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Abstract—In this paper, interior and closure operators on
quasi-pseudo-BL algebras are introduced and investigated.
First, we give the definitions of multiplicative interior operators
(mi-operators, for short), weak mi-operators, wmi-operators
and weak wmi-operators on a quasi-pseudo-BL algebra and
discuss the relationship among them. Meanwhile, we study
the related properties of these operators on a quasi-pseudo-
BL algebra and discuss the operators on the quotient algebra
with respect to a normal weak filter. Second, we introduce the
concepts of additive closure operators (ac-operators, for short),
weak ac-operators, sac-operators and weak sac-operators on a
good quasi-pseudo-BL algebra. We study the relations among
them and discuss the related properties. Moreover, we present
the connections between (weak) wmi-operators and (weak)
ac-operators on a good quasi-pseudo-BL algebra. Finally, we
investigate the properties of the induced operators on some
quasi-pseudo-MV algebras.

Index Terms—quasi-pseudo-BL algebras, good quasi-pseudo-
BL algebras, interior operators, closure operators, weak filters.

I. INTRODUCTION

RECENTLY, the algebras based on quantum computa-
tional logic have been received more and more attention

[1], [2], [3], [4], [5], [6], [7]. In [6], quasi-pseudo-BL alge-
bras (qpBL algebras, for short) were introduced which can
be regarded as generalizations of quasi-pseudo-MV algebras
and pseudo-BL algebras. Quasi-pseudo-MV algebras were
studied by Chen and Dudek in [2] as a generalization of
pseudo-MV algebras and quasi-MV algebras, while pseudo-
BL algebras were investigated by Di Nola et al. which were
the non-commutative generalization of BL algebras [8], [9].
Since qpBL algebras form a larger class and have a vital
role in connection with quantum computational logic and
fuzzy logic, it makes sense to generalize and extend the
known results to qpBL algebras in order to study the common
properties and provide a more general algebraic foundation.

The study of interior and closure algebras originated from
topological Boolean algebras which generalized topological
spaces given by topological interior and closure operators
[10]. As the generalization of topological Boolean algebras,
Rachunek had introduced interior and closure MV-algebras
through the so-called multiplicative interior and additive
closure operators [11]. Since the multiplicative operation
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and additive operation were dual in an MV-algebra, we
have that there is the dual relation between multiplicative
interior operators and additive closure operators on an MV-
algebra. Subsequently, the concepts of multiplicative interior
operators and additive closure operators were extended to
commutative bounded integral residuated lattices satisfying
divisibility [12], commutative residuated `-monoids [13],
bounded integral residuated lattices [14] and so on. As
we have seen, multiplicative interior operators and additive
closure operators are successfully investigated in the algebras
which are related to fuzzy logic. In this paper, we want to
generalize and extend the multiplicative interior operators
and additive closure operators to some algebraic systems in
the setting of quantum computational logic.

This paper is arranged as follows: In Section 2, some
properties and results in qpBL algebras are recalled which
will be used in the following. In Section 3, we give the
definitions of multiplicative interior operators (mi-operators,
for short), weak mi-operators, wmi-operators and weak wmi-
operators on a qpBL algebra and then investigate the relations
among them. Meanwhile, we discuss the related properties
of these operators on a qpBL algebra and study the operators
on the quotient algebra with respect to a normal weak filter.
In Section 4, the concepts of additive closure operators (ac-
operators, for short), weak ac-operators, sac-operators and
weak sac-operators on a good qpBL algebra are introduced.
The relationships among them are studied and the related
properties are discussed. Moreover, we present the connec-
tions between (weak) wmi-operators and (weak) ac-operators
on a good qpBL algebra. In Section 5, we discuss the
properties of the induced operators on some quasi-pseudo-
MV algebras.

II. PRELIMINARY

In this section, some definitions and results of quasi-
pseudo-BL algebras are recalled.

Definition 1. [15] An algebra (S;d,e) of type (2,2) is called
a quasi-lattice, if it satisfies the following conditions for any
κ,ϑ ,τ ∈ S,

(1) κ dϑ = ϑ dκ and κ eϑ = ϑ eκ;
(2) κ d (ϑ d τ) = (κ dϑ)dτ and κ e (ϑ e τ) = (κ eϑ)e

τ;
(3) κ d (ϑ eκ) = κ dκ and κ e (ϑ dκ) = κ eκ;
(4) κ dϑ = κ d (ϑ dϑ) and κ eϑ = κ e (ϑ eϑ);
(5) κ dκ = κ eκ .

On a quasi-lattice (S;d,e), one can define a relation κ �ϑ

by κ dϑ = ϑ dϑ , or equivalently, κ eϑ = κ eκ . In [15],
Chajda showed that the relation � is quasi-ordering.

Definition 2. [6] An algebra S = (S;d,e,�,⇁,�,0,1) of
type (2,2,2,2,2,0,0) is called a quasi-pseudo-BL algebra
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(qpBL algebra, for short), if it satisfies the following condi-
tions for any κ,ϑ ,τ ∈ S,

(QPBL1) (S;d,e,0,1) is a bounded quasi-lattice, i.e.,
(S;d,e) is a quasi-lattice and it has the least element 0 and
the largest element 1 (with respect to the quasi-ordering �);

(QPBL2) (S;�,1) is a quasi-monoid, i.e., (κ �ϑ)� τ =
κ� (ϑ � τ), 1�κ = κ�1 and 1�1 = 1;

(QPBL3) κ eκ = κ�1 and 0e0 = 0;
(QPBL4) κ � ϑ ⇁ τ iff κ�ϑ � τ iff ϑ � κ� τ;
(QPBL5) (κ ⇁ ϑ)�1 = κ ⇁ ϑ and (κ� ϑ)�1 = κ�

ϑ ;
(QPBL6) κ eϑ = (κ ⇁ ϑ)�κ = κ� (κ� ϑ);
(QPBL7) (κ ⇁ ϑ)d (ϑ ⇁ κ) = (κ� ϑ)d (ϑ � κ) = 1.

In a qpBL algebra S, we denote R(S) = {κ ∈ S|κ�1 = κ}
the set of regular elements in S. Then R(S) =
(R(S);dR(S),eR(S),�R(S),⇁R(S),�R(S),0,1) is a pseudo-BL
subalgebra of S, where the operations are those of S restricted
to R(S) ([6]). Moreover, two unary operations p and q

are defined on R(S): for any κ ∈ R(S), κp
4
= κ ⇁ 0 and

κq
4
= κ � 0. Then the operations can be extended on S as

follows: for any κ ∈ S,κp ∈ S with κp�1=(κ�1)p= κ ⇁ 0
and κq ∈ S with κq�1 = (κ�1)q = κ� 0.

Following from [6], a qpBL algebra S is,
• a quasi-BL algebra iff the operations “⇁” and “�”

coincide iff the operation “�” in S is commutative;
• a pseudo-BL algebra iff (S;�,1) is a monoid iff
(S;d,e,0,1) is a bounded lattice;

• a quasi-pseudo-MV algebra iff κpq = κ = κqp for any
κ ∈ S.

Proposition 1. [6] Let S be a qpBL algebra. Then the
following results hold for any κ,ϑ ,τ ∈ S,

(P1) If κ � ϑ and ϑ � κ , then κ�1 = ϑ �1;
(P2) κ � κ�1 and κ�1� κ;
(P3) (κ ⇁ ϑ)�κ � κ �ϑ ⇁ (κ�ϑ) and (κ ⇁ ϑ)�κ �

ϑ � κ ⇁ (ϑ �κ);
(P4) κ � (κ� ϑ) � κ � ϑ � (ϑ �κ) and κ �

(κ� ϑ)� ϑ � κ� (κ�ϑ);
(P5) if κ � ϑ , then τ ⇁ κ � τ ⇁ ϑ and τ� κ � τ� ϑ ;
(P6) if κ � ϑ , then τ�κ � τ�ϑ and κ� τ � ϑ � τ;
(P7) if κ � ϑ , then ϑ ⇁ τ � κ ⇁ τ and ϑ � τ � κ� τ;
(P8) κ�ϑ � κ,ϑ and κ�ϑ � κ eϑ ;
(P9) κ � ϑ iff κ ⇁ ϑ = 1 iff κ� ϑ = 1;
(P10) κ ⇁ ϑ = (κ ⇁ ϑ)�1 = (κ�1)⇁ ϑ = κ ⇁ (ϑ �

1);
(P11) κ� ϑ = (κ� ϑ)�1 = (κ�1)� ϑ = κ� (ϑ �

1);
(P12) 1� κ = κ�1 = 1 ⇁ κ;
(P13) 1p = 1q = 0 and 0p = 0q = 1;
(P14) κ � κq⇁ ϑ and κ � κp� ϑ ;
(P15) κ � κpq and κ � κqp;
(P16) if κ � ϑ , then ϑ p � κp and ϑ q � κq;
(P17) κqpq�1= κq�1 and κpqp�1= κp�1, if κ ∈ R(S),

then κqpq = κq and κpqp = κp;
(P18) ϑ q⇁ κq = κ� ϑ qp = κqp� ϑ qp and ϑ p� κp =

κ ⇁ ϑ pq = κpq⇁ ϑ pq;
(P19) (κ�ϑ)p = κ ⇁ ϑ p and (κ�ϑ)q = ϑ � κq.

Let S be a qpBL algebra. If κpq = κqp for any κ ∈ S,
then S is called good. Given a good qpBL algebra S, the

binary operation “�” can be defined on S as follows: κ�ϑ =(
κq�ϑ q

)p for any κ,ϑ ∈ S.

Proposition 2. Let S be a good qpBL algebra. Then the
following results hold for any κ,ϑ ,τ ∈ S,

(G1) (κ ⇁ ϑ)qp = κqp ⇁ ϑ qp = κ ⇁ ϑ qp and (κ �
ϑ)pq = κpq� ϑ pq = κ� ϑ pq;

(G2) (κ ⇁ ϑ pq)pq = κ ⇁ ϑ pq and (κ � ϑ qp)qp = κ �
ϑ qp;

(G3) (κpq⇁ κ)pq = 1 = (κqp� κ)qp;
(G4)

(
κp�ϑ p

)q
=
(
κq�ϑ q

)p;
(G5) (κ�ϑ)qp = κqp�ϑ qp and (κ�ϑ)pq = κpq�ϑ pq;
(G6) κ�ϑ = κpq�ϑ pq;
(G7) (κ�ϑ)p = κp�ϑ p and (κ�ϑ)q = κq�ϑ q;
(G8) (κ�ϑ)p = κp�ϑ p and (κ�ϑ)q = κq�ϑ q;
(G9) if κ � ϑ , then τ�κ � τ�ϑ and κ� τ � ϑ � τ .

Proof: We only prove (G6), (G7), (G8) and (G9). The
rest can be seen in [6].

(G6) For any κ,ϑ ∈ S, we have κpq � ϑ pq = (κpqp �
ϑ pqp)q = ((κpqp � 1)� (ϑ pqp � 1))q = ((κp � 1)� (ϑ p �
1))q = (κp�ϑ p)q = κ�ϑ by (P17).

(G7) Since κ�ϑ ∈ R(S), we have (κ�ϑ)p = (κ�ϑ)pqp

by (P17). Thus κp�ϑ p = (κpq�ϑ pq)p = (κ�ϑ)pqp = (κ�
ϑ)p by (G5) and (P17). Similarly, we have (κ�ϑ)q = κq�
ϑ q.

(G8) We have (κ �ϑ)p = (κp�ϑ p)qp = κpqp�ϑ pqp =
(κpqp�1)� (ϑ pqp�1) = (κp�1)� (ϑ p�1) = κp�ϑ p by
(G5) and (P17). Similarly, we have (κ�ϑ)q = κq�ϑ q.

(G9) For any κ,ϑ ∈ S with κ � ϑ , we have τ�κ = (τq�
κq)p � (τq�ϑ q)p = τ�ϑ by (P16) and (P6). Similarly, we
have κ� τ � ϑ � τ .

Below we list the related properties of filters in qpBL
algebras.

Definition 3. [6] Let S be a qpBL algebra. A non-empty
subset T of S is called a filter of S, if the following conditions
hold,

(F1) κ,ϑ ∈ T implies κ�ϑ ∈ T ;
(F2) κ ∈ T and ϑ ∈ S with κ � ϑ imply ϑ ∈ T .

Definition 4. [16] Let S be a qpBL algebra. A non-empty
subset T of S is called a weak filter of S, if the following
conditions hold,

(WF1) κ,ϑ ∈ T implies κ�ϑ ∈ T ;
(WF2) κ ∈ T and ϑ ∈ S with κ � ϑ imply ϑ �1 ∈ T .

Remark 1. Let S be a qpBL algebra and T be a filter of S. If
κ ∈ T and ϑ ∈ S with κ � ϑ , then κ � ϑ � ϑ�1, it follows
that ϑ �1 ∈ T , so every filter is a weak filter.

Let S be a qpBL algebra. If T is a (weak) filter of S
and κ ⇁ ϑ ∈ T iff κ � ϑ ∈ T for any κ,ϑ ∈ S, then T is
called a normal (weak) filter of S. If χ is a congruence on
S and for any κ,ϑ ∈ S, 〈κ�1,ϑ �1〉 ∈ χ implies 〈κ,ϑ〉 ∈
χ , then χ is called a filter congruence on S. Let χ be a
(filter) congruence on S and D be a normal (weak) filter of
S. Define the set Dχ = {κ ∈ S| 〈κ,1〉 ∈ χ} and the relation
χD =

{
〈κ,ϑ〉 ∈ S2|κ ⇁ ϑ ∈ D and ϑ ⇁ κ ∈ D

}
.

Proposition 3. [6] Let S be a qpBL algebra, χ be a filter
congruence on S and D be a normal filter of S. Then we
have,

(1) Dχ is a normal filter of S;
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(2) χD is a filter congruence on S;
(3) χ = χDχ

;
(4) D = DχD .

Proposition 4. [16] Let S be a qpBL algebra, χ be a
congruence on S and D be a normal weak filter of S. Then
we have,

(1) Dχ is a normal weak filter of S;
(2) χD is a congruence on S;
(3) χ ⊆ χDχ

;
(4) D⊆ DχD .

If D is a normal (weak) filter of a qpBL algebra S,
we consider the quotient set S/D = {κ/D|κ ∈ S} where
κ/D = {ϑ ∈ S|κ ⇁ ϑ ∈ D and ϑ ⇁ κ ∈ D} or equivalent-
ly, κ/D = {ϑ ∈ S|κ� ϑ ∈ D and ϑ � κ ∈ D}. On the set
S/D, we define (κ/D) � (ϑ/D) = (κ � ϑ)/D, (κ/D) d
(ϑ/D) = (κdϑ)/D, (κ/D)e(ϑ/D) = (κeϑ)/D, (κ/D)⇁
(ϑ/D) = (κ ⇁ ϑ)/D and (κ/D)� (ϑ/D) = (κ � ϑ)/D.
Then S/D= {S/D;d,e,�,⇁,�,0/D,1/D} is a pseudo-BL
algebra ([6], [16]). Moreover, we have (κ/D)p = κp/D and
(κ/D)q = κq/D for any κ ∈ S.

Let S be a qpBL algebra and denote D(S) ={
κ ∈ S|κpq = 1 = κqp

}
the set of dense elements of S.

Proposition 5. Let S be a good qpBL algebra. Then D(S)
is a normal weak filter of S.

Proof: Clearly 1 ∈ D(S). Let κ,ϑ ∈ D(S). Then κpq =
1=ϑ pq, it follows that (κ�ϑ)pq = κpq�ϑ pq = 1�1= 1 by
(G5), so κ�ϑ ∈D(S). If κ ∈D(S) and τ ∈ S with κ � τ , then
1 = κpq � τpq by (P16), so (τ � 1)pq = τpq� 1 = 1� 1 = 1
and then τ�1∈D(S). Therefore D(S) is a weak filter of S. In
addition, let κ,ϑ ∈ S and κ ⇁ ϑ ∈D(S). Then (κ ⇁ ϑ)pq =
1, it follows that κpq⇁ ϑ pq = 1 by (G1), so κpq � ϑ pq by
(P9). Since S is good, we also have (κ � ϑ)pq = κpq�
ϑ pq = 1 by (G1) and (P9), so κ� ϑ ∈ D(S). Similarly, we
can prove that κ� ϑ ∈D(S) implies κ ⇁ ϑ ∈D(S). Hence
D(S) is a normal weak filter of S.

Lemma 1. Let S be a good qpBL algebra. Then for any
κ ∈ S, κ ⇁ κpq ∈ D(S) and κpq⇁ κ ∈ D(S).

Proof: Since κ � κpq and 1∈D(S), we have κ ⇁ κpq =
1 ∈ D(S) by (P9). In addition, we have (κpq⇁ κ)pq = 1 by
(G3), so κpq⇁ κ ∈ D(S).

Proposition 6. Let S be a good qpBL algebra. Then S/D(S)
is a pseudo-MV algebra.

Proof: Since D(S) is a normal weak filter of S by
Proposition 5, we have that S/D(S) is a pseudo-BL algebra.
By Lemma 1, we have κ/D(S) = κpq/D(S) = (κ/D(S))pq.
Moreover, since S is good, we have κpq = κqp, it follows
that κ/D(S) = (κ/D(S))pq = (κ/D(S))qp. Hence S/D(S) is
a pseudo-MV algebra.

III. INTERIOR OPERATORS ON QUASI-PSEUDO-BL
ALGEBRAS

In this section, the definitions of multiplicative interior
operators, weak mi-operators, wmi-operators and weak wmi-
operators on qpBL algebras are given. We study the prop-
erties of these operators and discuss the relationship among
them.

Definition 5. Let (S;d,e) be a quasi-lattice and Γ : S −→
S be a mapping. Then Γ is called an interior operator on
(S;d,e), if for any κ,ϑ ∈ S,

(I1) Γ (κ)� κ;
(I2) Γ (Γ (κ)) = Γ (κ);
(I3) κ � ϑ implies Γ (κ)� Γ (ϑ).

Definition 6. Let S be a qpBL algebra. A mapping Γ : S−→
S is called a multiplicative interior operator (mi-operator, for
short) on S, if for any κ,ϑ ∈ S,

(MI1) Γ (κ�ϑ) = Γ (κ)�Γ (ϑ);
(MI2) Γ (κ)� κ;
(MI3) Γ (Γ (κ)) = Γ (κ);
(MI4) Γ (1) = 1.

A qpBL algebra S having an mi-operator Γ is called an
interior qpBL algebra and denoted by (S,Γ ).

Definition 7. Let S be a qpBL algebra. A mapping Γ : S−→
S is called a weak multiplicative interior operator (weak mi-
operator, for short) on S, if for any κ,ϑ ∈ S,

(WEMI1) Γ (κ�ϑ) = Γ (κ)�Γ (ϑ);
(WEMI2) Γ (κ)� κ;
(WEMI3) Γ (Γ (κ))�1 = Γ (κ)�1;
(WEMI4) Γ (1) = 1.

Proposition 7. Let (S,Γ ) be an interior qpBL algebra. Then
Γ is a weak mi-operator on S.

However, if Γ is a weak mi-operator on a qpBL algebra
S, then it is not an mi-operator in general.
Example 1. Let S= {0,o,ϖ ,υ ,1}. We define the operations
on S as follows:

d 0 o ϖ υ 1
0 0 0 ϖ ϖ 1
o 0 0 ϖ ϖ 1
ϖ ϖ ϖ ϖ ϖ 1
υ ϖ ϖ ϖ ϖ 1
1 1 1 1 1 1

e 0 o ϖ υ 1
0 0 0 0 0 0
o 0 0 0 0 0
ϖ 0 0 ϖ ϖ ϖ

υ 0 0 ϖ ϖ ϖ

1 0 0 ϖ ϖ 1

� 0 o ϖ υ 1
0 0 0 0 0 0
o 0 0 0 0 0
ϖ 0 0 0 0 ϖ

υ 0 0 0 0 ϖ

1 0 0 ϖ ϖ 1

⇁ 0 o ϖ υ 1
0 1 1 1 1 1
o 1 1 1 1 1
ϖ ϖ ϖ 1 1 1
υ ϖ ϖ 1 1 1
1 0 0 ϖ ϖ 1

Then S = (S;d,e,�,⇁,0,1) is a quasi-(pseudo)-BL alge-
bra. Define the mapping Γ : S−→ S by Γ (0) = 0, Γ (o) = 0,
Γ (ϖ) = 0, Γ (υ) = o and Γ (1) = 1. Then the mapping Γ

is a weak mi-operator on S. However, Γ (Γ (υ)) = 0 and
Γ (υ) = o, we have Γ (Γ (υ)) 6= Γ (υ). Hence Γ is not an
mi-operator on S.

Definition 8. Let S be a qpBL algebra. A mapping Γ : S−→
S is called a wmi-operator on S, if for any κ,ϑ ∈ S,

(WMI1) Γ (κ�ϑ) = Γ (κ)�Γ (ϑ);
(WMI2) Γ (κ)� κpq or Γ (κ)� κqp;
(WMI3) Γ (Γ (κ)) = Γ (κ);
(WMI4) Γ (1) = 1.

Definition 9. Let S be a qpBL algebra. A mapping Γ : S−→
S is called a weak wmi-operator on S, if for any κ,ϑ ∈ S,

(WWMI1) Γ (κ�ϑ) = Γ (κ)�Γ (ϑ);
(WWMI2) Γ (κ)� κpq or Γ (κ)� κqp;
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(WWMI3) Γ (Γ (κ))�1 = Γ (κ)�1;
(WWMI4) Γ (1) = 1.

Remark 2. Let S be a pseudo-BL algebra. Then wmi-
operators and weak wmi-operators are same.

Proposition 8. Let Γ be a wmi-operator on a qpBL algebra
S. Then Γ is a weak wmi-operator on S.

However, if Γ is a weak wmi-operator on a qpBL algebra
S, then it is not a wmi-operator in general.

Example 2. Let S = (S;�,d,e,⇁,0,1) be a quasi-(pseudo)-
BL algebra defined in Example 1. For any element in S, we
define the unary operation on S as follows:

′

0 1
o 1
ϖ ϖ

υ υ

1 0

Then Γ defined in Example 1 is a weak wmi-operator
on S. According to Example 1, we have Γ (Γ (υ)) 6= Γ (υ).
Hence Γ is not a wmi-operator on S.

Since κ � κpq and κ � κqp hold in any qpBL algebra S, we
have that any mi-operator is the wmi-operator and any weak
mi-operator is the weak wmi-operator on S. The relationship
among these operators can be seen in Fig. 1.

Fig. 1. A Relational Diagram

Lemma 2. Let Γ be a weak wmi-operator on a qpBL algebra
S. Then Γ (Γ (κ)) = Γ (κ) for any κ ∈ R(S).

Lemma 3. Let Γ be a weak wmi-operator on a qpBL algebra
S. Then Γ is monotone.

Proof: For any κ,ϑ ∈ S with κ � ϑ , we have κ eϑ =
κ�1 and κ eϑ = ϑ � (ϑ � κ) by (QPBL3) and (QPBL6),
it follows that Γ (κ) � Γ (κ)� 1 = Γ (κ)�Γ (1) = Γ (κ �
1) = Γ (κ eϑ) = Γ (ϑ � (ϑ � κ)) = Γ (ϑ)�Γ (ϑ � κ) �
Γ (ϑ)�1� Γ (ϑ) by (P2), (WWMI4), (WWMI1) and (P6),
so Γ (κ)� Γ (ϑ).

According to Lemma 3, we have the following results.

Proposition 9. Let Γ be a weak wmi-operator on a qpBL al-
gebra S. Then Γ (κeϑ)�Γ (κ)eΓ (ϑ) and Γ (κ)dΓ (ϑ)�
Γ (κ dϑ) for any κ,ϑ ∈ S.

Proposition 10. Let (S,Γ ) be an interior qpBL algebra.
Then Γ is an interior operator on (S;d,e).

Proposition 11. Let Γ be a weak wmi-operator on a
qpBL algebra S. Then Γ (κ ⇁ ϑ) � Γ (κ) ⇁ Γ (ϑ) and
Γ (κ� ϑ)� Γ (κ)� Γ (ϑ) for any κ,ϑ ∈ S.

Proof: For any κ,ϑ ∈ S, since κ � (κ� ϑ) � ϑ , we
have Γ (κ)�Γ (κ� ϑ)�Γ (ϑ) by (WWMI1) and Lemma

3, so Γ (κ� ϑ) � Γ (κ)� Γ (ϑ) by (QPBL4). Similarly,
we have Γ (κ ⇁ ϑ)� Γ (κ)⇁ Γ (ϑ).

Let S be a qpBL algebra and Γ : S −→ S be a mapping.
We define two mappings Γ qp : S−→ S by Γ qp (κ) =

(
Γ
(
κp

))q
and Γ pq : S−→ S by Γ pq (κ) =

(
Γ
(
κq

))p for any κ ∈ S.

Proposition 12. If Γ : S−→ S is a monotone mapping on a
qpBL algebra S, then the mappings Γ qp and Γ pq are monotone.

Proof: Let κ,ϑ ∈ S with κ �ϑ . Then we have ϑ p�1=
ϑ ⇁ 0� κ ⇁ 0 = κp�1 by (P7), so ϑ p �ϑ p�1� κp�1�
κp by (P2) and then Γ (ϑ p) � Γ

(
ϑ p�1

)
� Γ

(
κp�1

)
�

Γ (κp). Hence Γ qp (κ) = (Γ (κp))q �
(
Γ
(
κp�1

))q �(
Γ
(
ϑ p�1

))q � (Γ (ϑ p))q = Γ qp (ϑ) by (P16). Analogously
for Γ pq .

Proposition 13. Let Γ : S−→ S be a weak wmi-operator on
a qpBL algebra S. Then for any κ,ϑ ∈ S we have,
(1) κpq � Γ qp (κ) or κqp � Γ pq (κ);
(2) Γ qp (κeϑ)�Γ qp (κ)eΓ qp (ϑ) and Γ pq (κeϑ)�Γ pq (κ)e

Γ pq (ϑ);
(3) Γ qp (κ)dΓ qp (ϑ) � Γ qp (κ dϑ) and Γ pq (κ)dΓ pq (ϑ) �

Γ pq (κ dϑ);
(4) Γ qp (0) = 0 and Γ pq (0) = 0.

Proof: (1) If Γ (κ) � κqp for any κ ∈ S, we have
Γ (κp) � (κ−)qp, so κpq � κpq � 1 = (κp � 1)q = (κpqp �
1)q � κ−∼−∼ = (κp)qpq � (Γ (κp))q =Γ qp (κ) by (P2), (P17)
and (P16). If Γ (κ)� κpq, then we can show κqp � Γ pq (κ).

(2) and (3) Follow from Proposition 9.
(4) We have Γ qp (0) =

(
Γ
(
0p
))q

= (Γ (1))q = 1q = 0 by
(P13). Analogously for Γ pq (0) = 0.

Below we use the notion (S,Γ ) to represent a qpBL
algebra S with a weak wmi-operator Γ . If T is a (weak) filter
of S and κ ∈ T implies Γ (κ) ∈ T , then T is called a (weak)
Γ -filter of (S,Γ ). If χ is a congruence on S and 〈κ,ϑ〉 ∈ χ

implies 〈Γ (κ),Γ (ϑ)〉 ∈ χ , then χ is called a congruence on
(S,Γ ). According to Proposition 3 and Proposition 4, we
have the following results.

Proposition 14. Let (S,Γ ) be a qpBL algebra S with a weak
wmi-operator Γ , χ be a filter congruence on (S,Γ ) and D
be a normal Γ -filter of (S,Γ ). Then we have,

(1) Dχ is a normal Γ -filter of (S,Γ );
(2) χD is a filter congruence on (S,Γ );
(3) χ = χDχ

;
(4) D = DχD .

Proposition 15. Let (S,Γ ) be a qpBL algebra S with a weak
wmi-operator Γ , χ be a congruence on (S,Γ ) and D be a
normal weak Γ -filter of (S,Γ ). Then we have,

(1) Dχ is a normal weak Γ -filter of (S,Γ );
(2) χD is a congruence on (S,Γ );
(3) χ ⊆ χDχ

;
(4) D⊆ DχD .

Let (S,Γ ) be a qpBL algebra S with a weak wmi-operator
Γ and D be a normal weak Γ -filter of (S,Γ ). Then S/D is a
pseudo-BL algebra. Define Γ̃ : S/D −→ S/D by Γ̃ (κ/D) =
Γ (κ)/D for any κ ∈ S. We can show the following results.

Theorem 1. Let (S,Γ ) be a qpBL algebra S with a weak
wmi-operator Γ and D be a normal weak Γ -filter of (S,Γ ).
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Then Γ̃ is a wmi-operator on S/D and (S/D,Γ̃ ) is a pseudo-
BL algebra with a wmi-operator Γ̃ .

Proof: We check the conditions one by one. For any
κ,ϑ ∈ S:

(WMI1) We have Γ̃ ((κ/D)� (ϑ/D)) = Γ̃ ((κ�ϑ)/D) =
Γ (κ � ϑ)/D = (Γ (κ) � Γ (ϑ))/D = (Γ (κ)/D) �
(Γ (ϑ)/D) = Γ̃ (κ/D)� Γ̃ (ϑ/D).

(WMI2) We have Γ̃ (κ/D) =Γ (κ)/D� κpq/D = (κ/D)pq

or Γ̃ (κ/D) = Γ (κ)/D� κqp/D = (κ/D)qp.
(WMI3) We have Γ̃ (Γ̃ (κ/D)) = Γ̃ (Γ (κ)/D) =

Γ (Γ (κ))/D = (Γ (Γ (κ))/D)� (1/D) = (Γ (Γ (κ))�1)/D =
(Γ (κ)�1)/D = (Γ (κ)/D)� (1/D) = Γ (κ)/D = Γ̃ (κ/D).

(WMI4) We have Γ̃ (1/D) = Γ (1)/D = 1/D.
Thus Γ̃ is a wmi-operator on S/D and (S/D,Γ̃ ) is a

pseudo-BL algebra with a wmi-operator Γ̃ .

Corollary 1. Let (S,Γ ) be an interior qpBL algebra and D
be a normal weak Γ -filter of (S,Γ ). Then Γ̃ is an mi-operator
on S/D and (S/D,Γ̃ ) is an interior pseudo-BL algebra.

IV. CLOSURE OPERATORS ON GOOD QUASI-PSEUDO-BL
ALGEBRAS

In this section, the definitions of additive closure operators,
weak ac-operators, sac-operators and weak sac-operators on
good qpBL algebras are given. We study their related prop-
erties and discuss the relationship among them. Moreover,
we present the relations between (weak) wmi-operators and
(weak) ac-operators on good qpBL algebras.

Definition 10. Let S be a good qpBL algebra. A mapping ϒ :
S −→ S is called an additive closure operator (ac-operator,
for short) on S, if for any κ,ϑ ∈ S,

(AC1) ϒ (κ�ϑ) =ϒ (κ)�ϒ (ϑ);
(AC2) κ �ϒ (κ);
(AC3) ϒ (ϒ (κ)) =ϒ (κ);
(AC4) ϒ (0) = 0.

A good qpBL algebra S having an ac-operator ϒ is called
a closure qpBL algebra and denoted by (S,ϒ ).

Definition 11. Let S be a good qpBL algebra. A mapping ϒ :
S−→ S is called a weak additive closure operator (weak ac-
operator, for short) on S, if for any κ,ϑ ∈ S,

(WAC1) ϒ (κ�ϑ) =ϒ (κ)�ϒ (ϑ);
(WAC2) κ �ϒ (κ);
(WAC3) ϒ (ϒ (κ))�0 =ϒ (κ)�0;
(WAC4) ϒ (0) = 0.

Proposition 16. Let (S,ϒ ) be a closure qpBL algebra. Then
ϒ is a weak ac-operator on S.

However, if ϒ is a weak ac-operator on a qpBL algebra
S, then it is not an ac-operator in general.

Example 3. Let S= {0,o,ϖ ,υ ,1}. We define the operations
on S as follows:

d 0 o ϖ υ 1
0 0 ϖ ϖ ϖ 1
o ϖ ϖ ϖ ϖ 1
ϖ ϖ ϖ ϖ ϖ 1
υ ϖ ϖ ϖ ϖ 1
1 1 1 1 1 1

e 0 o ϖ υ 1
0 0 0 0 0 0
o 0 ϖ ϖ ϖ ϖ

ϖ 0 ϖ ϖ ϖ ϖ

υ 0 ϖ ϖ ϖ ϖ

1 0 ϖ ϖ ϖ 1

� 0 o ϖ υ 1
0 0 0 0 0 0
o 0 0 0 0 ϖ

ϖ 0 0 0 0 ϖ

υ 0 0 0 0 ϖ

1 0 ϖ ϖ ϖ 1

⇁ 0 o ϖ υ 1
0 1 1 1 1 1
o ϖ 1 1 1 1
ϖ ϖ 1 1 1 1
υ ϖ 1 1 1 1
1 0 ϖ ϖ ϖ 1

Then S= (S;d,e,�,⇁,0,1) is a quasi-(pseudo)-BL algebra.
For any element in S, we define the unary operation on S as
follows:

′

0 1
o υ

ϖ ϖ

υ o
1 0

Then S is a good quasi-(pseudo)-BL algebra. We define
κ �ϑ = (κ ′�ϑ ′)′ for any κ,ϑ ∈ S and define ϒ : S −→ S
by ϒ (0) = 0, ϒ (o) = υ , ϒ (ϖ) = ϖ , ϒ (υ) = o and ϒ (1) = 1.
Then the mapping ϒ is a weak ac-operator on S. However,
ϒ (ϒ (υ)) = υ and ϒ (υ) = o, we have ϒ (ϒ (υ)) 6= ϒ (υ).
Hence ϒ is not an ac-operator on S.

Definition 12. Let S be a good qpBL algebra. A mapping
ϒ : S−→ S is called an sac-operator on S, if for any κ,ϑ ∈ S,

(SAC1) ϒ (κ�ϑ) =ϒ (κ)�ϒ (ϑ);
(SAC2) κpq �ϒ (κ);
(SAC3) ϒ (ϒ (κ)) =ϒ (κ);
(SAC4) ϒ (0) = 0.

Definition 13. Let S be a good qpBL algebra. A mapping
ϒ : S −→ S is called a weak sac-operator on S, if for any
κ,ϑ ∈ S,

(WSAC1) ϒ (κ�ϑ) =ϒ (κ)�ϒ (ϑ);
(WSAC2) κpq �ϒ (κ);
(WSAC3) ϒ (ϒ (κ))�0 =ϒ (κ)�0;
(WSAC4) ϒ (0) = 0.

Remark 3. If S is a good qpBL algebra, then κqp = κpq for
any κ ∈ S, so κpq �ϒ (κ) is equivalent to κqp �ϒ (κ).

We have ϒ (1) = ϒ (1� 0) = ϒ (1)�ϒ (0) = ϒ (1)� 0, so
ϒ (1) is regular. Moreover, we have 1 = 1pq � ϒ (1) and
ϒ (1)� 1, so ϒ (1) = 1.

Proposition 17. Let ϒ be an sac-operator on a qpBL algebra
S. Then ϒ is a weak sac-operator on S.

However, if ϒ is a weak sac-operator on a qpBL algebra
S, then it is not an sac-operator in general.

Example 4. Let (S,ϒ ) = (S;�,d,e,⇁,0,1) be a good quasi-
(pseudo)-BL algebra defined in Example 3. Then ϒ defined
in Example 3 is a weak sac-operator on S. According to
Example 3, we have ϒ (ϒ (υ)) 6= ϒ (υ). Hence ϒ is not an
sac-operator on S.

Since κ � κpq= κqp holds in any good qpBL algebra S, we
have that any sac-operator is the ac-operator and any weak
sac-operator is the weak ac-operator on S. The relationship
among these operators can be seen in Fig. 2.
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Fig. 2. A Relational Diagram

Below we will see the relationship between (weak) wmi-
operators and (weak) ac-operators.

Theorem 2. Let S be a good qpBL algebra. If Γ is a weak
wmi-operator on S, then the mappings Γ qp and Γ pq are weak
ac-operators on S.

Proof: We check the conditions one by one. For any
κ,ϑ ∈ S:

(WAC1) We have Γ qp (κ�ϑ) = (Γ ((κ � ϑ)p))q =

(Γ (
(
κp�ϑ p

)qp
))q = (Γ (κpqp�ϑ pqp))q = (Γ ((κpqp� 1)�

(ϑ pqp� 1)))q = (Γ ((κp� 1)� (ϑ p� 1)))q = (Γ (κp� 1)�
Γ (ϑ p � 1))q = ((Γ (κp) � Γ (1)) � (Γ (ϑ p) � Γ (1)))q =
(Γ (κp)�1�Γ (ϑ p)�1)q=(Γ (κp)�Γ (ϑ p))q=(Γ (κp))q�
(Γ (ϑ p))q = Γ qp (κ)�Γ qp (ϑ) by (G5), (P17) and (G7).

(WAC2) Since κ � κpq = κqp, we have κ � Γ qp (κ) by
Proposition 13(1).

(WAC3) We have Γ (κp) � Γ (κp)� 1 = Γ (Γ (κp))� 1 �
Γ (Γ (κp)) by (P2) and (WWMI3), so Γ qp

(
Γ qp (κ)

)
� 0 =

Γ qp ((Γ (κp))q)� 0 = (Γ ((Γ (κp))qp))q� 0 � (Γ (Γ (κp)))q�
0 � (Γ (κp))q � 0 = Γ qp (κ) � 0 by (P15), (P16) and
(G9). Moreover, we have Γ qp (κ) � 0 � (Γ qp (κ))

pq � 0 �
Γ qp

(
Γ qp (κ)

)
� 0 by (P15), (G9) and Proposition 13(1). S-

ince Γ qp

(
Γ qp (κ)

)
� 0 and Γ qp (κ)� 0 are regular, we have

Γ qp

(
Γ qp (κ)

)
�0 = Γ qp (κ)�0.

(WAC4) Follows from Proposition 13(4).
Hence Γ qp is a weak ac-operator on S. Analogously for

Γ pq .
Let S be a good qpBL algebra and ϒ : S −→ S be

a mapping. We consider two mappings ϒ qp : S −→ S by
ϒ qp (κ) =

(
ϒ
(
κp

))q and ϒ pq : S−→ S by ϒ pq (κ) =
(
ϒ
(
κq

))p
for any κ ∈ S.

Proposition 18. Let S be a good qpBL algebra and ϒ be a
weak ac-operator on S. If ϒ is monotone, then the mappings
ϒ qp and ϒ pq are monotone.

Proof: Let ϒ be monotone and κ �ϑ . Then ϑ p � κp by
(P16), it follows that ϒ (ϑ p)�ϒ (κp), so ϒ qp (κ)= (ϒ (κp))q�
(ϒ (ϑ p))q =ϒ qp (ϑ). Analogously for ϒ pq .

Theorem 3. Let S be a good qpBL algebra. If ϒ is a weak
ac-operator on S, then the mappings ϒ qp and ϒ pq are weak
wmi-operators on S.

Proof: We check the conditions one by one. For any
κ,ϑ ∈ S:

(WWMI1) We have ϒ qp (κ�ϑ) = (ϒ ((κ � ϑ)p))q =
(ϒ (κp � ϑ p))q = (ϒ (κp) � ϒ (ϑ p))q = (ϒ (κp))q �
(ϒ (ϑ p))q =ϒ qp (κ)�ϒ qp (ϑ) by (G7) and (G8).

(WWMI2) Since κp � ϒ (κp), we have ϒ qp (κ) =
(ϒ (κp))q � κpq by (P16). Note that S is good, we have
ϒ qp (κ)� κqp.

(WWMI3) We have ϒ qp (ϒ
q
p (κ))� 1 = (ϒ ((ϒ (κp))qp))q�

1 = (ϒ ((ϒ (κp))qp) � 0)q = (ϒ ((ϒ (κp))pq � 0))q =

(ϒ (ϒ (κp)�0))q= (ϒ (ϒ (κp))�ϒ (0))q= (ϒ (ϒ (κp))�0)q=
(ϒ (κp)� 0)q = (ϒ (κp))q � 1 = ϒ qp (κ)� 1 by (P13), (G8),
(G6) and (WAC3).

(WWMI4) We have ϒ qp (1) =
(
ϒ
(
1p
))q

= (ϒ (0))q = 0q =
1 by (P13).

Hence ϒ qp is a weak wmi-operator on S. Analogously for
ϒ pq .

Let S be a good qpBL algebra. We denote ℑ(S) the set of
weak wmi-operators on S and ℜ(S) the set of monotone weak
ac-operators on S. Suppose that ℑ(S) and ℜ(S) are pointwise
ordered. Define the mappings φ , Φ : ℑ(S)−→ℜ(S) such that
φ(Γ ) = Γ qp and Φ(Γ ) = Γ pq for any Γ ∈ ℑ(S). Also define
the mappings ψ, Ψ : ℜ(S) −→ ℑ(S) such that ψ(ϒ ) = ϒ qp
and Ψ(ϒ ) =ϒ pq for any ϒ ∈ℜ(S).

Theorem 4. Let S be a good qpBL algebra. Then we have,
(1) φ and Ψ have an antitone Galois connection, i.e.,

Γ �Ψ(ϒ ) iff ϒ � φ(Γ ), for any Γ ∈ ℑ(S) and ϒ ∈ℜ(S).
(2) Φ and ψ have an antitone Galois connection, i.e.,

Γ � ψ(ϒ ) iff ϒ �Φ(Γ ), for any Γ ∈ ℑ(S) and ϒ ∈ℜ(S).

Proof: (1) For Γ ∈ ℑ(S) and ϒ ∈ℜ(S), if Γ �Ψ(ϒ ) =
ϒ pq , then for any κ ∈ S, Γ (κ) � ϒ pq (κ) = (ϒ (κq))p holds,
it turns out that (ϒ (κq))pq � (Γ (κ))q by (P16), so ϒ (κ) �
ϒ (κpq)� (ϒ (κpq))pq � (Γ (κp))q =Γ qp (κ) by (P15) and then
ϒ (κ)� φ(Γ )(κ) for any κ ∈ S. Hence ϒ � φ(Γ ). Conversely,
let ϒ � φ(Γ ) = Γ qp . Then for any κ ∈ S, we have ϒ (κ) �
Γ qp (κ) = (Γ (κp))q, it follows that (Γ (κp))qp � (ϒ (κ))p, so
Γ (κ)� Γ (κqp)� (Γ (κqp))qp � (ϒ (κq))p =ϒ pq (κ) by (P15)
and then Γ (κ)�Ψ(ϒ )(κ) for any κ ∈ S. Hence Γ �Ψ(ϒ ).

(2) The proof is similar to (1).

Theorem 5. Let S be a good qpBL algebra.
(1) If Γ is a weak wmi-operator on S and h = (Γ pq )

q
p =

(Γ qp )
p
q, then Γ qp |R(S) = hqp|R(S) and Γ pq |R(S) = hpq|R(S).

(2)If ϒ is a monotone weak ac-operator on S and k =
(ϒ pq )

q
p = (ϒ qp )

p
q, then ϒ qp |R(S) = kqp|R(S) and ϒ pq |R(S) = kpq|R(S).

Proof: (1) Let Γ be a weak wmi-operator on S. Since
h = Ψ(Γ qp ) ∈ ℑ(S), we have Γ qp � φ(h) by Theorem 4, so
Γ qp � hqp. Meanwhile, since φ(Γ ) = φ(Γ ), we have Γ �
Ψφ(Γ ) using Theorem 4 again, so Γ �Ψφ(Γ ) = (Γ qp )

p
q = h.

It turns out that for any κ ∈ S, Γ (κp) � h(κp) and then
hqp(κ) = (h(κp))q � (Γ (κp))q = Γ qp (κ) which means that
hqp � Γ qp . Hence we have Γ qp (κ � 1) = hqp(κ � 1) and then
Γ qp |R(S) = hqp|R(S). Analogously for Γ pq |R(S) = hpq|R(S).

(2) The proof is similar to (1).
Below the notion (S,ϒ ) also denotes a good qpBL algebra

S with a weak ac-operator ϒ . According to Proposition 5, we
have that D(S) is a normal weak filter of S.

Proposition 19. Let (S,ϒ ) be a good qpBL algebra S with
a weak ac-operator ϒ . If κ ∈ D(S), then ϒ (κ�0) ∈ D(S).

Proof: For any κ ∈ D(S), we have κ �ϒ (κ)�ϒ (κ)�
1 � (ϒ (κ) � 1)qp = ((ϒ (κ))q � 1)p = ((ϒ (κ))q � 0q)p =
ϒ (κ)� 0 = ϒ (κ � 0) = ϒ (κ � 0)� 1 by (WAC2), (P2),
(P15) and (P13). Since D(S) is a weak filter of S, we have
ϒ (κ�0) ∈ D(S).

Theorem 6. Let (S,ϒ ) be a good qpBL algebra S with
a weak ac-operator ϒ . Define ϒ̃ : S/D(S) −→ S/D(S) by
ϒ̃ (κ/D(S)) = ϒ (κ � 0)/D(S) for any κ ∈ S. Then ϒ̃ is an
ac-operator on S/D(S) and (S/D(S),ϒ̃ ) is a pseudo-MV
algebra with an ac-operator ϒ̃ .
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Proof: First, we show that the mapping ϒ̃ is well-
defined. For any κ/D(S) = ϑ/D(S) ∈ S/D(S), we have
κ ∈ ϑ/D(S) and κpq → ϑ pq = 1 = ϑ pq → κpq, it follows
that κpq � ϑ pq and ϑ pq � κpq by (P9), so ϑ pq�1 = κpq�1
by (P1). Since κ�0 = (κp�0p)q = (κp�1)q = κpq�1 and
ϑ � 0 = ϑ pq � 1, we have κ � 0 = ϑ � 0, so ϒ (κ � 0) =
ϒ (ϑ � 0) and then ϒ (κ � 0)/D(S) = ϒ (ϑ � 0)/D(S), it
follows that ϒ̃ (κ) = ϒ̃ (ϑ).

Now, we check the conditions of Definition 10 one by one.
(1) We have ϒ̃ ((κ/D(S))�(ϑ/D(S)))= ϒ̃ ((κ�ϑ)/D(S))=
ϒ (κ � ϑ � 0)/D(S) = (ϒ (κ) � ϒ (ϑ) � ϒ (0))/D(S) =
(ϒ (κ) � ϒ (ϑ) � ϒ (0) � ϒ (0))/D(S) = ((ϒ (κ) � ϒ (0)) �
(ϒ (ϑ) � ϒ (0)))/D(S) = (ϒ (κ � 0) � ϒ (ϑ � 0))/D(S) =
((ϒ (κ � 0))/D(S)) � ((ϒ (ϑ � 0))/D(S)) = ϒ̃ (κ/D(S)) �
ϒ̃ (ϑ/D(S)) by (WAC4) and (WAC1).
(2) By Proposition 6, we have that S/D(S) is a pseudo-
MV algebra, so κ/D(S) = (κ/D(S))pq = (κ/D(S))pq �
(1/D(S)) = (κ/D(S))� (0/D(S)) = (κ � 0)/D(S) �ϒ (κ �
0)/D(S) = ϒ̃ (κ/D(S)).
(3) We have ϒ̃ (ϒ̃ (κ/D(S))) = ϒ̃ (ϒ (κ�0)/D(S)) =ϒ (ϒ (κ�
0)� 0)/D(S) = ϒ (ϒ (κ)�ϒ (0)�ϒ (0))/D(S) = ϒ (ϒ (κ)�
0)/D(S)= (ϒ (ϒ (κ))�ϒ (0))/D(S)= (ϒ (ϒ (κ))�0)/D(S)=
(ϒ (κ)�0)/D(S) =ϒ (κ�0)/D(S) = ϒ̃ (κ/D(S)).
(4) We have ϒ̃ (0/D(S)) =ϒ (0�0)/D(S) = 0/D(S).

Hence ϒ̃ is an ac-operator on S/D(S) and (S/D(S),ϒ̃ ) is
a pseudo-MV algebra with an ac-operator ϒ̃ .

V. OPERATORS ON QUASI-PSEUDO-MV ALGEBRA K(S)
Let S be a good qpBL algebra. We denote K(S) ={

κ ∈ S|κ = κpq = κqp
}

. Then we have the following results.

Lemma 4. [6] Let S be a good qpBL algebra. Then for any
κ,ϑ ∈ S we have,

(M1) 0,1 ∈ K(S);
(M2) κp�1, κq�1 ∈ K(S). Especially, if κ ∈ K(S), then

κp, κq ∈ K(S);
(M3) κ�ϑ ∈ K(S);

For any κ,ϑ ∈ K(S) we have,
(M4) κ�ϑ ∈ K(S);
(M5) κ ⇁ ϑ = ϑ p� κp and κ� ϑ = ϑ q⇁ κq;
(M6) κ�ϑ = (κp�ϑ p)q= (κq�ϑ q)p= κq⇁ϑ =ϑ p�

κ .

Following from [6], we have that K(S) =
(K(S);�,p ,q ,0,1) is a quasi-pseudo-MV subalgebra of
S.

Theorem 7. Let (S,Γ ) be a good qpBL algebra S with a
weak wmi-operator Γ . If a mapping Γ ∗ : K(S) −→ K(S) is
defined by Γ ∗(κ) = (Γ (κ))pq�1 for any κ ∈ K(S), then Γ ∗

is an mi-operator on K(S).

Proof: For any κ,ϑ ∈K(S), then κ�ϑ ∈K(S) by (M4).
So,

(MI1) We have Γ ∗(κ�ϑ) = (Γ (κ�ϑ))pq�1 = (Γ (κ)�
Γ (ϑ))pq�1 = (Γ (κ))pq� (Γ (ϑ))pq�1 = ((Γ (κ))pq�1)�
((Γ (ϑ))pq�1) = Γ ∗(κ)�Γ ∗(ϑ) by (G5).

(MI2) Since S is good, we have Γ ∗(κ) = (Γ (κ))pq�1�
(Γ (κ))pq � (κpq)pq = (κqp)pq = κ by (P2).

(MI3) We have Γ ∗(κ) = (Γ (κ))pq� 1 = (Γ (κ)� 1)pq =
(Γ (Γ (κ))� 1)pq = (Γ (Γ (κ)))pq � 1 � (Γ ((Γ (κ))pq))pq �
1 = (Γ ((Γ (κ))pq))pq � 1� 1 = (Γ ((Γ (κ))pq)� 1)pq � 1 =
(Γ ((Γ (κ))pq � 1))pq � 1 = (Γ (Γ ∗(κ))pq � 1 = Γ ∗(Γ ∗(κ)).

Conversely, Γ ∗(Γ ∗(κ)) = Γ ∗((Γ (κ))pq � 1) � (Γ (κ))pq �
1 = Γ ∗(κ) by (MI2). Thus we have Γ ∗(Γ ∗(κ)) =
(Γ (Γ ∗(κ)))pq � 1 = (Γ (Γ ∗(κ)))pq � 1� 1 = Γ ∗(Γ ∗(κ))�
1 = Γ ∗(κ)�1 = Γ ∗(κ) by (P1).

(MI4) We have Γ ∗(1) = (Γ (1))pq�1= 1pq�1= 1�1= 1
by (P13).

Thus Γ ∗ is an mi-operator on K(S).

Theorem 8. Let S be a good qpBL algebra and Γ be a weak
wmi-operator on K(S). If a mapping Γ + : S−→ S is defined
by Γ +(κ) = Γ (κpq� 1) for any κ ∈ S, then Γ + is a weak
wmi-operator on S.

Proof: Let Γ be a weak wmi-operator on K(S). For any
κ,ϑ ∈ S, we check the conditions of Definition 9 one by one.

(WWMI1) We have Γ +(κ � ϑ) = Γ ((κ � ϑ)pq � 1) =
Γ (κpq � ϑ pq � 1) = Γ (κpq � ϑ pq � 1� 1) = Γ (κpq � 1�
ϑ pq� 1) = Γ (κpq� 1)�Γ (ϑ pq� 1) = Γ +(κ)�Γ +(ϑ) by
(G5).

(WWMI2) Note that S is good, we have Γ +(κ) =Γ (κpq�
1)� (κpq�1)pq = κpq�1� κpq = κqp by (M2) and (P2).

(WWMI3) We have Γ +(Γ +(κ))� 1 = Γ ((Γ +(κ))pq �
1)� 1 = Γ ((Γ (κpq� 1))pq� 1)� 1 = Γ (Γ (κpq� 1)� 1)�
1 = Γ (Γ (κpq�1))�1 = Γ (κpq�1)�1 = Γ +(κ)�1.

(WWMI4) Since 1∈K(S), we have Γ +(1) =Γ (1pq�1) =
Γ (1) = 1 by (P13).

Thus Γ + is a weak wmi-operator on S.

Theorem 9. Let (S,ϒ ) be a good qpBL algebra S with a
weak ac-operator ϒ . If a mapping ϒ ∗ : K(S) −→ K(S) is
defined by ϒ ∗(κ) = (ϒ (κ))pq�0 for any κ ∈ K(S), then ϒ ∗

is an ac-operator on K(S).

Proof: Let ϒ be a weak ac-operator on S. For any κ,ϑ ∈
K(S),

(AC1) We have ϒ ∗(κ�ϑ) = (ϒ (κ�ϑ))pq�0 = (ϒ (κ)�
ϒ (ϑ))pq�0=ϒ (κ)�ϒ (ϑ)�0=(ϒ (κ))pq�(ϒ (ϑ))pq�0=
((ϒ (κ))pq� 0)� ((ϒ (ϑ))pq� 0) =ϒ ∗(κ)�ϒ ∗(ϑ) by (M3)
and (G6).

(AC2) We have κ � ϒ (κ), then κ = κpq � (ϒ (κ))pq �
(ϒ (κ))pq�1= ((ϒ (κ))p�1p)q=ϒ (κ)�0= (ϒ (κ))pq�0=
ϒ ∗(κ) by (P2) and (P13).

(AC3) We have ϒ ∗(ϒ ∗(κ)) = (ϒ ((ϒ (κ))pq� 0))pq� 0 =
(ϒ (ϒ (κ)�0))pq�0 =ϒ (ϒ (κ)�0)�0 =ϒ (ϒ (κ))�0�0 =
ϒ (ϒ (κ))� 0 = ϒ (κ)� 0 = (ϒ (κ))pq� 0 = ϒ ∗(κ) by (G6)
and (P13).

(AC4) We have ϒ ∗(0) = (ϒ (0))pq�0= 0pq�0= 0�0= 0
by (P13).

Thus ϒ ∗ is an ac-operator on K(S).

Theorem 10. Let S be a good qpBL algebra and ϒ be a
weak ac-operator on K(S). If a mapping ϒ+ : S −→ S is
defined by ϒ+(κ) =ϒ (κpq�0) for any κ ∈ S, then ϒ+ is a
weak sac-operator on S.

Proof: Let ϒ be a weak ac-operator on K(S). For any
κ,ϑ ∈ S, we check the conditions of Definition 13 one by
one.

(WSAC1) We have ϒ+(κ � ϑ) = ϒ ((κ � ϑ)pq � 0) =
ϒ (κ�ϑ �0) =ϒ (κpq�ϑ pq�0) =ϒ (κpq�ϑ pq�0�0) =
ϒ (κpq�0�ϑ pq�0) =ϒ (κpq�0)�ϒ (ϑ pq�0) =ϒ+(κ)�
ϒ+(ϑ) by (M3) and (G6).

(WSAC2) We have κpq � κpq� 1 = κpq� 0 � ϒ (κpq�
0) =ϒ+(κ) by (P2).
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(WSAC3) We have ϒ+(ϒ+(κ))�0 =ϒ ((ϒ+(κ))pq�0)�
0 = ϒ ((ϒ (κpq � 0))pq � 0)� 0 = ϒ (ϒ (κpq � 0)� 0)� 0 =
ϒ (ϒ (κpq� 0))� 0 = ϒ (κpq� 0)� 0 = ϒ+(κ)� 0 by (G6)
and (M3).

(WSAC4) Since 0 ∈K(S), we have ϒ+(0) =ϒ (0pq�0) =
ϒ (0�0) =ϒ (0) = 0 by (P13).

Thus ϒ+ is a weak sac-operator on S.

VI. CONCLUSION

In this paper, we introduce and investigate the multiplica-
tive interior operators, additive closure operators and the
relations between them on qpBL algebras. This is the study
of qpBL algebras in operator theory. In the future, we will
further study qpBL algebras from the perspective of algebraic
structure.
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