
 

  

Abstract—This paper presents the use of a teaching tool that 

allows the model identification of a temperature control system 

by applying several methods such as Step Response Method, 

Least Squares Method, Moving Average Least Square Method 

and Weighted Least Square Method. The system is an 

application of remote laboratory access, a WebLab, with real 

equipment and systems that can be remotely controlled by the 

web. The WebLab allows the development of multidisciplinary 

experiments, having as a differential, the possibility of allowing 

technology-mediated teaching, aiming to get a better 

assimilation of the contents presented in the theory for effective 

learning. 

 
Index Terms—Education, remote laboratories, control 

systems, system identification. modelling control systems. 

 

I. INTRODUCTION 

N nearly 2020, the world was surprised by an alert 

regarding the pandemic of a new virus, which was named 

COVID-19. 

Needing to interrupt room classes to avoid the virus’ 

proliferation, the vast majority of public and private schools 

in Brazil, especially in higher education, started to use digital 

technologies in order to continue the teaching-learning 

process. So, all of a sudden, even the most resistant teachers 

to online education began to use it as an alternative to 

continuing classes. 

With the change, there was a revolution in the way we use 

technologies. The classes popularity was greatly increased 

with videoconference and distance classes, which started to 

be carried out by using teaching resources. The fact is that, in 

the world, higher education in general will never be the same 

after the pandemic [1]. During this period of social 

distancing, new teaching and learning alternatives based on 

the use of technologies became part of teachers' daily lives. 

Some features that have been employed as alternatives 

include  Virtual  Environment   Learning,  videoconferencing  
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applications, videos and audios stored in the cloud (lives, 

recorded lessons, use of whiteboard, podcasts), software 

simulations, remote laboratories (WebLabs), learning 

activities with virtual group classes, in addition to interactive 

resources such as quiz, games, among others. There is a 

multitude of educational opportunities and resources 

available. Often, the main difficulty is to be able to define the 

alternative that best fits the topic to be addressed in the 

specific discipline or course. Additionally, it is essential to 

assess the impact of applying these new teaching strategies 

on learning [2]. Factors such as motivation, physical 

interaction, advanced technological resources, continuous 

feedback, and proximity in teaching are implications that 

must be considered for improvement in a teaching and 

learning process that meets quality education. 

Among the available technologies, especially for content 

that demand the use of practical resources, there is the use of 

remote laboratories. The WebLabs are clear examples of 

computing use in education, but with a large differential, 

because they provide a possibility of real learning by distance 

supervision. This is possible, mainly because the WebLabs 

allow the development of practical experiments by accessing 

the equipment through the net in real laboratories and thus 

allowing control and data acquisition in real-time. 

WebLabs have been implemented in several institutions 

presenting solutions for remote operation, generally using 

commercially available software or dedicated networks. 

Several researchers reported their experience in using 

WebLabs for teaching chemistry [3], electronics [4]-[7], 

microwave [8], process control [9], among others [10], [11]. 

At the Instituto Mauá de Tecnologia (IMT), several WebLabs 

related to the area of process control were recently developed 

[12]-[20]. Areas such as robotics [21], oil industry, and image 

processing [22] were also covered. 

In this sense, the objective of this work is to present a 

didactic tool for teaching in the area of "Process Control" 

describing some of the experiments that can be carried out in 

order to understand the different ways to implement 

techniques for identifying systems. The chosen application is 

a didactic temperature control system that presents resources 

available for teaching control in engineering courses. The 

main differential of this work in relation to the proposed in 

[15] is the adaptation of the tool for better remote use, as well 

as the introduction of several other resources that provide a 

very comprehensive approach to several techniques for 
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system identification. 

The use of identification techniques, such as the Least 

Squares Method, Recursive Least Square Method [16], 

Kalman Filters [17], Auto Regressive Moving Average 

method for systems with exogenous inputs, among others, are 

adopted in several works, being an interesting alternative to 

allow the implementation of adaptive control systems [18], 

[19]. 

In this work, it is intended to evaluate the performance of 

the Step Response Method, Least Squares Method, Moving 

Average Least Square Method and Weighted Least Square 

Method applied in a temperature control system. 

 

II. REMOTE LABS (WEBLABS) 

Due to the advancement of technologies, most industrial 

control systems are carried out using digital technologies, 

typically industrial controllers or computerized systems, 

where the control is executed through computational 

algorithms. This characteristic is propagated in the academic 

environment, therefore the vast majority of educational kits 

aimed at the area of "Process Control" use microcontrolled 

systems or data acquisition systems connected to computers. 

Didactic software is used to implement the control algorithm 

as well as to change the controller parameters, in order to 

allow the designer to evaluate the dynamic behavior of the 

systems, resulting from these changes. 

The concept applied to WebLabs at IMT can be 

generalized by the block diagram in Fig. 1, and presents the 

following elements: 

•  the system or equipment which will be remotely 

controlled; 

•  sensor monitoring system, which measures process 

variables in real time; it may include electronic signal 

conditioning circuits and transducers; 

•  data acquisition system that captures signals at the 

appropriate sampling frequency and makes the data available 

to the WebLab system; these variables can be viewed 

(graphically or numerically) in the user interface; 

•  actuators and drivers, that is necessary when the 

designer wants not just to monitor the variables, but also to 

control them; drivers are electronic circuits used to convert 

control signals to appropriate levels depending on the 

application; 

•  control algorithm, which can be a conventional 

controller normally adopted in control applications (for 

example, a PID control) and/or algorithms that allow 

processing information and defining actions according to the 

values of the measured variables; 

•  image capture system, which collects images in real- 

time; 

•  web server, responsible for providing system 

information (sensor signals, equipment images, etc.) in the 

remotely accessible interface by the user; 

•  user interface, is how the user accesses the remote 

experiment over the internet, which can be done through a 

computer terminal, mobile device, HMI (Human-Machine 

Interface), among others. 

The main limitation in the use of these remote labs by 

students is the need to use the LabVIEWTM software, which 

requires users to install a plugin so that the complete interface 

can be viewed. 

Another limitation is the need to leave the equipment in 

continuous operation, during the day and night, usually for a 

large number of days. This brings flexibility to the use of the 

application by the user but makes the solution unsustainable. 

This limitation can be minimized if the equipment is put into 

operation just on demand, that is, when someone is interested 

in remotely controlling the equipment or when the teacher 

proposes an activity or a project using WebLab. Thus, 

unnecessary energy consumption is avoided, making 

solutions more sustainable and avoiding the need to keep a 

technician continuously monitoring the system's operation to 

put it back into operation in case of technical problems (for 

example, power outage or drop in internet signal). Another 

interesting alternative is accessing the laboratory remotely, 

using virtual machine concepts, for example, during an online 

class [13]. 

Using WebLab, several people can access the same 

experiment simultaneously, although just one of them can 

interact. In any case, when another student is controlling the 

equipment, it is possible to visualize the results. In addition, 

the student can request access to the experiment. WebLabs 

have a system that manages access control, limiting each 

student a maximum time of use and releasing the equipment 

to other students, as long as they have requested access. 

III. TEMPERATURE CONTROL SYSTEM 

The process of the control system, illustrated in Fig. 2, is a 

didactic heating system, built with wood, including a lamp, 

where the heating is controlled by adjusting the applied  

voltage. A thermocouple (PT100) is used as a temperature 

sensor and provides a voltage proportional to temperature. An 

electrical panel including electronics signal conditioning 

circuits provides the conversion of voltage levels of sensor 

voltage, whereas a solid-state relay produces adequate power 

in the lamp based on a control signal produced by a data 

acquisition system. Cooling is produced by the control 

voltage applied to a cooler. 

The temperature control system was implemented by 

illustrated at the block diagram in Fig. 3. The control was 

developed using ELVIS™ (Educational Laboratory Virtual 

Instrumentation Suite) toolkit (Fig. 4) and LabVIEW™ 

programming language with a graphical man-machine 

interface being constituted of one data acquisition board 

model NI PCI-6251 and one work station equipped with one 

protoboard where the applications can be developed. 

 
 

Fig. 1.  Block diagram of Weblabs developed at IMT. 
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IV. MODELLING TEMPERATURE CONTROL 

SYSTEM 

The temperature control system can be modelled by the 

following differential equation [23]: 

 

 RC
dθ𝑜

dt
+ 𝜃0 = 𝑅h +  θ𝑖 ,                                               (1) 

 

where R is the thermal resistance (C s / kcal), C is the thermal 

capacitance (kcal / C), 𝜃0 and 𝜃𝑖 are respectively the 

deviation of temperature output and input over an operating 

point in steady state (C) and h is the deviation of heating over 

the operating point in steady state (kcal/s). 

Applying the Laplace Transform and assuming 𝜃0(0) = 0 

results: 

𝛩0(𝑠) =
𝑅

𝑅𝐶𝑠+1
𝐻(𝑠) +

1

𝑅𝐶𝑠+1
𝛩𝑖(𝑠),                                              (2) 

 

whereas the variation of outside air temperature is a 

disturbance 𝜃𝑖= 0; ignoring the dynamics of the temperature 

sensor and assuming the voltage produced by this sensor 

V0(s) is proportional to the temperature, i.e., V0(s) = K0𝜃0 (s), 

and assuming the heating is proportional to the output 

voltage produced by the data acquisition system, i.e., H (s) 

= Ki Vi(s), we have: 

𝑉0(𝑠) =
𝐾0𝐾𝑖𝑅

𝑅𝐶𝑠+1
𝑉𝑖(𝑠) =

𝐾𝑆

𝑇𝑆𝑠+1
𝑉𝑖(𝑠),                                               (3) 

 
where KS is static gain and TS is the time constant of the 
system. Note that the system has a heating and cooling 
system separately driven, respectively to positive and 
negative control signals Vi(s) as illustrated in Fig. 3. 

The discrete state space of (3), using sampling time T 
results is: 

𝑣0(𝐾 + 1) = 𝑒
−1

𝑇𝑆
𝑇

𝑣0(𝐾) + (1 − 𝑒
−1

𝑇𝑆
𝑇

) 𝐾𝑆𝑣𝑖(𝐾) .                 (4) 

A. Identification by Step Response Analysis 

The temperature control system (3) is a first-order model 

and its parameters can be determined by the step response, as 

illustrated in Fig. 5, where it is considered, in the specific  

case, the initial condition Vi(0) = 0 V and Vi(t) = Vmax para t 

 0 s. The parameter KS can be obtained by the Final Value 

Theorem whereas TS corresponds to the time required for the 

output to reach 63.2% of the output variation after the step 

applied and up to the steady state. 

B. Identification by Least Squares Method and Moving 

Average Least Squares Method 

Consider a discrete system that can be represented by the 

equation (5), which is an ARX model (Autoregressive Model 

With Exogenous Inputs), but as matrix inputs dependent on 

vi(k) and B(k): in which Ay(q) v0(k) represents the 

autoregressive portion, e(q) is the error represented by a 

moving average of the white noise and B(q) vi(k) represents 

an external input [24]. 

 

𝐴𝑦(𝑞)𝑣0(𝑘) = 𝐵(𝑞)𝑣𝑖(𝑘) + 𝑒(𝑘)                                                  (5) 

 

Assuming that the discrete system (4) is an ARX model, 

equation (4) can be adjusted in a specific case to (6), 

considering the first-order system and where A(q) and B(q) 

represent the parameters of the system: 

𝑣0(𝑘 + 1) = 𝐴(𝑞)𝑣0(𝑘) + 𝐵(𝑞)𝑣𝑖(𝑘) + 𝑒(𝑘)                        (6) 

 
Fig. 4.  Data Acquisition System ELVISTM 

 

 
Fig. 3.  Temperature Control System - Block diagram 

 

 
Fig. 5.  Step Response of First Order System 

 

 
Fig. 2.  Temperature Control System. 
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Comparing the equations (4) and (6) results: 

𝑣0(𝐾 + 1) = 𝑊(𝑘)𝑇𝐷(𝑘)𝑇 + 𝑒(𝑘)                                    

                                      = 𝐷(𝑘)𝑊(𝑘) + 𝑒(𝑘)                     (7)  

Defining W(k) the parameters matrix of the system, where 

D(k) and Y(k) = v0(k+1) are the measured values considering 

certain input values at each sample, resulting: 

 

𝑣0(𝐾 + 1) = 𝑊(𝑘)𝑇𝐷(𝑘)𝑇 + 𝑒(𝑘) 

                      = 𝐷(𝑘)𝑊(𝑘) + 𝑒(𝑘)                                          (8) 

So, it is defined as matrix D(k): 

𝐷(𝑘) = [𝑣0(𝑘) 𝑣𝑖(𝑘)];  𝑊(𝑘) = [
𝑒

−1

𝑇𝑆
𝑇

(1 − 𝑒
−1

𝑇𝑆
𝑇

) 𝐾𝑆

] and 

𝑌(𝑘) = 𝑣0(𝑘 + 1). 

If it is desired to minimize the error e(k) and estimate the 

parameters that produce the minimum error given by 

𝑒(𝑘) = 𝑣0(𝑘 + 1) − 𝐷(𝑘)𝑊(𝑘) we can define the cost 

function (9) to minimize the squared error [24], [25]: 

 

𝐽 = ∑ 𝑒(𝑘)2𝑛
𝑖=1                                                                                           (9) 

 
Using (8): 

𝐽 = (𝑌(𝑘) − 𝐷(𝑘)𝑊(𝑘))𝑇(𝑌(𝑘) − 𝐷(𝑘)𝑊(𝑘)                   (10) 

 
The equation (10) results: 
 

𝐽 = 𝑌(𝑘)𝑇𝑌(𝑘) − 𝑊(𝑘)𝑇𝐷(𝑘)𝑇𝑌(𝑘)  
  −𝑌(𝑘)𝑇𝐷(𝑘)𝑊(𝑘) + 𝑊(𝑘)𝑇𝐷(𝑘)𝑇𝐷(𝑘)𝑊(𝑘)       (11) 

 
In order to find the minimum value and deriving and 

equaling to zero results in obtaining the Ŵ of equation (12) 
which represents the W parameters of the system estimated 
from collected data to minimize errors and inaccuracies in 
measurements. 

 

�̂� = (𝐷(𝑘)𝑇𝐷(𝑘))
−1

𝐷(𝑘)𝑇𝑌(𝑘)                                                (12) 

 

The identification can be obtained with relative precision 

depending on the degree of imprecision in the collected data. 

In any way, better accuracy is obtained, if a larger dataset is 

considered. However, the main inconvenience of the 

methodology is the need to accumulate an adequate number 

of samples and just after collecting these samples perform the 

calculation of the Ŵ parameters. An alternative to allowing 

determining the calculations in each sample is the use of a 

moving data set (Moving Average Least Squares Method), 

performing the calculation for a defined set of collected data. 

That is, for each sample collected, the measurement is added 

to the data set, and the sample is removed from the set 

resulting in FIFO (First In First Out) structure. 

 

C. Identification by Weighted Least Squares Method 

 

Other methods can be used for mathematical model 

identification of the discrete system (7), the advantage of 

getting a real-time application and defining the parameters at 

each sampling time [24], [26]. An example is the Weighted 

Least Squares Method (WLS Method) an extension of the 

Least Squares Method that is an efficient and accurate 

estimation algorithm suitable particularly when the designer 

has the a priori approximation of parameters values. 

It should be noted that the estimation in real-time allows 

the determination of the parameters considering the variation 

of operating conditions, for example, due to external 

disturbances. Additionally, it makes possible the 

implementation of an adaptive control system where the 

controller parameters can be automatically adjusted in real-

time by the estimated mathematical model. 

The main feature of the WLS Method is the use of initial 

values for the parameters and the determination of errors in 

real-time. To achieve convergence, it uses a gain matrix 

(Kalman gain) which is automatically adjusted in the 

algorithm to produce the minimization of errors, considering 

the previously calculated parameters and those obtained in 

the current sampling. This is accomplished by adjusting the 

“forgetting factor”  and the variable α. By adjusting γ, the 

user is given greater importance (higher degree of weighting) 

to the latest measurements, as these contain the most current 

information and should have greater influence in the 

estimation. This is enforced in practice by setting 0.9 <  < 1. 

The structure of the estimation algorithm is presented 

below. 

(a) Choose a diagonal weighting matrix P(k), known as the 

“covariance matrix” with order n x n, where n is the number 

of variables representing the system states whose parameters 

will be estimated. P(k) reflects the degree of uncertainty in 

the knowledge of the estimated parameters. However, if there 

is some knowledge about the amounts expected in the 

estimation, we use a diagonal matrix P(k) with parameters set 

at low magnitude values. However, if the estimated 

parameters are completely unknown, the “covariance matrix” 

should present terms with high values on the main diagonal. 

(b) Set a “forgetting factor”  such that: 0 <  ≤ 1 and α = 

(1 - ). 

(c) Initialize V0(k), V0(k-1), V0(k-2), Vi(k-1), Vi(k-2) and 

D(k) = [-V0(k-1) -V0(k-2) Vi(k-1) Vi(k-2)]T. 

(d) Assume initial values for �̂�(k + 1) and �̂�(k) where 

�̂�(k) is the array of estimated parameters at each sampling 

time. 

Repeat the operations listed from (e) to (i) while max |�̂� 

(k+1) - �̂� (k)| ≥  where  is a tolerance for the estimation 

error. However, if the goal is to develop a control based on 

the estimated parameters, then the algorithm should be used 

continuously in each sample. 

(e) Update �̂�(k)= �̂�(k+1). 

(f) Calculate the Kalman gain of the system by: 

 

𝐾(𝑘) =
𝑃(𝑘)


𝐷(𝑘) (

1


𝐷(𝑘)𝑇

𝑃(𝑘)


𝐷(𝑘))

−1

,                  (13) 

 

(g) Estimate a new value of �̂�(k+1) using: 

 

�̂�(𝑘 + 1) = �̂�(𝑘) + 𝐾(𝑘)(𝑉0(𝑘) − 𝐷(𝑘)𝑇�̂�(𝑘) ), (14) 

 

(h) Calculate the new weighting matrix by: 

 

             𝑃(𝑘) =
1


[𝐼 − 𝐾(𝑘)𝐷(𝑘)𝑇]𝑃(𝑘),                                  (15) 
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where I is an identity matrix with the same dimension as 

matrix A of the system. 

(i) Update: V0(k) = V0(k + 1); V0(k-1) = V0(k);  
V0(k-2) = V0(k-1); Vi(k-1) = Vi(k); Vi(k-2) = Vi(k-1) and 
D(k) = [V0(k-1) V0(k-2) Vi (k-1) Vi(k-2)]T. 

The tolerance setting is made just if the goal is to estimate 

the system parameters to achieve their convergence. 

However, as mentioned before, if the goal is to identify the 

parameters in real-time, the algorithm, considering the 

operations (e) to (i) can be repeated continuously. 

 

V. RESULTS AND DISCUSSION 

This section presents the approaches developed for the 

application and the results obtained through practical tests 

compared with simulation results. 

 

A. WebLabs for Temperature Control System 

Identification 

 

The main machine interface to identify the model of the 

temperature control system was developed by using 

LabVIEW™. Basically, three steps were required: (i) create 

LabVIEW™ application as an appropriate main-machine 

interface to the user; (ii) enable the WebServer option to 

obtain remote access and thus configure the access managing 

panel; (iii) modify the HTMLl code, inserting text containing 

introduction and fundamentals, specific information about 

the school and general instructions to the user. 

If you are interested in making full remote access to the 

application, the user first needs to install a plugin file for 

access to the Web Server. In this sense, these instructions are 

informed by the teacher to the student who wants to install 

the system on their computer, with a different plugin 

depending on the operating system. 

If the access will be through a virtual machine, the student 

will need to install a tool to allow the access to be done 

remotely. There are several tools available on the market, 

such as TeamViewer, Chrome Remote Desktop, 

Getscreen.me, Microsoft Remote Desktop, AnyDesk, 

DameWare Mini Remote Control, and GoToMyPC 

(LogMeIn). In teaching “Process Control” the TeamViewer 

tool has been used, which works on desktops and mobile 

devices with Windows, MacOs, Linux, Android, iOS, 

Chrome OS, and Raspberry Pi. 

Using the applications, with interfaces as presented in Fig. 

6, Fig. 7, and Fig. 8, it is possible to carry out the 

identification of the system by respectively the following 

methods: 

a) Identification by Step Response Analysis and 

Identification by Least Squares Method (simultaneously); 

b) Identification by Moving Average Least Squares 

Method; 

c) Identification by Weighted Least Squares Method. 

In the first algorithm, using the interface presented in Fig. 
6, the first step is to define the sampling time (typically T = 1 
s) and the data set that will be used to determine the 
mathematical model (number of samples). Then, it is 
necessary to define the initial value of the input (set point). 
Avoid keeping this value continuously at zero as the least 
squares method can result in indefiniteness or error, due to 
the division by zero. After that, the user must click on the 
START button and then change the set point value to start the 
step response test. Once this is done, the user needs to wait 
until the test is concluded and the output approaches its 
steady-state value, as illustrated in Fig. 5 and in the graph in 
Fig. 6. When this occurs, the user must click on the END 
button and then the model deduced by the step response 
method will be determined and displayed in the interface. 

 

 
Fig. 6.  Interface for Temperature Control Model Identification - Step Response and Least Squares Method Methods 
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For this case, the results of the step response method will 
be displayed just after several samples are collected. 
However, it is necessary to pay attention to the following 
requirements: 

- the test must be started with the system at lows 

temperature, with a variation among a considerable amplitude 

being applied at the input (a variation of at least 1 V) and the 

variation at the output being observed;  

- the maximum and minimum amplitudes at the input and 
output cannot exceed the limits of ± 10 V; 

- the number of samples must be established as greater than 

or equal to 2000 in order to obtain an adequate transient to 

carry out the identification of system parameters, whether for 

heating or cooling. 

Simultaneously, at the same application (Fig. 6), the model 

obtained by the Least Squares Method (LSM) will also be 

displayed, once the defined number of samples has been 

collected. The interface shows the calculated parameters Ks 

and Ts obtained by this method (numerically and 

graphically). In any form, the user will also need to define the 

sampling time adopted in the application and the data set that 

will be used to determine the mathematical model. 

If you prefer, it is possible to enable an Automatic option, 

which uses a square wave with input voltage ranging between 

maximum and minimum values and using a set frequency ten 

times lower than the sampling frequency. 

Finally, the application provides a real image of the 

experiment. Moreover, a switch allows selecting PID control. 

However, this option is not addressed in this work. 

The procedure of using the LMS Moving Average (Fig. 7) 

is simpler. The user just needs to define the Sampling Time, 

the number of samples, and the Set Point, varying its value as 

desired directly in the interface, or using the Automatic 

option, which uses a square wave with input voltage ranging 

between maximum and minimum values and using a set 

 
 
Fig. 7.  Interface for Temperature Control Model Identification - Step Response and Least Squares Method Methods 

 

 
Fig. 8.  Interface for Temperature Control Model Identification - Step Response and Least Squares Method Methods 
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frequency ten times lower than the sampling frequency (this 

value can be adjusted at algorithm). The calculation will be 

performed at each sampling time, with the values calculated 

for each sample collected. 

The procedure using the WLMS method (Fig. 8) is similar. 

The difference is that the user also needs to set the  (gamma) 

and pmax parameters. The parameter pmax represents the 

main diagonal terms of the diagonal matrix P(k). The 

calculation for parameter identification is performed at each 

sampling time, using a moving data set sample collected, but 

keeping the specified number of samples.  

In both cases mentioned above, the calculation will be 

performed at each sampling time, with the values obtained for 

each sample collected. 

 

B. Experimental and Simulation Results 

 

For comparative purposes, the Step Response Method was 

implemented in a real system using the application illustrated 

in Fig. 6 to obtain the model presented in (16). 

 

𝑉0(𝑠) =
𝐾𝑠

𝑇𝑆𝑠+1
=

0,140090

250,126233𝑠+1
𝑉𝑖(𝑠)                                       (16) 

 

This method was chosen because it produces a relatively 

accurate model when using a suitable dataset. This model will 

be considered in the simulations as a "reference model" and 

used to evaluate the performance and results obtained by the 

other methodologies. In practical tests, the model was 

automatically identified and the results can also be compared 

with the same reference model in order to get the deviation. 

Table 1 and Table 2 present a summary of the parameters 

obtained in the simulations and practical tests respectively, 

where: 

- SRM – Step Response Method (reference)– test with step 

input with amplitude ranging from 0 to 10 V and duration of 

2000 seconds; the practical result obtained by SRM 

(reference model) is presented in Fig. 6; 

- LSM(1) – Least Square Method - test with step input with 

amplitude ranging from 0 to 10 V, duration of 2000 seconds, 

and calculation of parameters performed after these 2000 

samples; the practical result obtained by LSM(1) is also 

presented in Fig. 6; 

- LSM(2) – Least Square Method - test with step input with 

amplitude ranging from 0 to 10 V, duration of 2000 seconds, 

and calculation of parameters performed after each 100 

samples; 

- LSM(3) – Least Square Method - test with oscillatory 

input with amplitude varying from 4 to 6 V at a frequency of 

0.1 Hz, duration of 2000 seconds, and calculation of 

parameters performed after every 100 samples; 

- MALSM – Moving Average Least Square Method - test 

with oscillatory input with amplitude varying from 4 to 6 V 

at a frequency of 0.1 Hz, duration of 2000 seconds, and 

calculation of the first parameters performed after 100 

samples; the other parameters are calculated after every 

sample; the practical result obtained by MALSM is presented 

in Fig. 7; 

- WLSM(1) – Weighted Least Square Method - test with 

oscillatory input with amplitude varying from 0 to 4 V at a 

frequency of 0.1 Hz, duration of 2000 seconds after 

convergence, parameters adjusted:  = 0,96 and P(k) with 

diagonal terms 10000; 

- WLSM(2) – Weighted Least Square Method - test with 

oscillatory input with amplitude varying from 0 to 4 V at a 

frequency of 0.1 Hz, duration of 2000 seconds after 

convergence, parameters adjusted:  = 0,7 and P(k) with 

diagonal terms 10000; 

- WLSM(3) – Weighted Least Square Method - test with 

oscillatory input with amplitude varying from 0 to 4 V at a 

frequency of 0.1 Hz, duration of 2000 seconds after 

convergence, parameters adjusted:  = 0,96 and P(k) with 

diagonal terms 1000; 

- WLSM(4) – Weighted Least Square Method - test with 

oscillatory input with amplitude varying from 4 to 6 V at a 

frequency of 0.1 Hz, duration of 2000 seconds after 

convergence, parameters adjusted:  = 0,96 and P(k) with 

diagonal terms 10000; 

- WLSM(5) – Weighted Least Square Method - test with 

oscillatory input with amplitude varying from 4 to 6 V at a 

frequency of 0.1 Hz, duration of 2000 seconds after 

convergence, parameters adjusted:  = 0,7 and P(k) with 

diagonal terms 10000; 

- WLSM(6) – Weighted Least Square Method - test with 

oscillatory input with amplitude varying from 4 to 6 V at a 

frequency of 0.1 Hz, duration of 2000 seconds after 

convergence, parameters adjusted:  = 0,96 and P(k) with 

diagonal terms 1000; the practical result obtained by 

WLSM(6) is presented in Fig. 8. 

The results from WLSM(1) to WSLM(3) and WSLM(5) 

are not presented in Table 2, because the practical test did not 

present convergence. 

All results consider a sampling time of T = 1 s and the 

maximum, minimum, and average values are calculated. In 

the case of longer tests (WLSM), the calculations of 

parameters were performed considering the last 2000 samples 

collected after convergence. In this case, the approximate 

number of samples needed for convergence is also presented 

in Table 1 and Table 2. The following initial values 

considered were W =[0,96329 ; 9,9082 x  10-4 ], resulting      

Ks = 0,0269905 and Ts = 26,73742 s. 

Convergence was considered when the measurements 

presented values within a tolerance range with a modulus less 

than or equal to ± 1% close to the stabilization value. For the 

practical test, the stabilizing parameters are observed in 

different ranges. In this case, we assume as convergence the 

values within a tolerance range with a modulus less than or 

equal to +- 1% close to the stabilization value either for the 

upper or lower contours. 

The simulation results allow the following discussions: 

a) All results showed efficient identification and reduced 

deviation, indicating an opportunity to apply all methods. 

b) The main disadvantage of using the SRM method is the 

need to submit the system to a step-on input, which may not 

be feasible in some applications. Additionally, it takes 

considerable time for the signal to stabilize to enable the 

parameters to be determined. 

c) The LSM method allows the reduction of the necessary 

time for identifying the system parameters, just using a few 

samples. However, the method is not indicated in situations 

where there is no variation in the input and when the output 

is stable, which can produce considerable inaccuracies. 
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Therefore, the results obtained in LSM(3) are significantly 

better than those obtained in LSM(2). 

 d) The MALSM method is a better alternative, as it allows 

the determination of parameters after each sample, being 

designated for identification of systems that present the 

parameters variation, for example, when resulting in changes 

in operating conditions. However, it has the same limitations 

mentioned in the LSM method. In the test carried out with 

variation in the input signals and with the absence of noise 

and inaccuracies in the measurements, it was the method that 

presented the best result. 

e) The WLSM proved to be an excellent alternative, 

TABLE I 

SIMULATION RESULTS 

Methods \ Parameters KS 
Absolute    

Deviation 
TS (s) 

Absolute    

Deviation (s) 

SRM 0,140042 -48 x 10-6 250,126233 --- 

LSM(1) 0,140090 --- 250,126233 --- 

LSM(2) 

Average: 0,140090 --- Average: 250,125871 -362 x 10-6 

Maximum: 0,140090 --- Maximum: 250,126237 4 x 10-6 

Minimum: 0,140089 1 x 10-6 Minimum: 250,120736 -5.497 x 10-3 

LSM(3) 

Average: 0,140090 --- Average: 250,126233 --- 

Maximum: 0,140090 --- Maximum: 250,126233 --- 

Minimum: 0,140090 --- Minimum: 250,126233 --- 

MALSM 

Average: 0,140090 --- Average: 250,126233 --- 

Maximum: 0,140090 --- Maximum: 250,126233 --- 

Minimum: 0,140090 --- Minimum: 250,126233 --- 

 

WLSM(1) 

 

Average: 0,140088 -2 x 10-6 Average: 250,126231 -2 x 10-6 

Maximum: 0,140136 46 x 10-6 Maximum: 250,126233 --- 

Minimum: 0,139612 -478 x 10-6 Minimum: 250,125680 -551 x 10-6 

Number of samples 

until convergence: 54 
 

Number of samples until 

convergence: 73 
--- 

 

WLSM(2) 

 

Average: 0,140090 --- Average: 250,126233 --- 

Maximum: 0,140100 10 x 10-6 Maximum: 250,126233 --- 

Minimum: 0,139886 -204 x 10-6 Minimum: 250,126054 -179 x 10-6 

Number of samples 

until convergence: 29 
 

Number of samples until 

convergence: 37 
 

 

WLSM(3) 

 

Average: 0,140086 -3 x 10-6 Average: 250,117447 -8786 x 10-6 

Maximum: 0,140101 11 x 10-6 Maximum: 250,126233 --- 

Minimum: 0,139015 -1075 x 10-6 Minimum: 247,576412 -2.549821 

Number of samples 

until convergence: 

108 

 
Number of samples until 

convergence: 109 
 

 

WLSM(4) 

 

Average: 0,140300 210 x 10-6 Average: 248,661922 -1,464311 

Maximum: 0,141490 1400 x 10-6 Maximum: 249,362239 -0,763994 

Minimum: 0,139242 -848 x 10-6 Minimum: 247,636940 -2,489293 

Number of samples 

until convergence: 

9816 

 
Number of samples until 

convergence: 11724 
 

 

WLSM(5) 

 

Average: 0,140255 165 x 10-6 Average: 248,343654 -1,782579 

Maximum: 0,141506 1416 x 10-6 Maximum: 248,912988 -1,213245 

Minimum: 0,139149 -941 x 10-6 Minimum: 247,625883 -2,50035 

Number of samples 

until convergence: 

14981 

 
Number of samples until 

convergence: 18924 
 

 

WLSM(6) 

 

Average: 0,140333 243 x 10-6 Average: 248,349385 -1,776848 

Maximum: 0,142151 2061 x 10-6 Maximum: 248,916889 -1,209344 

Minimum: 0,138689 -1401 x 10-6 Minimum: 247,633954 -2,492279 

Number of samples 

until convergence: 

13849 

 
Number of samples until 

convergence: 18933 
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through adequate adjustment of the parameters. As the values 

of the parameters assumed as initial are relatively far from the 

ideal, the high P(k) adjustment results in an improvement in 

the response time to convergence. Additionally, the use of a 

smaller  allows assigning greater weight to the last 

measurements, which also contributes to the fast 

convergence, in addition to allowing the use of the method in 

applications where it is desired to quickly detect eventual 

changes in the system parameters. However, it was observed 

that the algorithm performs much better when there is a 

variation in the input next to zero. This is proven in the 

simulations shown in Fig. 9 and Fig. 10 which show the 

convergence of parameters through the WLSM simulations 

under the conditions defined in WLSM(2) and WLSM(6). 

Note that the times required for convergence are significantly 

different. 

The practical results allow the following considerations:  

a) All results were very oscillatory due to imprecision in 

measurements and sample time;  

b) Better results were obtained with tests that use a larger 

data set, that is, SRM and LSM(1); 

c) The tests with 100 samples (LSM(2), LSM(3), and 

MALSM) showed a considerable variation in each calculated 

value;  

d) Tests with WLSM present considerable difficulty in 

convergence. This method is not indicated when there is an 

imprecision or noise in the measurements, which can cause 

considerable oscillations in the identification of real systems. 

This explains the reason why some WLSM algorithms did not 

TABLE II 

PRACTICAL RESULTS 

Methods \ Parameters KS 
Absolute    

Deviation 
TS (s) 

Absolute    

Deviation (s) 

SRM 0,140090 (reference model) 250,126233 (reference model) 

LSM(1) 0,146182 0,006092 246,475224 -3,651009 

LSM(2) 

Average: 0,100838 -0,039252 Average: 224,249508 -25,876725 

Maximum: 0,142732 0,002642 Maximum: 907,329291 657,203058 

Minimum: 0,082644 -0,057446 Minimum: 15,681797 -234,444436 

LSM(3) 

Average: 0,094957 -0,045133 Average: 325,185226 75,058993 

Maximum: 0,106209 -0,033881 Maximum: 431,056943 180,93071 

Minimum: 0,077448 -0,062642 Minimum: 258,737916 8,611683 

MALSM 

Average: 0,112899 -0,027191 Average: 369,825797 119,699564 

Maximum: 0,123043 -0,017047 Maximum: 597,040448 346,914215 

Minimum: 0,098985 -0,041105 Minimum: 224,454322 -25,671911 

 

WLSM(4) 

 

Average: 0,152507 0,012417 Average: 220,832099 -29,294134 

Maximum: 0,423520 0,283430 Maximum: 237,775547 -12,350686 

Minimum: 0,003272 -0,136818 Minimum: 208,739914 -41,386319 

Number of samples 

until convergence: 

11750 

 
Number of samples until 

convergence: 13179 
 

 

WLSM(6) 

 

Average: 0,153380 0,01329 Average: 242,853094 -7,273139 

Maximum: 0,313257 0,173167 Maximum: 251,138825 -1,012592 

Minimum: 0,030078 -0,110012 Minimum: 236,522510 -13,603723 

Number of samples 

until convergence: 

10182 

 
Number of samples until 

convergence: 13333 
 

 
 

 

 
(a) 

 
(b) 

 
Fig. 9.  Step Response of First Order System Parameters Identification – 
Simulation of WLSM(2) a) KS Parameter; (b) TS Parameter. 
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converge in the practical test and even the WLSM(5) 

presented considerable oscillations as shown in Fig. 11. For 

comparative purposes, the values presented in Table 2 

consider the last 2000 samples of the test performed, where 

visually the convergence of the parameters was considered, 

but with relative oscillation, as shown in the tests in Fig. 8 

and Fig. 11. 

e) Although the identification produces significant 

variations in KS and TS parameters, it is observed that the 

obtained parameters) W(k) obtained by                               

𝑊(𝑘) = [
𝑒

−1

𝑇𝑆
𝑇

(1 − 𝑒
−1

𝑇𝑆
𝑇

) 𝐾𝑆

] present much less significant 

variations, due to the exponential component of the equation. 

 

VI. CONCLUSION 

The interfaces of accessing the remote equipment proved 

to be quite didactic and allowed the performance of activities 

mediated by technologies in association with teaching. 

The WebLabs were used as a teaching tool in the discipline 

"Process Control" of the Electronic Engineering course and 

in the Post-Graduate course in "Engineering of Industrial 

Process Control", as well as in complementary activities. 

Typically, the use of didactic activities was carried out using 

virtual machines. 

In any case, the differential is the possibility of using the 

didactic resources remotely, which provides versatility for the 

student, having the differential more flexibility and 

autonomy, since the student can control the step by step of 

carrying out the experiment allowing greater learning 

possibilities. 

Detailed research point shows that the methods of systems 

identification could be evaluated under different contexts 

with adjustment of the initial and operational conditions, such 

as changing amplitudes, changing the sampling time, and 

modifying the algorithm’s parameters, among others. 

The results presented in Table 1 and Table 2 show a 

quantitative and qualitative comparison of the performance 

produced by each identification method, allowing the 

assessment of the pros and cons of each methodology. In the 

simulations, the MALSM and WLSM methods (for certain 

initial conditions) presented very satisfactory performance, 

being advantageous over the other methods for allowing the 

parameters identification in each sampling time. 

Additionally, they have the potential to allow real-time 

identification by the detection of parameter variation, with the 

system in operation. However, the practical system used 

presents considerable imprecision in the measurements 

performed at each sampling time. Besides, the data 

acquisition system implemented allows a small variation in 

the sampling time, which, although not very significant, can 

compromise the stability and convergence in parameter 

identification. Additionally, it should be noted that a small 

change in the sampling time or the discrete parameters can 

produce considerable changes in the continuous parameters 

of the system. 

 

 

 

 

 
(a) 

 
 (b) 

Fig. 10.  Parameters Identification – Simulation of WLSM(5) a) KS Parameter; 

(b) TS Parameter. 

 

 
(a) 

 
 (b) 

Fig. 11.  Parameters Identification – Practical Application of WLSM(5) a) KS 

Parameter; (b) TS Parameter. 
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