
Eigenvalues of Discrete Second-order Coupled
Boundary Value Problems with Sign-changing

Weight
Yalin Zhang

Abstract—This paper is concerned with discrete second-
order coupled boundary value problems with sign-changing
weight. We find that these problems have T real eigenvalues
(including the multiplicity). Specifically, the numbers of positive
eigenvalues are equal to the number of positive elements in the
weight function, and the numbers of negative eigenvalues are
equal to the number of negative elements in the weight function.
Furthermore, the relationships between the eigenvalues under
three different coupled boundary conditions are established.
These results extend the relevant existing results of periodic
and anti-periodic boundary value problems with sign-changing
weight and the coupled boundary value problems with definite
weight.

Index Terms—eigenvalues, second-order difference equations,
coupled boundary condition, sign-changing weight.

I. INTRODUCTION

LET T > 2 be an integer, T = {1, 2, . . . , T}. In this
paper, we consider the second-order difference equation

Lu := ∆[p(t−1)∆u(t−1)]−q(t)u(t)+λa(t)u(t) = 0, t ∈ T
(1)

with the coupled boundary conditions(
u(T )

∆u(T )

)
= eiαK

(
u(0)

∆u(0)

)
, (2)

where ∆u(t) = u(t + 1) − u(t), α is a constant
parameter,−π < α ≤ π,

K =

(
k1 k2
0 k3

)
, k1, k2, k3 ∈ R, with k1k3 = 1,

q : T → [0,+∞), p : {0, 1, . . . , T} → (0,+∞) satisfies
p(0) = p(T ), and the weight function a : T→ R satisfies
the following condition:
(H0) a(t) changes sign on T, i.e., there exists a proper subset
T+ of T such that

a(t) > 0 for t ∈ T+, and a(t) < 0 for t ∈ T\T+.

Let n be the number of elements in T+. Then T − n is the
number of elements in T\T+.

When the weight function a(t) in the equation (1) is not
sign-changing, Atkinson [1], Jirari [2], Kelley and Peterson
[3] studied the boundary condition

u(0)− hu(1) = 0, u(T + 1)− lu(T ) = 0, (3)
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they obtained that this problem has T real eigenvalues, which
can be ordered as λ1 < λ2 < · · · < λT . Sun and Shi [4]
discussed the boundary condition (2), where p(t), q(t), a(t)
are real functions with p(t) > 0 for t ∈ {0, 1, . . . , T}, a(t) >
0 for t ∈ T, p(0) = p(T ) = 1, and

K =

(
k1 0
k2 k3

)
, kj ∈ R, j = 1, 2, 3 with k1k3 = 1.

They obtained the following result.

Theorem 1 (Theorem A). Assume k3 > 0. Then, for every
α ∈ (−π, 0) ∪ (0, π), the eigenvalues ηi(1 ≤ i ≤ T ) of
(1)-(2) satisfy the following inequalities:

η1(K) < η1(eiαK) < η1(−K) ≤ η2(−K) < η2(eiαK)

< η2(K) ≤ η3(K) < η3(eiαK) < η3(−K) ≤ η4(−K)

< η4(eiαK) < η4(K) ≤ · · · ≤ ηT−1(−K) < ηT−1(eiαK)

< ηT−1(K) ≤ ηT (K) < ηT (eiαK) < ηT (−K)

if T is odd, and

η1(K) < η1(eiαK) < η1(−K) ≤ η2(−K) < η2(eiαK)

< η2(K) ≤ η3(K) < η3(eiαK) < η3(−K) ≤ η4(−K)

< η4(eiαK) < η4(K) ≤ · · · ≤ ηT−1(K) < ηT−1(eiαK)

< ηT−1(−K) ≤ ηT (−K) < ηT (eiαK) < ηT (K)

if T is even.

For the case when a(t) is not sign-changing, further
important results in linear Hamiltonian difference systems,
including the oscillation properties of solutions, can be seen
in Shi and Chen [5], Bohner [6], Agarwal et al. [7] and the
references therein.

However, there are few results on the spectra the weight
function a(t) in the equation (1) changes its sign on T.
In 2007, Ji and Yang [8], [9] studied the structure of the
eigenvalues of (1) and (3), and they obtained that the numbers
of positive eigenvalues are equal to the number of positive
elements in the weight function, and the numbers of negative
eigenvalues are equal to the number of negative elements in
the weight function. In 2018, Ma et al. [10] considered the
general separate boundary condition

αu(0)− β∆u(0) = 0, γu(T + 1) + δ∆u(T ) = 0, (4)

where α, β, γ, δ ∈ R satisfy αβ ≥ 0, γδ ≥ 0 with α2 +
β2 6= 0, γ2 + β2 6= 0, p(t) > 0, t ∈ {0, 1, . . . , T}, q : T →
[0,∞), and a(t) satisfies (H0). They obtained that if q(t) 6≡
0, t ∈ T or α2 + γ2 6= 0, the problem (1)and (4) has T
real eigenvalues, which can be ordered as λT−n,− < · · · <
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λ1,− < 0 < λ1,+ < · · · < λn,+. In 2015, Gao and Ma [12]
discussed the periodic boundary condition

u(0) = u(T ), u(1) = u(T + 1) (5)

and the antiperiodic boundary condition

u(0) = −u(T ), u(1) = −u(T + 1), (6)

where p(t) > 0 for t ∈ {0, 1, . . . , T}, p(0) = p(T ),
q(t) ≥ 0 and a(t) satisfies (H0). They found out the
following very beautiful results (see [12, Theorem 2.3, The-
orem 2.4, Theorem 2.5 and Theorem 2.6]): the periodic and
antiperiodic boundary value problems with sign-changing
weight respectively have exactly T real eigenvalues, {λj,ν}
and {λ̃j,ν}, ν ∈ {+,−}, which satisfy

λT−n,− < λ̃T−n,− ≤ λ̃T−n−1,− < λT−n−1,−

< · · · < λ3,− ≤ λ2,− < λ̃2,− ≤ λ̃1,− < λ1,− ≤ 0

≤ λ1,+ < λ̃1,+ ≤ λ̃2,+ < λ2,+ ≤ λ3,+ < · · · < λn−1,+

< λ̃n−1,+ ≤ λ̃n,+ < λn,+ if T is even and n is even;

λ̃T−n,− < λT−n,− ≤ λT−n−1,− < λ̃T−n−1,−

< · · · < λ3,− ≤ λ2,− < λ̃2,− ≤ λ̃1,− < λ1,− ≤ 0

≤ λ1,+ < λ̃1,+ ≤ λ̃2,+ < λ2,+ ≤ λ3,+ < · · · < λ̃n−1,+

< λn−1,+ ≤ λn,+ < λ̃n,+ if T is even and n is odd;

λ̃T−n,− < λT−n,− ≤ λT−n−1,− < λ̃T−n−1,−

< · · · < λ3,− ≤ λ2,− < λ̃2,− ≤ λ̃1,− < λ1,− ≤ 0

≤ λ1,+ < λ̃1,+ ≤ λ̃2,+ < λ2,+ ≤ λ3,+ < · · · < λn−1,+

< λ̃n−1,+ ≤ λ̃n,+ < λn,+ if T is odd and n is even;

λT−n,− < λ̃T−n,− ≤ λ̃T−n−1,− < λT−n−1,−

< · · · < λ3,− ≤ λ2,− < λ̃2,− ≤ λ̃1,− < λ1,− ≤ 0

≤ λ1,+ < λ̃1,+ ≤ λ̃2,+ < λ2,+ ≤ λ3,+ < · · · < λ̃n−1,+

< λn−1,+ ≤ λn,+ < λ̃n,+ if T is odd and n is odd.

Motivated by [4] and [12], we apply some oscillation
results obtained by [13] to prove the existence, the number
of eigenvalues of (1)-(2) with sign-changing weight and to
compare these eigenvalues as α varies. These results extend
above results obtained in [12].

This paper is organized as follows. Section 2 gives some
properties of eigenvalues of Neumann boundary value prob-
lem with sign-changing weight, which will be used in Section
3. Section 3 pays attention to comparison between the
eigenvalues of problem (1) and (2) as α varies.

II. PRELIMINARIES

Equation (1) can be rewritten as the recurrence formula

p(t)u(t+1) = [p(t)+p(t−1)+q(t)−λa(t)]u(t)−p(t−1)u(t−1)
(7)

for t ∈ T. Clearly, u(t) is a polynomial in λ with real
coefficients since p(t), q(t) and a(t) are all real. Especially,
for t ≤ T + 1, the degree of u(t) is t if u(1) 6= 0, and t− 1
if u(0) 6= 0 and u(1) = 0.

Let x(t, λ) be a solution of Lx = 0 with the initial
condition

x(0, λ) = 1, ∆x(0, λ) = 0 (8)

and y(t, λ) be a solution of Ly = 0 under the initial condition

y(0, λ) = 0, ∆y(0, λ) = 1. (9)

Then x(t, λ) and y(t, λ) are two independent solutions of
(1), and they are all polynomials of degree t of λ.

Now, multiplying both sides of Lx = 0 and Ly = 0 by
y(t, λ) and x(t, λ) separately, summing from t = 1 to t = T ,
then subtracting these two equations, we get

x(T, λ)y(T + 1, λ)− x(T + 1, λ)y(T, λ) = 1. (10)

Ma et al. [13] discussed the spectra of the problem (1) with
the Neumann boundary condition

∆u(0) = ∆u(T ) = 0. (11)

They obtained the following result.

Lemma 1. Suppose p : {0, 1, . . . , T} → (0,+∞), q(t) ≡ 0
on T and (H0) hold. Then the problem (1) and (11) has T
real eigenvalues ηj,ν , j ∈ T, ν ∈ {+,−}, which satisfy

ηT−n,− < · · · < η1,− ≤ 0 ≤ η1,+ < · · · < ηn,+. (12)

The eigenfunction ψj,ν , which corresponds to ηj,ν , exhibits
j − 1 changes of sign on the integral [0, T ].

Furthermore, Ma et al. [10], [12] indicated that η1,− and
η1,+ are not zero when q(t) 6≡ 0, t ∈ T, that is,

ηT−n,− < · · · < η1,− < 0 < η1,+ < · · · < ηn,+. (13)

Lemma 2. Let ηj,ν , j ∈ T, ν ∈ {+,−}, be the eigenvalues
of (1) and (11). Then x(t, ηj,ν) is the eigenfunction with
respect to ηj,ν , that is, x(t, ηj,ν) is a nontrivial solution of
(1) satisfying

∆x(0, ηj,ν) = ∆x(T, ηj,ν) = 0. (14)

Lemma 3. If j is odd, x(T, ηj,ν) > 0 and if j is even,
x(T, ηj,ν) < 0.

Proof: Since x(0, ηj,ν) = 1, ∆x(T, ηj,ν) =
∆x(0, ηj,ν) = 0, then x(T, ηj,ν) > 0 if x(T, ηj,ν) has an
even number of sign changes in the interval [0, T ), and
x(T, ηj,ν) < 0 if x(T, ηj,ν) has an odd number of sign
changes in [0, T ). This can be obtained directly from Lemma
1.

III. MAIN RESULTS

Let x(t, λ) and y(t, λ) be defined as in Section 2, and let
λj,ν(eiαK), j ∈ T, ν ∈ {+,−}, be the eigenvalues of the
coupled boundary value problem (1)-(2). We now present the
main results of this paper.

Theorem 2. Assume that k3 > 0, k1 > k2 and (H0) holds.
Then (1)-(2) has T real eigenvalues λj,ν(eiαK), among
which n non-negative eigenvalues and T − n non-positive
eigenvalues.
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(i) If T is an even number and n is an even number, then

λT−n,−(K) < λT−n,−(eiαK) < λT−n,−(−K)

≤ ηT−n,−

≤ λT−n−1,−(−K) < λT−n−1,−(eiαK) < λT−n−1,−(K)

≤ · · · ≤ λ2,−(K) < λ2,−(eiαK) < λ2,−(−K)

≤ η2,− ≤ λ1,−(−K) < λ1,−(eiαK) < λ1,−(K)

≤ η1,− ≤ 0 ≤ η1,+
≤ λ1,+(K) < λ1,+(eiαK) < λ1,−(−K) ≤ η2,+
≤ λ2,+(−K) < λ2,+(eiαK) < λ2,+(K)

≤ · · · ≤ ηn−1,+

≤ λn−1,+(K) < λn−1,+(eiαK) < λn−1,+(−K)

≤ ηn,+ ≤ λn,+(−K) < λn,+(eiαK) < λn,+(K).

(ii) If T is an odd number and n is an even number, then

λT−n,−(−K) < λT−n,−(eiαK) < λT−n,−(K)

≤ ηT−n,−

≤ λT−n−1,−(K) < λT−n−1,−(eiαK) < λT−n−1,−(−K)

≤ · · · ≤ λ2,−(K) < λ2,−(eiαK) < λ2,−(−K)

≤ η2,− ≤ λ1,−(−K) < λ1,−(eiαK) < λ1,−(K)

≤ η1,− ≤ 0 ≤ η1,+
≤ λ1,+(K) < λ1,+(eiαK) < λ1,−(−K) ≤ η2,+
≤ λ2,+(−K) < λ2,+(eiαK) < λ2,+(K)

≤ · · · ≤ ηn−1,+

≤ λn−1,+(K) < λn−1,+(eiαK) < λn−1,+(−K)

≤ ηn,+ ≤ λn,+(−K) < λn,+(eiαK) < λn,+(K).

(iii) If T is an even number and n is an odd number, then

λT−n,−(−K) < λT−n,−(eiαK) < λT−n,−(K)

≤ ηT−n,−

≤ λT−n−1,−(K) < λT−n−1,−(eiαK) < λT−n−1,−(−K)

≤ · · · ≤ λ2,−(K) < λ2,−(eiαK) < λ2,−(−K)

≤ η2,− ≤ λ1,−(−K) < λ1,−(eiαK) < λ1,−(K)

≤ η1,− ≤ 0 ≤ η1,+
≤ λ1,+(K) < λ1,+(eiαK) < λ1,−(−K) ≤ η2,+
≤ λ2,+(−K) < λ2,+(eiαK) < λ2,+(K)

≤ · · · ≤ λn−1,+(−K) < λn−1,+(eiαK) < λn−1,+(K)

≤ ηn,+ ≤ λn,+(K) < λn,+(eiαK) < λn,+(−K).

(iv) If T is an odd number and n is an odd number, then

λT−n,−(K) < λT−n,−(eiαK) < λT−n,−(−K)

≤ ηT−n,−

≤ λT−n−1,−(−K) < λT−n−1,−(eiαK) < λT−n−1,−(K)

≤ · · · ≤ λ2,−(K) < λ2,−(eiαK) < λ2,−(−K)

≤ η2,− ≤ λ1,−(−K) < λ1,−(eiαK) < λ1,−(K)

≤ η1,− ≤ 0 ≤ η1,+
≤ λ1,+(K) < λ1,+(eiαK) < λ1,−(−K) ≤ η2,+
≤ λ2,+(−K) < λ2,+(eiαK) < λ2,+(K)

≤ · · · ≤ λn−1,+(−K) < λn−1,+(eiαK) < λn−1,+(K)

≤ ηn,+ ≤ λn,+(K) < λn,+(eiαK) < λn,+(−K).

Corollary 1. For every fixed α 6= 0, −π < α < π,
λj,ν(eiαK) is a simple eigenvalue of (1)-(2).

Corollary 2. If T − n is even, then λT−n,−(K) is simple,
otherwise λT−n,−(−K) is simple.

Corollary 3. If n is even, then λn,+(K) is simple, otherwise
λn,+(−K) is simple.

Remark 1. If k3 < 0, k1 < k2, a similar results can be
obtained by applying Theorem 2 to −K. In fact, eiαK =
ei(π+α)(−K) for α ∈ (−π, 0) and eiαK = ei(−π+α)(−K)
for α ∈ (0, π). Hence, the boundary condition (2) in the
case of k3 < 0, k1 < k2 and α 6= 0, −π < α < π, can be
written as condition (2) replaced by π + α for α ∈ (−π, 0)
and −π + α for α ∈ (0, π), and K is replaced by −K.

Remark 2. Theorem 2 extends [4, Theorem 3.1] and [12,
Theorem 2.3, Theorem 2.4, Theorem 2.5 and Theorem 2.6].

Before proving Theorem 2, we prove the following lem-
mas.

Lemma 4. λ is an eigenvalue of (1)-(2) if and only if

f(λ) = 2 cosα, (15)

where

f(λ) := k3x(T, λ) + k1∆y(T, λ)− k2∆x(T, λ). (16)

Proof: If the general solution of equation (1) u(t, λ) =
C1x(t, λ) + C2y(t, λ) satisfies (2), then(
x(T, λ)− eiαk1 y(T, λ)− eiαk2

∆x(T, λ) ∆y(T, λ)− eiαk3

)(
C1

C2

)
=

(
0
0

)
.

(17)
It is evident that λ ∈ C is an eigenvalue of (1)-(2) if and
only if (17) has a nontrivial solution (C1, C2), i.e.,

det

(
x(T, λ)− eiαk1 y(T, λ)− eiαk2

∆x(T, λ) ∆y(T, λ)− eiαk3

)
= 0,

which, together with (10) and k1k3 = 1, implies that

1 + e2iα − eiαf(λ) = 0.

Then (15) follows from the above relation and the fact e−iα+
eiα = 2 cosα. This completes the proof.

Lemma 5. Assume that k3 > 0 and (H0) holds. Let ηj,ν ,
ν ∈ {+,−}, be the eigenvalues of (1) and (11), and they are
arranged as (12). Then

(i) f(ηj,ν) ≥ 2 when j is an odd number;
(ii) f(ηj,ν) ≤ −2 when j is an even number.

Proof: From (14) and (10), we have

x(T, ηj,ν)∆y(T, ηj,ν) = 1. (18)

By (18), (16) and the fact that k1k3 = 1, we obtain

f(ηj,ν) = k3x(T, ηj,ν) +
1

k3x(T, ηj,ν)
.

Hence, noting k3 > 0, and by Lemma 3, we have that if k is
odd, then f(ηj,ν) ≥ 2 and if k is even, then f(ηj,ν) ≤ −2.
This completes the proof.

Lemma 6. Assume that k3 > 0, k1 > k2 and (H0) holds.
Let ηT−n,− and ηn,+ be the minimum and the maximum
eigenvalue of (1) and (11), respectively. Then for every
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fixed α ∈ (−π, π], there exist two roots, λT−n,−(eiαK),
λn,+(eiαK), of f(λ) = 2 cosα such that

λT−n,−(eiαK) ≤ ηT−n,− (19)

and
λn,+(eiαK) ≥ ηn,+. (20)

Proof: By the discussion in the first paragraph in Section
2, x(t, λ) and y(t, λ) are both polynomials of degree t of λ
for t ≤ T + 1. By (7)-(9), it is not difficult to see that

f(λ) = (−1)T (k1 − k2)
a(1)a(2) · · · a(T )

p(1)p(2) · · · p(T )
λT +QT−1(λ)

= (−1)n(k1 − k2)
|a(1)||a(2)| · · · |a(T )|
p(1)p(2) · · · p(T )

λT

+QT−1(λ),

where QT−1(λ) is a T − 1 degree polynomial of λ.
If T and n are both even number, it is easy to see that,

for k1 > k2,

f(λ)→ +∞ if λ→ ±∞.

On the other hand, from Lemma 5, we know that
f(ηT−n,−) ≤ −2 and f(ηn,+) ≤ −2. So, there exist two
numbers λT−n,−(eiαK), λn,+(eiαK), such that

−∞ < λT−n,−(eiαK) ≤ ηT−n,−,

f(λT−n,−(eiαK)) = 2 cosα

and

ηn,+ ≤ λn,+(eiαK) < +∞, f(λn,+(eiαK)) = 2 cosα.

Similarly, for the cases of (i) T and n are both odd number,
(ii) T is an even number and n is an odd number, (iii) T is
an odd number and n is an even number, we have the same
conclusion. This completes the proof.

Lemma 7. Assume that k3 > 0, k1 > k2 and (H0) holds. Let
ηj,ν , ν ∈ {+,−}, be the eigenvalues of (1) and (11) and be
arranged as (12). Then there exists unique root, λj,ν(eiαK),
of f(λ) = 2 cosα such that
(i) for α ∈ (−π, π) and α 6= 0,

|ηj,ν | < |λj,ν(eiαK)| < |ηi+1,ν |; (21)

(ii) for α = 0,

|η2j−1,ν | ≤ |λ2j−1,ν(K)| < |η2j,ν |
< |λ2j,ν(K)| ≤ |η2j+1,ν |; (22)

(iii) for α = π,

|η2j−1,ν | < |λ2j−1,ν(−K)| ≤ |η2j,ν |
≤ |λ2j,ν(−K)| < |η2j+1,ν |. (23)

Proof: From the proof of Lemma 6, we get that f(λ)
is a polynomial of degree T of λ with real coefficients.
By Lemma 5, f (η2j−1,+) ≥ 2 and f (η2j,+) ≤ −2. The
existence of the eigenvalues of (1) and (2) which satisfy the
inequations (21)-(23) can be obtained from the intermediate
value theorem of continuous functions and the fact that
f(λj,ν(K)) = 2, f(λj,ν(−K)) = −2, f

(
λj,ν(eiαK)

)
∈

(−2, 2) for α ∈ (−π, π), α 6= 0. The uniqueness of such
eigenvalues can be obtained by the fact that the equation
f(λ) = 2 cosα has and only has T zeros.

Lemma 8. Let λj,ν(eiαK), ν ∈ {+,−}, be the eigenvalues
of (1) and (2). Then for α ∈ (−π, π) and α 6= 0,

|λ2j−1,ν(K)| < |λ2j−1,ν(eiαK)| < |λ2j−1,ν(−K)| (24)

|λ2j,ν(−K)| < |λ2j,ν(eiαK)| < |λ2j,ν(K)|. (25)

Proof: We only prove (24) for the case ν = +.
The inequality relations (24) for the case ν = − and the
inequality relations (25) can be obtained similarly.

Firstly, let us prove that for j = 1, 2, · · · ,
⌈
n
2

⌉
,

λ2j−1,+(K) < λ2j−1,+(eiαK), (26)

where
⌈
n
2

⌉
is the largest integer less than or equal to n

2 .
On the contrary, suppose that

λ2j−1,+(K) ≥ λ2j−1,+(eiαK).

If λ2j−1,+(K) = λ2j−1,+(eiαK), then

f(λ2j−1,+(eiαK)) = f (λ2j−1,+(K)) = 2,

which contradicts f(λ2j−1,+(eiαK)) = cosα < 2 for α 6=
0. Therefore, λ2j−1,+(K) > λ2j−1,+(eiαK). This combines
(21), we have

η2j−1,+ < λ2j−1,+(eiαK) < λ2j−1,+(K).

By Lemma 5 and Lemma 7, f(η2j−1,+) ≥ 2,
λ2j−1,+(K) is the unique root of f(λ) = 2 in the interval
[η2j−1,+, η2j,+) . Then we get that f(η2j−1,+) > 2 and then
f(λ2j−1,+(eiαK)) > 2, which is a contradiction. Thus

λ2j−1,+(K) < λ2j−1,+(eiαK).

Secondly, we claim that for j = 1, 2, · · · ,
⌈
n
2

⌉
,

λ2j−1,+(eiαK) < λ2j−1,+(−K). (27)

Similarly, from (21)-(23), we known λ2j−1,+(eiαK) ∈
(η2j−1,+, η2j,+), and λ2j−1,+(−K) is the unique root of
f(λ) = cosπ = −2 in the interval (η2j−1,+, η2j,+] . On
the contrary, suppose λ2j−1,+(eiαK) ≥ λ2j−1,ν(−K). If
λ2j−1,+(eiαK) = λ2j−1,ν(−K), then

f(λ2j−1,+(eiαK)) = f (λ2j−1,+(−K)) = −2,

which contradicts f(λ2j−1,+(eiαK)) = cosα > −2 for α ∈
(−π, π) and α 6= 0. Therefore,

λ2j−1,+(eiαK) > λ2j−1,ν(−K).

By Lemma 5, f(η2j,+) ≤ −2, this combines with that
fact that λ2j−1,ν(−K) < λ2j−1,+(eiαK) < η2j,+ and
λ2j−1,+(−K) is the unique root of f(λ) = −2 in the
interval (η2j−1,+, η2j,+] , we get that f(η2j,+) < −2 and
then f(λ2j−1,+(eiαK)) < −2, which is a contradiction.
Thus

λ2j−1,+(eiαK) < λ2j−1,+(−K).

Thirdly, if n is an odd number, the inequality relations

λn,+(K) < λn,+(eiαK) < λn,ν(−K) (28)

can be proved in a similar way as we used in the two cases
above. But we use the conditions f(ηn,+) ≥ 2 and f(λ)→
−∞ as λ→ +∞ instead of the conditions f (η2j−1,+) ≥ 2
and f (η2j,+) ≤ −2.

Proof of Theorem 2: From Lemma 5, Lemma 6, Lemma
7 and Lemma 8, we can get the comparison theorem.
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From (13) and the proof of Theorem 2, we immediately
come to the following conclusion

Theorem 3. Assume that k3 > 0, k1 > k2 and (H0) holds.
If q(t) 6≡ 0 for t ∈ {1, 2, · · · , T}, then

λ1,−(K) < 0 < λ1,+(K),

i.e., λ1,−(K) and λ1,+(K) are simple eigenvalues of (1)-(2)
with α = 0.
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