊣(Z

n−1ν1, Z
n−1ν1),

∂⊣(Z
n−2ν1, Z

nν1), ∂⊣(Z
n−1ν1, Z

nν1)}.

Inductively, we get

∂⊣(ν1, Z
n−1ν1) = ∂⊣(Z

nν1, Z
n−1ν1)

≤ s∂⊣(Z
n−1ν1, Z

n−2ν1)

≤ ........ ≤ sn−1∂⊣(ν1, Zν1),

where s =
ı+ ȷ

1− ℓ− ı
∈ [0, 1).

Therefore,

∂⊣(Zν1, ν1) ≤ sn∂⊣(Zν1, ν1)

< ∂⊣(Zν1, ν1),

this is contradiction. Hence, Zν1 = ν1.
Next, we prove uniqueness. Let ν2 ∈ K be a fixed point

of Z. So, we get Zaν∗ = ν∗ and Zaν∗2 = ν∗2 , ∀ a ∈ N.
According to the notion of orthogonality, there is ν1 ∈ K so
that

[ν1 ⊣ ν∗ and ν1 ⊣ ν∗2 ]

or [ν∗ ⊣ ν1 and ν∗2 ⊣ ν1].

Since Z is Op, we can write

[Zaν1 ⊣ Zaν∗ and Zaν1 ⊣ Zaν∗2 ]

or [Zaν∗ ⊣ Zaν1 and Zaν∗2 ⊣ Zaν1],

∀ a ∈ N.

Therefore, because of Definition 1, we get

∂⊣(ν
∗
1 , ν

∗
2 ) = ∂⊣(Z

aν∗1 , Z
aν∗2 )

= ∂⊣(Z
aν∗1 , Z

aν1) + ∂⊣(Z
aν1, Z

aν∗2 )

≤ ∂⊣(ν
∗
1 , ν1) + ∂⊣(ν1, ν

∗
2 ).

Taking limit as a → ∞, we get

∂⊣(ν
∗
1 , ν

∗
2 ) = 0,

and so ν∗1 = ν∗2 . Hence Z has a unique fixed point.

V. PARTIAL ORDERED APPLICATION

Here, we assume the Volterra integral type equation:

ν(r) = ρ(r) + ξ

∫ 1

0

v(r, τ)g(τ, ν(τ))∂τ, r ∈ [0, 1], ξ ≥ 0.

(7)

Take K = C(I) is continuous map defined on I endowed
with a metric as below

P(ν, µ) = sup
r→I

∣∣ν(r)− ρ(r)
∣∣, ∀ ν, µ ∈ I.

Let υ be the class of map υ : [0,+∞) → [0,+∞) so that
(υ(℘))s ≤ υ(℘s), ∀ s ≥ 1 and ℘ ≥ 0.

We assume the following conditions
1) g : I × (−∞,+∞) → (−∞,+∞) is non-descending

continuous with respect to second variable so that there
is 0 ≤ L ≤ 1:∣∣∣g(r, [u1])− g(r, [u2])

∣∣∣ ≤ Lυ([u1]− [u2]),

∀ [u1], [u2] ∈ R with [u1] ≥ [u2].

2) ρ : I → R is continuous on I.
3) v : I × I → (−∞,+∞) is continuous with respect

to its first variable, and its second variable can be
measured such that for every r ∈ I,∫ 1

0

v(r, τ)∂τ ≤ ω.

4) Lsξsωs ≤ 1

24s−4
.

We assume on K the following ν, µ ∈ C(I) and
ν ⊣ µ ⇐⇒ ν ≤ µ.

IAENG International Journal of Applied Mathematics, 53:2, IJAM_53_2_19

Volume 53, Issue 2: June 2023

 
______________________________________________________________________________________ 



Now, for s = 1,

∂(ν, µ) = (P(ν, µ))

= sup
r→I

∣∣ν(r)− ρ(r)
∣∣, ∀ ν, µ ∈ C(I).

We conculde that (K, ∂,⊣) is a orthogonal partially or-
dered metric spaces.

Theorem 7. Under the assumptions (1)-(4), then Equation
(7) has a unique solution in C(I).

Proof: By the definition of Op, for all ν, µ ∈ K,
ν ⊣ µ =⇒ Zν ⊣ Zµ.

We assume that Ψ: K → K defined by

Ψν(r) = ρ(r) + ξ

∫ 1

0

v(r, τ)g(τ, ν(τ))∂τ, r ∈ I, ξ ≥ 0.

Let Ψ is described as if ν ∈ K, then Ψ(ν) ∈ K. It is easy
to see that, (K, ∂⊣,⊣) is orthogonal partially ordered metric
spaces.

For ν, µ ∈ K with ν ≤ µ and r ∈ I, we have

Ψν(r)−Ψµ(r) = ρ(r) + ξ

∫ 1

0

v(r, τ)g(τ, ν(τ))∂τ − ρ(r)

− ξ

∫ 1

0

v(r, τ)g(τ, µ(τ))∂τ

= ξ

∫ 1

0

v(r, τ)[g(τ, ν(τ))− g(τ, µ(τ))]∂τ

≤ 0.

Therefore, Ψ has the nondescending property. Also, Ψ
is Op, we get

|Ψν(r)−Ψµ(r)| =

∣∣∣∣∣ρ(r) + ξ

∫ 1

0

v(r, τ)g(τ, ν(τ))∂τ

− ρ(r)− ξ

∫ 1

0

v(r, τ)g(τ, µ(τ))∂τ

∣∣∣∣∣
≤ ξ

∫ 1

0

v(r, τ)|g(τ, ν(τ))− g(τ, µ(τ))|∂τ

≤ ξ

∫ 1

0

v(r, τ)Lȷ|ν − µ|.

Since ν ⊣ µ, we get

ȷ(µ(r)− ν(r)) ≤
(
sup
r∈I

|µ(r)− ν(r)|
)

= ȷ(P(ν, µ)),

hence

|Ψν(r)−Ψµ(r)| ≤ ξ

∫ 1

0

v(r, τ)Lȷ(P(ν, µ))∂τ

≤ ξωLȷ(P(ν, µ)).

Then, we obtain

∂⊣(Ψ(ν),Ψ(µ)) = sup
r∈I

|Ψν(r)−Ψµ(r)|

≤ ξωLȷP(ν, µ)

= ξωL∂⊣(ν, µ)

≤ ∂⊣(ν, µ).

This shows that the operator Ψ satisfying the contraction
requirement. So, (7) has a unique solution.

Example 5. Solve the integral equation and discuss all its
possible cases

u(ν) = ρ(ν) + β

∫ 1

0

(1− 3ντ)u(τ)∂τ. (8)

Solution:
From Equation (8) implies that

u(ν) = ρ(ν) + β

∫ 1

0

(u(τ)− 3ντu(τ))∂τ

u(ν) = ρ(ν) + β[D1 − 3νD2], (9)

where D1 =

∫ 1

0

u(τ)∂τ, (10)

D2 =

∫ 1

0

τu(τ)∂τ, (11)

D1 and D2 are constants to be determined.
Equation (9) is an orthogonal continuous and integrating

with respect to ν over the limit o to 1.∫ 1

0

u(ν)∂ν =

∫ 1

0

f(ν)∂ν + β(D1 − 3νD2)∂ν

(10) =⇒ D1 =

∫ 1

0

f(ν)∂ν + β(D1 −
3

2
νD2)∫ 1

0

f(ν)∂ν = (1− β)D1 +
3

2
D2β

f1 = (1− β)D1 +
3

2
D2β. (12)

Now multiplying (9) with ν and integrating with respect to
ν between 0 and 1. We get∫ 1

0

νu(ν)∂ν =

∫ 1

0

νf(ν)∂ν + β

∫ 1

0

(D1ν − 3ν2D2)∂ν

(11) =⇒ D2 = f2 + β[
D1

2
−D2]

f2 = −β

2
D1 +D2(1 + β), (13)

where f2 =
∫ 1

0
νf(ν)∂ν. From (12) and (13), we get

∆(β) =

[
1− β 3

2β

−β
2 1 + β

]
= 1− β2 +

3

4
β2

= 1− β2

4

∆(β) =
4− β2

4
.

Now (12) and (13) can be written as

(I − βA)D = f,

where

D =

[
D1

D2

]
,F =

[
f1

f2

]
.

Also,
∣∣1− βA

∣∣ = ∆(β).
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Table I

S.No β ∆(β)

1 0.0000 1.0000

2 0.1000 0.9975

3 0.2000 0.9900

4 0.3000 0.9775

5 0.4000 0.6900

6 0.5000 0.9375

7 0.6000 0.9100

8 0.7000 0.8775

9 0.8000 0.8400

10 0.9000 0.7975

11 1.0000 0.7500

12 2.0000 0.0000

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.1

0.2

0.3

0.4

0.5
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1

Figure 1. Graph of
∣∣1− βA

∣∣ = ∆(β) for Example 5.

Case A: If f(ν) ̸= 0 and F ̸= 0 then (12) and (13) has
a unique solution, if ∆(β) ̸= 0, that is, β = −2, 2. When
β = 2 or β = 2, then these equations have either no solution
or infinite many solutions.

Sub case A-1: If β = 2, then, (12) and (13) reduce to

−D1 + 3D2 = f1

−D1 + 3D2 = f2.

These equations have no solution if f1 ̸= f2 and have
infinitely many solutions when f1 = f2, that is∫ 1

0

f(ν)∂ν =

∫ 1

0

νf(ν)∂ν

or∫ 1

0

(1− ν)f(ν)∂ν = 0

Thus, the solution of given integral equation is

u(ν) = f(ν) + 2[D1a1(ν) +D2a2(ν)]

= f(ν) + 2[D1 � 1 +D2(−3ν)]

= f(ν) + 2[3D2 − f1 − 3νD2]

= f(ν) + 6D2(1− ν)− 2f1,

or

u(ν) = f(ν) + 6D2(1− ν)− 2

∫ 1

0

f(ν)∂ν,

where D2 is arbitrary.
Sub case A-2: If β = −2. As done above, the solution is

given by

u(ν) = f(ν)− 2D2(1− 3ν)− 2

∫ 1

0

νf(ν)∂ν.

Case B: When f(ν) = 0,F = 0.
In this case, the Equations (12) and (13) becomes;

(1− β)D1 +
3β

2
D2 = 0, −β

2
+ (1 + β)D2 = 0. (14)

If β ̸= 2, and − 2, then the system has only trivial solution
D1 = 0 = D2.

Thus u(ν) = 0 is the solution of given integral equation.
Sub case B-1: If β = 2 then (14) becomes

−D1 + 3D2 = 0 =⇒ D1 = 3D2.

Thus the solution of given integral equation is

u(ν) = 0 + 2(3D2 − 3νD2)

u(ν) = 6D2(1− ν).

Sub case B-2: If β = −2 then Equation (14) becomes

D1 −D2 = 0 =⇒ D1 = D2.

Thus, the solution is

u(ν) = 0− 2(D2 − 3νD2)

u(ν) = 2D2(3ν − 1).

Case C: When f(ν) ̸= 0 and F = 0.
If β ̸= 2,−2 then the system (14) has only trivial solution
D1 = D2 = 0 and therefore u(ν) = f(ν) is the solution.

Sub case C-1: If β = 2, then D1 = 3D2 and the solution
is

u(ν) = f(ν) + 2(3D2 − 3νD2)

u(ν) = f(ν) + 6D2(1− ν).

Sub case C-2: If β = −2, then D1 = D2 and the solution is

u(ν) = f(ν)− 2(D2 − 3νD2)

u(ν) = f(ν) + 2D2(3ν − 1).

Hence the solution is complete.

VI. CONCLUSION

In this paper, we proved fixed point theorems using an
orthogonal rational type contraction and an orthogonal Singh
and Chatterjee contraction in orthogonal complete partially
ordered metric spaces. Furthermore, we presented some
examples to strengthen our main results. Also, we provided
an application to the Volterra integral type equation.
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