


Abstract— An analytical technique for the solution of plate-type
structural members due to the influence of torsional rigidity and
other vital parameters is developed in this present study. The
governing equation is addressed by the versatile method of
Shadnam et al. The method specifically makes a reduction to the
model equation. A parametric study that examined the dynamic
influence of torsional rigidity, rotatory inertia, and variable
elastic foundation on the plate flexure is carried out. It is found
that these parameters greatly influenced the deflecting members
(plate-type). Thus, a rise in the values of these structural
parameters produces a noticeable effect on the critical
(fundamental) velocity of the plate-type member. Hence, the
hazard of a resonating effect is amply decreased.

Index Terms— Moving load, rectangular plate, elastic
subgrade, effective torsional rigidity, distributed load.

I. INTRODUCTION

OVING loads are forces acting on a structure and
continually changing its position. The usefulness of the
study in engineering designs and the transportation

industry has attracted many authors. Common cases of
members exhibiting flexures for loads that move (uniformly &
non-uniformly) include tunnels, cableways, e.t.c. and these
structures may be elastic, viscoelastic, or inelastic. The
dynamic influence of loads resting on elastic structures
attracted the attention of researchers in this area around the
mid-nineteen century because of the effect of an increase in
traffic intensity and speed.

Fryba [1] presented an exhaustive assessment of the subject
of structural flexures for loads that move at speed (constant or
variable). Loads (moving ones) on bodies are in two folds, one
part is MF (moving force) where the consequence of inertia on
the loads is assumed trivial and only the influence of force is to
be considered. Observations from this assumption show that
considerable errors arise from this. Thus, if inertia influence is
taken into consideration, one is termed MM (moving mass).
Oni [2] considered the dynamic vibrations of structural
members when loads (moving one) and mass (for the structure)
are compared in magnitude.
Moving loads on elastic structures for point-like has received
significant attention from researchers. Milormir et al. [3]
formulated a theory describing the Bernoulli-Euler beams
behaviour as having concentrated moving masses. They used
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the method of Fourier for the simply supported structure.
Ogunyebi et al [4] considered the procedural vibrations of
structures (no-uniform) and hence, a perfect deduction for the
members by a numerical procedures. Al-Ansari and Afzal [5]
developed a simple procedure to obtain deflection of uniform
plate (regular & irregular) with concentrated loading system.
Fedoseyer and Yagnyatinskiy [6] obtained solutions in
analytical form for plate model affected by elastic actuators
defined according to Hooke’s law using integral transform
methods. Gebre et al [7] investigated the influences of warping
on beams (thin-walled) having restrained torsion for different
types of sections.
Ogunyebi [8] presented procedures for the HMMDL lying on
subgrade. Numerically, the rise in B-E model parameters gives
a decrease in the magnitude.
However, for more reliable practical engineering designs,
moving load on structural members is usually presented as a
‘distributed’ load instead of a ‘concentrated’ load. Therefore,
for a detailed analysis of the deflection of structural members
for acceptable accuracy, it is advisable to consider the beam or
plate subjected to moving distributed load. Some authors made
a tremendous effort in addressing this aspect of the study
[9-10]. Oni and Ogunyebi [11] investigated the action of a
uniform one-dimensional structure lying on a constant elastic
subgrade with uniformly distributed weight by the method of
generalized integral transform. Oni and Ogunyebi [12]
presented a classical assessment of the problem of flexural
response to one-dimensional members with distributed
loading system.
Recently, Gao et al [13] analyzed the impact of ratios of aspect
& Poisson on flexural motions of a plate (rectangular) with
bc’s and the results were validated by FEM. Sorrentino and
Catania [14] considered the flexural behavior of a
simply-supported Kirchhoff structure employing the method
of Rayleigh-Ritz.
Interestingly, the influence of torsional rigidity & other vital
parameters in the deflection of the two-dimensional system is
highly essential and should not be jettisoned in structural
design. The authors above failed to address this very important
aspect. Thus, this present paper presents the flexural vibration
of plate-type lying on variable elastic subgrade traversed by
moving loads. Effects of the torsional rigidity, subgrade
foundation modulus, and rotatory inertia on the structural
vibration of the structure are examined.

II. PLATE-TYPE MOTION EQUATION
Motion equation for the plate-type deflection with torsional

rigidity rT (Alisjahbana et al., [15] and resting on an elastic
foundation on variable elastic subgrade is
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From (1), D represent bending stiffness
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and

1v v  , 2 the Laplacian operator in 2-dimensional,
t time, Ro rotatory inertia,  mass of the plate-type, & are
positions in  &  directions, h plate-type thickness, v the
Poisson’s ratio, E (Young modulus), ( )Q  (foundation
subgrade) and the Heaviside function is ( )H ct  .

Fig. *1: Loading distributed system on Plate-type

The loading distributed system
takes the form
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where g , * and ( , , )P t  are acceleration due to gravity,
acceleration operator, the force moving continuously and
moves from a point 0  . Thus, ( , , )mP t  takes the form

0( , , ) ( ) ( )mP t MgH ct H       (3)

The variable elastic foundation modulus ( )Q  is given by
2 3

0( ) (4 3 )Q Q      (4)
Time t assumed to be within the interval

0 ct L  (5)
The pertinent boundary conditions for 0  and L  are
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Considering equations (2), (3), and (4) in equation (1),
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Equation (9) forms the fundamental model of the plate-type
with torsional rigidity on the elastic subgrade.

III. ANALYTICAL PROCEDURES
Clearly, the exact analytical solution for the problem cannot

be found. To this end, an approximately analytical procedure
(Oni and Ogunyebi [11]) is used. The method is given as

1
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k
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which is the form of [16] and k the eigenfunctions. Also
4 4 0k k k     (11)

where
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4 k
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and , 1,2,3,4,..,k k  are the natural frequencies & ( )kV t
the amplitude to be determined.
Furthermore, let ( , )k   be the products of the functions

kn and km (i. e the beam functions in and )

( , ) ( ) ( )k kn km       (13)
Defining beam functions
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( ) km km km
km km kmSin A Cos B Sinh
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 (15)

where , , ,kn kn kn km kmA B C A B & kmC are to be determined.

Also, kn and km are the mode frequencies.
Re-written equation (9) in the form of a series and applying
equation (10), one obtains
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Let equation (17) be orthogonal to ( , )k   and integrated to
have
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After rearrangements, Equation (18) gives
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A. Plate-type moving distributed force procedure

Setting 0 0  in equation (21), the deflecting model
(Plate-type) lying on the subgrade is addressed. Therefore,
if 0 0  , one obtains
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Struble’s technique is then employed to solve equation (22)
and the foundation subgrade term is neglected first so that
equation (22) is further arranged to take the shape
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Putting equation (26) in equation (23) gives
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Also set 0  in (27), the effect of the torsional rigidity is
ignored and the solution is written as

 ( ) cos ( )k o kV t C t    (28)

Where oC ,  and k are constants and it is noted that

  2
1( ) ( )cos ( ) ( ) 0( )k k kV t t t t V t        (29)

where ( )k t & ( )t are slowly varying functions.
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which is modified frequency with respect to the influence of
torsional rigidity. Furthermore, setting 0  , it is evident that
the frequency of the MF problem is recovered when the
influence of torsional rigidity is neglected. Thus
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To obtain a solution to equation (34) ( )kV t is replaced with
the new modified frequency (NMF) of equation (40). Thus,
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When equation (42) is solved taking into account equation (8),
one obtains an expression for ( )kV t and considering equation
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The new equation of the plate-type model for MDF lying on
constant subgrade is aptly given in equation (44).

B. Plate-type moving distributed force procedure

When 0  , the solution to the entire equation (21) is
presented. Therefore, arrangements of equation (21) give
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Following the same procedures as recently discussed, the new
modified frequency (NMF) for moving mass problem is

  0
2

221 m

fm

G
mm fm moG     (51)

retaining terms to  00  only.

The solution to non-homogeneous equation (50) is replaced
with the new modified frequency in equation (51) to have


2

2
2

( ) ( ) cos sink
mm mm n kn n

d V t t G L L A
dt       

cosh sinh cos sinn n
kn n kn n kn

ct ctB C A
L L 
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L L 

 
 


    



cosh sinh cosh k
km k km k kmB C B

L

    

cos sin sinhk k k
km kmA C

L L L  

      
   


(52)

where
0

mm
MgG
knkm



 (53)

Obviously, equation (52) is similar to equation (42) and when
solved considering initial conditions gives

 1
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(54)
where coshb kna t  , sinc kna t 
Equation (54) is the transverse vibrational response to MDM
of the plate-type resting on variable foundation subgrade at a
constant speed.

IV. APPLICATIONS

A. Plate-type Clamped at edges 0, L   with

simple edges 0, L  
Here,
( , , )     ,   ( , , )w o t o w L t o  
( , , )     ,  ( , , )w o t o w L t o   (55)

( , , )(0, , ) 0  , 0 w L tw t  
 


 

 
( , , )(0, , )   , w L tw t o o

 


 
 

(56)

and therefore,
(0) 0   ,  ( ) 0,sn sn L  
(0) 0 ,  ( ) 0sm sm L   (57)

( ) ( )0 ,  0sn snO L 
 

 
 

 

2 2

( ) ( )0 ,  0 sm smO L 
 

 
 

 
(58)

The IC’s are given by equation (8). Using the BC’s (55) and
(56), one obtains for clamped edge 0x  and x L

1 3

2 4

sin sin
cos cos

kn sn
kn sn

kn sn

B z B zA A
B z B z

 
    

 
(59)

where 1 2sinh , coshkn knB z B z 

3 4sinh , coshsn snB z B z 

1        1rm smB B     (60a)

        Crm rm sm smC A A     (60b)

The determinant below gives the FE (frequency of the model)
for the CC-edges
cos cosh sin sinh

0
sin sinh cos cosh

kn kn kn kn

kn kn kn kn

z z z z
z z z z

 


  
(60c)

which when simplified gives
cosh cos 1 0kn knz z   (61)

such that

1 2 34.73004, 7.85320, 10.99561n n nz z z   (62)
and

 2 2 2 11 2 2
2sn sn sn sn sn sn sn

sn

Lw A B C C A B
z


     

pi piB C   2 21 1 sin 2 2 sin
2 sn sn sn snA z A z 

   2 2 sinh cosh 2sn sn sn sn sn sn snB C z z B A C   

 cosh sin 2 sinh cossn sn sn sn sn sn snz z B A C z z   

   2 sinh sin 2sn sn sn sn sn sn sn snC A B z z C A B    

cosh cos coshsn sn sn sn snz z B C z  (63)

Replacingn bym in (63), clearly, one obtains smw . And,

0        0km smA A   (64)

0        0km smB B   (65)

0        0km smC C   (66)
while the corresponding FE is

        zkm smz km sm   

and
2sm

L
w 

 (67)

Therefore, the fundamental solutions for MDM & MDF for
the plate-type are achieved by putting obtained results in
equations (59) - (67) into equations (44) & (54) respectively.

B. All edges Clamped Plate-type

Here, the slope & deflection easily vanish here. So,

(0, , ) 0    ,  ( , , ) 0w t w L t  
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(69)

and therefore,

( )    ,  ( ) ,sn sno o L o  

( )  ,  ( )   sm smo o L o   (70)

( ) ( )0 ,  0 sn snw L 
 

 
 

 

( ) ( ) ,  sm smo Lo o 
 

 
 

 
(71)

with the same initial conditions in (68) to (71) in the plate-type
functions, one obtains for clamped edges

1 3

2 4

sin sin
cos cos

kn sn
kn sn

kn sn

B z B zA A
B z B z

 
    

 
(72)

1        1rm smB B     (73)

        Crm rm sm smC A A     (74)
The determinant in (75) gives the FE (frequency equation) of
CC- edges of the plate-type

cos cosh sin sinh
0

sin sinh cos cosh
kn kn kn kn

kn kn kn kn

z z z z
z z z z

 


  
(75)

which when simplified gives
cosh cos 1 0kn knz z   (76)

such that

1 2 34.73004, 7.85320, 10.99561n n nz z z   (77)
It follows that for the pjth mode of vibration
cosh cos 1 0sm smz z   (78)

Similarly, for the clamped edges, 0  and L 

1 3

2 4

sin sin
cos cos

kn sn
kn sn

kn sn

B z B zA A
B z B z

 
    

 
(79)

1        1rm smB B     (80a)
and

        Crm rm sm smC A A     (80b)
The determinant in (81) gives the FE (frequency equation) of
CC-edges of the plate-type
cos cosh sin sinh

0
sin sinh cos cosh

sm sm sm sm

sm sm sm sm

z z z z
z z z z

 


  
(81)

which when simplified yields
cosh cos 1 0sm smz z   (82)
Similarly, for pith mode of vibration, we have
cosh cos 1 0sn snz z   (83)

Using arguments similar to the previous one snw is given

by the equation (63) when the values of constants smA ,

smB , smC and smz are approximately substituted into

the equation. sm is obtained by replacing subscript sn with
sm in equation (63).

V. PLATE-TYPE ANALYSIS AND
RESONANCE EFFECT

This section examines the occurrences of the resonating
effects of the plate-type. For MDF,

kn
fm

c
L


  (84)

Also, equation (54) exhibit similar action for MDM system
and

kn
mm

c
L

  (85)

where

  0
2

221 m

fm

G
mm fm moG     (86)

Equations (85) and (86) imply

  0
2

221 m

fm

G kn
mm fm mo

x

cG
L

       (87)

A deduction from (84) & (87) predicts that MDM is smaller
than the MDF having considered smaller NF (natural
frequency) and CS (critical speed).

VI. PLATE-TYPE RESULTS
AND DISCUSSION

As an illustration, an example of a plate-type having
length L , L & c defined as, 0.91m, 0.457m & 8.123m/s

(lengths L , L & velocity) is considered. Furthermore,

parameters ,y , ,E & are O.4m, 9 23.109 10 / ,kg m .02 &
2.
Following the analytical procedures adopted in this paper, a
computer program was created to study the behavioral
magnitude of the plate-type with distributed loads on an elastic
subgrade. Results are aptly presented in curves as given below.
Figure 1 displays the transverse displacement response to
plate-type simple-clamped end conditions under the action of
MDF for an elastic foundation 0Q . Observations when rT & 0R
(torsional rigidity & rotatory inertia) are fixed give a rise in the
values of elastic subgrade thereby giving rise to a reduction in
the vibration magnitude for simple-clamped plate-type.
Curves in (2) depict the magnitude of plate-type SC-ends end
condition moved by MDM for elastic subgrade 0Q . Similarly,
a rise in subgrade values produces a decrease in the plate-type
profiles at fixed values of torsional rigidity rT and rotatory
inertia 0R .
Figure 3 shows the influence of torsional rigidity rT on the
vibration of plate-type simple-clamped end condition
traversed by MDF at a constant speed. Evidently,
when 0Q & 0R are fixed, an increase in the torsional rigidity
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results in a decrease in the displacement of the plate-type
structure.
Figure 4 depicts the effect of torsional rigidity rT on the
flexural motions of plate-type simple-clamped traversed by
MDM at a constant speed. Clearly, higher values of torsional
rigidity rT produce a decrease in the deflection profile of the
structural member.
Figure 5 and figure 6 display the dynamic deflections of
simple-clamped plate end conditions under the action of MDF
and MDM systems for varying 0R and when rT & are fixed. In
a similar manner, a rise in 0R produces a reduction in the
profile of the pate-type structure.
A good comparison is made for MDF and MDM of the
plate-type SC-end at edges 0, L   with simple

edges 0,  L  for constant values of 0Q 0, 0R and rT is
given in figure 7.
Displacement response to plate-type clamped-clamped end
conditions traversed by MDF for an elastic foundation 0Q is
given in figure 8. Observations from the profiles show that
when rT & 0R are fixed, a rise in the magnitude of 0Q gives a
reduction in magnitude of the 2-dimensional members.
Figure 9 illustrates the deflection of plate-type
clamped-clamped end condition traversed by MDM for elastic
foundation 0Q . Similarly, a rise in magnitude of elastic
subgrade produces a decrease in the profile of 2-dimensional
members at fixed values of torsional rigidity rT .
Figure 10 shows the influence of torsional rigidity rT on the
vibration of plate-type clamped-clamped end condition
traversed by MDF at a constant speed. Evidently, for fixed
values of elastic foundation, an increase in the torsional
rigidity results in a decrease in the displacement of the
plate-type structure.
Figure 11 depicts the effect of torsional rigidity, rT on the
flexural motions of plate-type clamped –ends plate-type for
the MDF at a constant speed. Higher values of torsional
rigidity rT produce a decrease in the deflection profile of the
structural member for the clamped-clamped boundary
conditions considered. In a similar manner, an increase in the
torsional rigidity of the MDM system produces a rise in the
plate-type magnitude under a moving loading system at a
constant speed.
The curves (12) show the effects of 0R for the plate-type
CC-ends moved by MDF at a uniform speed. Evidently, for
fixed values 0Q and rT , an increase in the torsional rigidity
results in a decrease in the displacement of the plate-type
structure.
Figure 13 depicts the dynamic effect of 0R on the flexural
motions of plate-type clamped-clamped traversed by MDM at
a uniform speed. Clearly, higher values of Ro produce a
decrease in the deflection profile of the structural member.
Dynamic comparability of profile for MDF and MDM
plate-type at clamped ends for 0Q & 0R (fixed values) is given
in figure 14. Clearly, the magnitude of MDM deflects at a
higher rate than the MDF system at a uniform speed in the
three boundary conditions considered. Figure 15 shows a
comparison of Analytical and Numerical solutions of the
plate-type lying on the variable elastic subgrade.

Table 1 gives the comparison analysis of MDF and MDM for
the CC-ends and SC-ends for fixed values of 0Q , rT and 0R .
From above, response of MDM is at higher rate than the MDM
system.
Hence, one runs a risk of relying on the dynamic response to
MDF as a better simulation to MDM of plate-type structural
member.

Fig. 1. Profiles of SC-ends plate-type traversed by MDF (for varying Qo, &
fixed Tr, Ro)

Fig. 2. Profiles of SC-ends plate-type traversed by MDM (for varying Qo,
& fixed Tr, Ro)

Fig. 3. Profiles of SC-ends plate-type traversed by MDF (for varying Tr &
fixed Qo, Ro)
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Fig. 4. Profiles of SC-ends plate-type traversed by MDM (for varying Tr &
fixed Qo, Ro)

Fig. 5. Profiles of SC-ends plate-type traversed by MDF (for varying Ro &
fixed Tr, Qo)

Fig. 6. Profiles of SC-ends plate-type traversed by MDF (for varying Ro &
fixed Tr, Qo)

Fig. 7. Dynamic comparison between plate-type MDM & MDF for SC bc’s
on the variable elastic subgrade

Fig. 8. Displacement profile of clamped-ends plate-type traversed by MDF
(for varying Qo & fixed Tr, Ro)

Fig. 9. Displacement profile of clamped-ends plate-type traversed by MDM
(for varying Qo & fixed Tr, Ro)
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Fig. 10. Displacement profile of clamped-ends plate-type traversed by MDF
(for varying Tr & fixed Qo, Ro)

Fig. 11. Displacement profile of clamped-ends plate-type traversed by MDM
(for varying Tr & fixed Qo, Ro)

Fig. 12. Displacement profile of clamped-ends plate-type traversed by MDF
(for varying Ro & fixed Tr, Qo)

VII. CONCLUSION

This paper considers an assessment of the displacement
response of plate-type simple-clamped and clamped-clamped
ends conditions at uniform velocity. Analytical procedures for
the model equation are achieved by the separation of variable
methods to obtain a dynamic solution for MDF and MDM
problems. From the analyzed solution, the condition under
which the resonance occurs has been established and therefore
noted that the speed (critical) of the plate-type moved by

MDM is of smaller magnitude compared to the plate-type
traversed by

Fig. 13. Displacement profile of clamped ends plate-type traversed by MDM
(for varying Ro & fixed Tr, Qo)

Fig. 14. Dynamic comparison between plate-type MDM & MDF for
Clamped-ends bc’s on the variable elastic subgrade

Fig. 15. Comparison of Numerical & Analytical procedural solutions of
plate-type lying on variable elastic subgrade

MDF with the same natural frequency. Also, it is evident that
resonance condition is previously attained in MDM than in the
MDF system. It is noted that the technique employed in this
paper yields solutions to any desired degree of accuracy.
Finally, there is an excellent agreement between the results
presented in this study and the existing results.
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TABLE 1
Comparison of Analytical and Numerical solutions of the plate-type lying on
variable elastic subgrade

S/N T(sec.) MDF MDM
1 0 4.71E-04 3.76E-06
2 0.1 2.64E-03 1.06E-04
3 0.2 3.08E-03 1.20E-04
4 0.3 1.42E-03 7.34E-05
5 0.4 -1.23E-03 7.80E-06
6 0.5 -3.42E-03 -4.94E-05
7 0.6 -4.43E-03 -1.28E-04
8 0.7 -4.37E-03 -2.35E-04
9 0.8 -3.71E-03 -3.14E-04

10 0.9 -2.79E-03 -2.95E-04
11 1 -1.70E-03 -1.65E-04
12 1.1 -4.20E-04 -1.22E-05
13 1.2 9.94E-04 1.61E-04
14 1.3 2.24E-03 2.51E-04
15 1.4 2.82E-03 3.03E-04
16 1.5 2.45E-03 3.34E-04
17 1.6 1.32E-03 2.88E-04
18 1.7 7.29E-05 1.78E-04
19 1.8 -7.10E-04 2.98E-05
20 1.9 -8.97E-04 -8.19E-05
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