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Abstract—In this paper, we show how the outer bounds of
the extremal eigenvalues of real positive definite symmetric
irreducible matrices may be improved by the simple application
of optimizing the Gerschgorin bounds. The method is easy to
apply and yields fairly accurate results with minimal effort.
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I. INTRODUCTION

THE role of the extremal eigenvalues of a matrix cannot
be overemphasized. These values serve an important

aspect in determining the conditioning of a linear algebraic
system [1]. They are vital to the approximation of normal
operators [2]. Their distribution on the complex plane deter-
mines the stability of the solution of a system of differential
equations. As the solution of the characteristic equation
of a matrix A, is a difficult task for large dimensions,
many methods have been proposed for approximating the
extremal eigenvalues. Some crude bounds are obtained by
an application of Gerschgorin’s theorem [3], and the ovals of
Cassini [4]. For positive definite symmetric matrices Dembo
bounds [5] arise by examining the characteristic equation
of A and rely on bounds of a principal submatrix. Ma
and Zarowski [6] improved on Dembo’s lower bound by
ensuring that it was always positive. This idea was also
used to further improve the lower bounds of the minimal
eigenvalue [7] and to Toeplitz matrices by Melman [8] for
both upper and lower bounds. Recently trace bounds [9],
[10] have given reasonably good results. However the lower
bound is not guaranteed to be positive as expected, for the
class of positive definite real symmetric matrices. Also, an
improvement using trace bounds [11] requires much more
effort. The application of Rayleigh’s theorem [3] provides
good inner bounds. Recently, Huang et al. [12] bounded
the minimum eigenvalue of the Hadamard product of an
M matrix and its inverse. No single approach has proven
dominant, so all are to be considered in the proper context
to isolate the extremal eigenvalues.

II. THEORY

Let A ∈ Rn×n be a symmetric positive definite and
irreducible matrix, and let |A| = |aij | denote the non-
negative matrix derived from A. Furthermore, let D = (aii)
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denote the diagonal part of A and note that aii > 0 follows
from positive definiteness. Also, recall that the spectrum
σ(A) > 0 and A is diagonalizable with a real eigenbasis.
Denote the distinct eigenvalues of A by λi, i = 1, 2, · · · , k,
where k ≤ n. Let mi denote the algebraic multiplicity of λi,∑k

i=1 mi = n. Arrange the eigenvalues in descending order

λ1 > λ2 ≥ · · ·λk−1 > λk,

where we assume strict separation for the minimal and
maximal eigenvalues. Since A is symmetric it is orthogonally
diagonalizable and from the spectral theorem [3] we may
write

I =
k∑

i=1
Gi

A =
k∑

i=1
λiGi,

where Gi is the orthogonal projector onto the nullspace
N(A− λiI). Consequently GiGj = δijGi and

Rn =
k
⊕

i=1
N(A− λiI).

Lemma 2.1 (Rayleigh): Let x ∈ Rn, where ‖x‖2 = 1,
then it follows that

λk ≤ R(x) = 〈Ax,x〉 ≤ λ1. (1)

Proof. We prove the right-hand side of (1) as the left-hand
side is proved in a similar manner.

〈Ax,x〉 =
k∑

i=1
〈λiGix,x〉

≤ λ1

〈(
k∑

i=1
Gi

)
x,x

〉
= λ1〈x,x〉
= λ1.

Lemma 2.2: Let xp ∈ N(A− λpI) such that ‖xp‖2 = 1
and consider a perturbation of xp given by

xp
′ = xp + βx√

1 + β2
,

where ‖x‖2 = 1, x ⊥ N(A − λpI) and xp
′ has been

normalized to unity. Then

λ′p − λp = O(β2)(〈Ax,x〉 − λp), (2)

where λ′p = R(xp
′).
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Proof.

R(xp
′) = (1 + β2)−1〈A(xp + βx), xp + βx〉

= (1 + β2)−1(〈Axp, xp〉+ 2β〈Axp, x〉+ β2〈Ax, x〉)

= λp + β2〈Ax, x〉
(1 + β2)

.

Hence,

R(xp
′)− λp = β2(〈Ax, x〉)− λp

(1 + β2)
= O(β2)(〈Ax, x〉)− λp).

Thus, an O(β) approximation to an eigenvector results in a
“better” O(β2) approximation to the corresponding eigen-
value. For p = k in (2), we have an upper bound λ′k ≥ λk

and for p = 1 in (2), we have a lower bound λ′1 ≤ λ1.
By Gerschgorin’s theorem, the eigenvalues of A are all

contained in the union of the n intervals given by

|λ− aii| ≤ ri

=
n∑

p=1
p6=i

|aip|,

where i = 1, 2, · · · , n. These radii are assembled in a vector
r and are given by

r = |A|e−De
= |A−D|e,

where e =
∑n

i=1 ei = [1, 1, · · · , 1]t.
The left bound of the Gerschgorin intervals are given by

bi = aii − ri,

and can be written more compactly in a vector b as

b = De− r
= (2D− |A|)e. (3)

Note that if bi ≤ 0, for any i, then no information can
be established regarding the lower bound for λk, which is
already known to be positive.

Let Sk be a diagonal matrix with all the positive elements
denoted by sk

ii, and consider the similarity transformation
A′ = (Sk)−1ASk, then clearly σ(A) is preserved. The
Gerschgorin left bounds are now given by the vector b′,

b′ = (2D− |(Sk)−1ASk|)e
= (2D− (Sk)−1|A|Sk)e.

Note that the diagonal elements of A′ and A are identical,
and the similarity transformation neither affects the signs of
the elements of A nor makes any element zero.

Consider the matrix

Ck = [2D− λ′k(1− ε)I]−1|A|, (4)

where 0 ≤ ε < 1, and λ′k is a good upper bound approxima-
tion of λk. consequentially it follows from (1) that

λk ≤ R(ei)
= 〈Aei, ei〉
= aii.

Since Ck is non-negative and irreducible, it follows from the
Perron Frobenius theorem for non-negative matrices [3] that
Ck has a unique positive eigenvector vk corresponding to
the Perron root ρk = ρ(Ck), which is the spectral radius of
Ck. Let sk

ii = vk
i or equivalently write vk = Ske then,

[2D− λ′k(1− ε)I]−1|A|Ske = ρkSke. (5)

Rewrite (5) as

(Sk)−1|A|Ske = ρk[2D− λ′k(1− ε)I]e
(2D− (Sk)−1|A|Sk)e = [2(1− ρk)D + ρkλ

′
k(1− ε)I]e

= 2(1− ρk)De + ρkλ
′
k(1− ε)e.

Hence, it follows from (3) that

b′ = 2(1− ρk)De + ρkλ
′
k(1− ε)e. (6)

Note that the elements of b′, namely

b′i = 2(1− ρk)aii + ρkλ
′
k(1− ε), (7)

are not constant and vary with the value of aii, for fixed ε.
An ideal requirement is that all components of b′ be equal.
If b′i = b′j , then

(1− ρk)(aii − ajj) = 0. (8)

Clearly ρk = 1, thus (6) simplifies to

b′ = λ′k(1− ε)e > 0,

which is a constant and represents a lower bound of λk,
for suitable ε. However in practice it is not always possible
to choose an ideal value for ε, hence for the value of ε
such that ρk is close to unity, we choose the minimum
component of b′ as a lower bound of λk.

We now consider the special case, when the diagonal
elements of A are equal. Let aii = a and note from (4),
that

ρk = ρ(|A|)
2a− λ′k(1− ε)

. (9)

consequently, from (9), we obtain

λ′k(1− ε) = 2aρk − ρ(|A|)
ρk

. (10)

Substituting (10) into (6) we write

b′ = 2(1− ρk)ae + ρkλ
′
k(1− ε)e

= (2a− 2aρk)e + (2aρk − ρ(|A)|)e
= (2a− ρ(|A))e. (11)

Thus, the lower bounds are independent of λ′k, ε, and ρk.
Algorithm
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(i) Use a few iterates of the inverse power method on A to
generate an approximate eigenvector x′k, corresponding
to λk, that is

Azi+1 = yi

yi+1 = zi+1

‖zi+1‖2
,

where y0 = e√
n
, i = 0, 1, 2, · · · , NA − 1 and

x′k = yNA−1.

(ii) Set λ′k = 〈Ax′k, x′k〉 as an upper bound of λk.

(iii) Choose a suitable ε, where 0 < ε < 1, and use the
power method on matrix C to get an approximation of
ρ (close to 1) that corresponds to a positive eigenvector

zi+1 = Cyi

yi+1 = zi+1

‖zi+1‖2
,

where y0 = e√
n

and i = 0, 1, 2, · · · , NC − 1.

(iv) Generate the lower bound vector b′ from (6), then
choose min

i
b′i as a lower bound of λk.

The right bound of the Gerschgorin intervals is given by

bi = aii + ri,

which can be written more compactly as a vector b1, given
by

b1 = De + r
= |A|e. (12)

Consider the matrix C1 = [λ′1(1 + ε)]−1|A|, where 0 ≤
ε < 1, and λ′1 is a good lower bound approximation of λ1.
Consequentially it follows from (1) that

λ1 ≥ R(ei)
= 〈Aei, ei〉
= aii.

Since C1 is non-negative and irreducible, it follows from the
Perron Frobenius theorem for non-negative matrices [3] that
C1 has a unique positive eigenvector v1, corresponding to
the Perron root ρ1 = ρ

(
C1). Let s1

ii = v1
i or equivalently

write, v1 = S1e, then

|A|
λ′1(1 + ε)

S1e = ρ1S1e

(S1)−1|A|S1e = ρ1λ
′
1(1 + ε)∣∣(S1)−1AS1∣∣ e = ρ1λ
′
1(1 + ε)

b1
′ = ρ1λ

′
1(1 + ε). (13)

Hence, the upper bounds are all equal. In fact,

ρ1 = ρ(C1)

= ρ(|A|)
λ′1(1 + ε)

, (14)

and consequently from (13),

b′1 = ρ(|A|). (15)

Fig. 1. Lower bound vs epsilon for example 3.1

Fig. 2. Lower bound vs spectral radius for example 3.1

III. RESULTS

Example 3.1: Consider the test matrix [9], which is posi-
tive definite and irreducible,

A =


4 0 2 3
0 5 0 1
2 0 6 0
3 1 0 7

 ,
with a minimum eigenvalue of 1.425687 and maximum
eigenvalue of 9.375939, accurate to six decimal places. We
use NA = 3 to determine x′k and λ′k from (ii). We use
NC = 10 to determine ρk, for ε = 0.1. The same parameters
are used to determine the upper bound for λ1. We obtain the
following results

λ′k = 1.548137, ρk = 0.997039,
b′ = [1.412885, 1.418807, 1.424728, 1.43065]T ,
λ′1 = 9.350228, ρ1 = 0.91228,

from which a lower bound of 1.412885 and an upper bound
of 9.383023 is obtained.

Example 3.2: Consider the test matrix below, which is
positive definite and irreducible,

A =


10 3 2 −0.5
3 4 3.5 5
2 3.5 10 1.5

−0.5 5 1.5 12


with a minimum eigenvalue of 6.323996 and a maximum

eigenvalue of 20.250466, accurate to six decimal places. We
use NA = 3 to determine x′k and λ′k is determined from step
from (ii) in the algorithm. We use NC = 10 to determine
ρk, for ε = 0.5. The same parameters are used to determine
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Fig. 3. Lower bound vs epsilon for example 3.2

Fig. 4. Lower bound vs spectral radius for example 3.2

the upper bound of λ1. We obtain the following results:

λ′k = 6.562099, ρk = 0.980824,
b′ = [3.60166, 3.755072, 3.60166, 3.678366]T ,
λ′1 = 20.236249, ρ1 = 0.676565,

from which a lower bound 3.60166 and an upper bound
20.536707 is obtained.
From figures 1 and 3, we can determine the optimal value of
ε for which the lower bound is maximum. Examining figures
2 and 4, we note that the lower bound is maximized when
ρk is close to unity, as discussed in equation 8. Although
we have shown in equation (15) that it is theoretically and
practically possible to have the upper bound components
equal, the same statement is only true for the lower bounds,
if a suitable value for ε is known in advance, where ρk = 1.
However in practice the lower bound components differ
slightly from each other, even if ε is not optimal.

Example 3.3: Consider the Stieltjes matrix [13], which is
irreducible, given by

A =



2n −1 −1 −1 · · · −1
−1 2n −1 −1 · · · −1
−1 −1 2n −1 · · · −1

...
...

...
. . .

...
...

−1 −1 −1 −1 2n −1
−1 −1 −1 −1 −1 2n


,

where n is the dimension of A. The matrix A can be
written in the form A = (2n + 1)I − eet. The matrix eet

has a rank of unity which implies that σ(eet) = {0, n}, with
zero having a multiplicity of n− 1. Note that the eigenvalue
n corresponds to the eigenvector e. Hence, σ(A) = {n +
1, 2n+ 1}, where the eigenvalue 2n+ 1 has a multiplicity o
n− 1. We illustrate the validity of (11), in figures 5 and 6,

Fig. 5. Lower bound vs epsilon for example 3.3

Fig. 6. Lower bound vs spectral radius for example 3.3

for n = 20, that is the independence of the lower bound on
ε and ρk. We obtain exactly 21 and 59, for the lower and
upper bound, respectively, which is in agreement with (15).

Example 3.4: When the Poisson partial differential equa-
tion is discretized by a five-point finite different scheme, it
results in a n×n Stieltjes tridiagonal matrix A, that has the
form

A =



4 −1 0 0 · · · 0
−1 4 −1 0 · · · 0

0
. . . . . . . . . 0

...
...

. . . . . .
...

...
0 0 0 −1 4 −1
0 0 0 0 −1 4


.

Clearly A is irreducible and the eigenvalues are explicitly
given by [14]

λk = 4− 2 cos
(

kπ

n+ 1

)
, k = 1, 2, · · · , n.

Thus, σ(A) ∈ [λ1, λn] ≈ [2.152241, 5.847759], for n = 7.
Once again, we observe from figure 7 and figure 8 that

since the diagonal elements are equal, the lower bound is
independent of ε and ρk. This further validates (11). We
obtain 2.109941 for the lower bound and 5.890058 for
the upper bound.

IV. CONCLUSION

We have presented a simple and relatively cost-effective
method of improving the outer bounds of real symmetric
positive definite matrices, which are irreducible. Some im-
portant matrices from engineering, as well as special cases
have been considered. We have also shown that our method
does indeed yield the outer bounds.
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Fig. 7. Lower bound vs epsilon for example 3.4

Fig. 8. Lower bound vs spectral radius for example 3.4
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