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Abstract—Dissipativity and disturbance rejection issues are
taken into consideration for linear time-delay systems with
disturbance in this study. For linear systems, the Equivalent-
Input-Disturbance (EID) method has shown to perform well
in terms of disturbance rejection. Therefore, the goal of this
research is to achieve satisfactory disturbance rejection perfor-
mance and dissipativity performance levels based on the EID
technique. Initially, the state of the time-delay system is recon-
structed using a modified proportional-integral observer. Then,
a disturbance-rejection control law that includes disturbance
information is designed. To guarantee the time-delay system’s
stability and achieve the dissipativity performance level, a
sufficient condition is attained. The stability condition is used
to design a state feedback controller. Finally, the effectiveness
of the strategy is illustrated using a numerical example.

Index Terms—dissipative control, equivalent input distur-
bance, time-delay, proportional-integral observer.

I. INTRODUCTION

THE primary focus of control research has been on
the disturbance and time-delay of linear systems. The

system’s performance will suffer if there is a disturbance.
The presence of time-delay may have negative effects on
the system in many practical systems, including industrial
processes, chemical processes, remote controls, economic
processes, network controls, population dynamics, etc. In
order to address these problems, researchers have made great
efforts [1], [2].

Dissipation is an important part of control theory and also
a hot topic in the field of control in recent years[3], [4],
[5]. The concept of dissipation was first proposed in [6].
The dissipative theory proposes an approach to designing
and analysing control systems where input and output are
described in energy terms.

Numerous disturbance-rejection approaches have been put
forth recently. Active Disturbance Rejection Control (ADRC)
techniques are most common among them. The idea of
ADRC is to actively estimate the value of the disturbance and
then compensate the estimated value into the system to offset
the negative effect of the disturbance on the system. In order
to enhance the effectiveness of disturbance rejection, the
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Equivalent-Input-Disturbance (EID) technique was originally
presented in cites [7], [8]. The EID technique excludes both
matched and mismatched disturbances and does not require
prior knowledge of disturbances. In a variety of control sys-
tems, the EID approach has shown a satisfactory performance
in rejecting disturbances. [9], [10], [11], [12]. A Proportional-
Integral Observer (PIO) incorporating an EID estimator to
study disturbance-rejection performance in linear systems in
[13]. This observer has the advantage of increasing both the
flexibility of system design and the precision of system state
estimation. Despite the fact that this research shows that the
proposed approach performs well in terms of disturbance
rejection, the time delay is not considered.

Following the above-mentioned discussion, the dissipative
problem of a class of linear time-delay systems is inves-
tigated. The state of the time-delay plant is rebuilt using
a modified PIO. The performance level of the closed-loop
system’s stability and dissipativity is guaranteed by a given
sufficient condition. The condition is then used to design
a state feedback controller. A numerical example is then
utilized to show the efficiency of the presented approach.

Notations : G(s) is indicated as the Laplace transforms of

g(t).

[
C B

BT D

]
is indicated by

[
C B

⋆ D

]
. A > 0 is indicated

as positive definite matrix.

II. CONFIGURATION OF EID-BASED CONTROL SYSTEM

Consider
ẋ(t) = H1x(t)+H2x(t −h)+ Ju(t)+ Jdw(t),

y(t) = Nx(t),

z(t) = Nx(t)+Dw(t),
(1)

where u(t) ∈ Rm, x(t) ∈ Rn, w(t) ∈ Rnd , z ∈ Rp, y ∈ Rq,
represent the control input, state, exogenous disturbance,
control output, and output vectors, respectively. h > 0. H,
J, Jd , N and D are constant matrices with appropriate
dimensions.

Based on the concept of EID [8], we know an effect on
the system that is equal to an exogenous disturbance from
a control input channel which is characterized as a signal
(we(t)). Fig. 1 shows the structure of the control system
based on the EID method and using the modified PIO.
Consequently, system (1) switches to the following system
(2) 

ẋ(t) = H1x(t)+H2x(t −h)+ Ju(t)+ Jwe(t),

y(t) = Nx(t),

z(t) = Nx(t)+Dw(t).
(2)

We choose the following modified PIO observer to repli-
cate the state of the time-delay system
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Fig. 1: EID-based control system configuration.


˙̂x(t) = H1x̂(t)+H2x̂(t −h)+ Ju f (t)+ JxI(t)

+L1(y(t)− ŷ(t)),

ŷ(t) = Nx̂(t),

ẋI(t) = L2(y(t)− ŷ(t)),

(3)

where x̂(t) is an estimate of the state x(t). Letting

J+ = (JTJ)−1JT, (4)

∇x(t) = x(t)− x̂(t), (5)

Substituting this into (2) gives
˙̂x(t) = H1x̂(t)+ Ju(t)+ Jwe(t)+H2x̂(t −h)

+H1∇x(t)−∇ẋ(t)+H2∇x(t −h).
(6)

Introducing a variable ∆w(t) satisfying

J∆w(t) = H1∇x(t)−∇ẋ(t)+H2∇x(t −h), (7)

and let
∆w(t)+we(t) = ŵe(t), (8)

by combining equations (7), (8) and (3), the disturbance
estimation ŵe(t) is easily obtained

ŵe(t) = J+L1N∇x(t)+u f (t)−u(t)+ xI(t), (9)

as detailed in [3].
The state-space of F(s) is{

ẋF(t) = HF xF(t)+ JF ŵe(t),

w̃e(t) = NF xF(t).
(10)

And
W̃e(s) = F(s)Ŵe(s), (11)

where Ŵe(s) and W̃e(s)are the Laplace transform of ŵe(t)
and w̃e(t),

The control system’s new control law is

u(t) = u f (t)− w̃e(t) = KPx̂(t)− w̃e(t). (12)

III. STABILITY ANALYSIS AND DESIGN

Definition 1. If the energy supply function

G(w,z,τ)≥ γ < w,w >τ ,∀τ ≥ 0, (13)

holds under a zero initial state, where G(w,z,τ) =< z,Az >τ
+2 < z,Bw >τ + < w,Cw >τ and < a,b >τ=

∫ τ
0 aTbdt for

any τ ≥ 0, then system (1) is said to be strictly (A,B,C) − γ
− dissipative. (γ > 0, A < 0, symmetric matrices C, and any
real matrix B).

Lemma 1 ([14]). Regarding a specific symmetric matrix

ρ =

[
ρ11 ρ12

ρT
12 ρ22

]
, (14)

the following are considered equivalent:
(a) ρ < 0;
(b) ρ11 < 0 and ρ22 −ρT

12ρ−1
11 ρ12 < 0; and

(c) ρ22 < 0 and ρ11 −ρ12ρ−1
22 ρT

12 < 0.

Let us suppose that the singular-value decomposition
(SVD) of a matrix � is as follows

�= U1
[
V1 0

]
T1

T, (15)

where V1 > 0, U1 and T1 are unitary matrix.
An equivalent condition to the matrix equation �X = X̄� is

given by the following lemma.

Lemma 2 ([15]). There exists a matrix X̄ ∈ Rq×q such that
�X = X̄� holds for every X ∈ Rn×n, but only if X can be
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broken down into its component parts

X = T1

[
X̄11 0

0 X̄22

]
TT

1 , (16)

where T1 ∈Rn×n is a unitary matrix, X̄11 ∈Rq×q and X̄22 ∈
Rn−q×n−q. This holds true for any matrix with rank(�) = q
for which � ∈ Rq×n.

We have
˙̂x(t) = H1x̂(t)+H2x̂(t −h)+ JKpx̂(t)+L1N∇x(t)

+ JxI(t),
∇ẋ(t) = (H1 −L1N)∇x(t)+H2∇x(t −h)− JxI(t)

− JNF xF(t)+ Jdw(t),
ẋI(t) = L2N∇x(t),
ẋF(t) = HF xF(t)+ JF J+L1N∇x(t)+ JF NF xF(t)

+ JF xI(t).

Letting

ψ(t) =
[

x̂T(t) ∇xT(t) xT
I (t) xT

F(t).
]T (17)

So,

ψ̇(t) = H̄1ψ(t)+ H̄2ψ(t −h)+ J̄dw(t), (18)

where

H̄1 =


H1 + JKp L1N J 0

0 H1 −L1N −J −JNF

0 L2N 0 0
0 JF J+L1N JF HF + JF NF

,

H̄2 =


H2 0 0 0
0 H2 0 0
0 0 0 0
0 0 0 0

 ,

J̄d =


0
Jd

0
0

,

N̄ =
[

N N 0 0
]
.

Suppose that the SVD of the matrix N is as follows

N =U2
[

V2 0
]

T T
2 , (19)

where V2 is a positive definite matrix and U2 and T2 are
unitary matrices.

Letting T2 be
T2 =

[
T̄ T̂

]
, (20)

the theorem obtained in this paper is as follows.

Theorem 1. M, A, B, C are given matrixs, assume that there
exist positive-definite matrices Y1, Y2, Y3, Y4, X1, X11, X22, X3,
X4, and appropriate matrices W1, W2, and W3, such that the
following inequality holds

Ψ11 Ψ12 Ψ13 X Ψ15

⋆ −Y 0 0 0
⋆ ⋆ Ψ33 0 0
⋆ ⋆ ⋆ −Y 0

⋆ ⋆ ⋆ ⋆ A−1

< 0, (21)


X1 0 0 0
⋆ X2 X2M 0
⋆ ⋆ X3 0
⋆ ⋆ ⋆ X4

> 0, (22)

where

Ψ11 =


Φ11 Φ12 Φ13 0
⋆ Φ22 Φ23 Φ24

⋆ ⋆ Φ33 Φ34

⋆ ⋆ ⋆ Φ44

,

Φ11 = H1X1 + JW1 +X1HT
1 +W T

1 JT,
Φ12 =W2N + JMTX2,
Φ13 =W2NM+ JX3,
Φ22 = H1X2 +X2HT

1 −W2N −NTW T
2

− JMTX2 −X2MJT,
Φ23 = H1X2M−W2NM− JX3 +NTW T

3 ,
Φ24 =−JNF X4 +NTW T

2 J+TJT
F +X2MJT

F ,
Φ33 =W3NM+MTNTW T

3 ,
Φ34 = MTNTW T

2 J+TJT
F +X3JT

F ,
Φ44 = HF X4 +X4HT

F + JF NF X4 +X4NT
F JT

F ,

Ψ12 =


H2Y1 0 0 0

0 H2Y2 0 0
0 0 0 0
0 0 0 0

,

Ψ13 =


−X1NTB−X1NTAD

Jd −X2NTB−X2NTAD

−MTX2NTB−MTX2NTAD

0

,

Ψ14 =


X1 0 0 0
0 X2 X2M 0

0 MTX2 X3 0
0 0 0 X4

,

Ψ15 =


X1NT

X2NT

MTX2NT

0

,

Ψ33 =−DTAD−DTB−BTD−C+ γI,
the system (18) is strictly (A,B,C) − γ −dissipative.

X2 =
[

T̄ T̂
][ X11 0

0 X22

][
T̄ T

T̂ T

]
. (23)

Then, the parameters of the controller are

KP =W1X−1
1 , (24)

L1 =W2U2V2X11V−1
2 UT

2 , L2 =W3U2V2X−1
11 V−1

2 UT
2 . (25)

Proof: Choose a Lyapunov functional candidate to be

V (ψt) = ψT(t)Pψ(t)+
∫ t

t−h
ψT(s)Sψ(s)ds, (26)

where P> 0 and S > 0, here P and S are defined by P=X−1,
S = Y−1, where

X =


X1 0 0 0
⋆ X2 X2M 0
⋆ ⋆ X3 0
⋆ ⋆ ⋆ X4

,
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Y =


Y1 0 0 0
⋆ Y2 0 0
⋆ ⋆ Y3 0
⋆ ⋆ ⋆ Y4

.

Calculating the derivative of V (φt), yields

V̇ (ψt) = 2ψT(t)Pψ̇(t)+ψT(t)Sψ(t)−ψT(t −h)Sψ(t −h).
(27)

So, let

Ω = V̇ (ψt)−ZTAZ −2ZTBw−wT(C− γI)w (28)

we obtain

Ω =

 ψ(t)

ψ(t −h)

w(t)


T

Ξ

 ψ(t)

ψ(t −h)

w(t)

 , (29)

where

Ξ =

 Γ11 PH̄2 Γ13

⋆ −S 0
⋆ ⋆ Γ33

,

Γ11 = PH̄1 + H̄1
TP+S− N̄TAN̄,

Γ13 = PJ̄d − N̄TB− N̄TAD,
Γ33 =−DTAD−DTB−BTD−C+ γI.

If Ξ < 0, means

V̇ (ψt)−ZTAZ −2ZTBw−wT(C− γI)w < 0, (30)

with zero initial state, integrating both sides of (30) from 0
to t, yields

G(w,z,τ)≥ γ < w,w >τ ∀τ ≥ 0, (31)

thus, the system (18) is strictly (A,B,C) − γ −dissipative.
According to Lemma 1, Ξ can be equivalent to

ϕ11 PH̄2 ϕ13 I N̄T

⋆ −S 0 0 0
⋆ ⋆ ϕ33 0 0

⋆ ⋆ ⋆ −S−1 0

⋆ ⋆ ⋆ ⋆ A−1

< 0, (32)

ϕ11 = PH̄1 + H̄1
TP,

ϕ13 = PJ̄d − N̄TB− N̄TAD,
ϕ33 =−DTAD−DTB−BTD−C+ γI.

Pre-and post-multiplying (32) by diag{P−1,S−1, I, I, I} =
diag{X ,Y, I, I, I} yield

ξ11 H̄2Y ξ13 X XC̄T

⋆ −Y 0 0 0
⋆ ⋆ ξ33 0 0
⋆ ⋆ ⋆ −Y 0

⋆ ⋆ ⋆ ⋆ A−1

< 0, (33)

ξ11 = H̄1X +XH̄1
T,

ξ13 = J̄d −XN̄TB−XN̄TAD,
ξ33 =−DTAD−DTB−BTD−C+ γI.

Applying Lemma 2 to (19) we obtain

X̄2 =U2V2X11V−1
2 UT

2 , (34)

with
NX2 = X̄2N. (35)

Letting

W1 = KPX1, W2 = L1X̄2, W3 = L2X̄2, (36)

and substituting (18) into (33) yield (21).
When disturbance w(t) = 0, the system (18) is asymp-

totically stable if V̇ (ψt) < 0. Note that, if Ξ < 0 holds, the
V̇ (ψt)< 0.

So, the closed-loop system (18) is asymptotically stable if
LMI (21) holds.

This completes the proof.

IV. SIMULATION

Now we assume each parameter of the plant

H1 =

[
−2 0
0 −5

]
, H2 =

[
0.2 0
0.1 0.3

]
,

J =

[
2
1

]
,Jd =

[
2
1

]
, M =

[
0
−8

]
,

N =
[
2 1

]
, D = 1,γ = 0.1,A =−1,

B = 1,C = 1,h = 1.

The disturbance

d(t) = 0.1tanh(t)+0.8sin(0.5πt). (37)

The parameters of the F(s) are set as follows
JF = 100, HF =−101, NF = 1.
By calculating the LMI of Theorem 1, the parameter of

the controller is

KP =
[
−51.9590 −25.2116

]
,

and

L1 =
[
21.3686 10.0790

]T
, L2 = 48.0322.

We compared the proposed method to the Sliding-
Mode-Observer-Equivalent-Input-Disturbance (SMO-EID) to
demonstrate its efficacy [16]. In comparison to the traditional
EID method, the SMO-EID method adds a sliding-mode
control law based on the traditional Luenberger observer
(Fig.2), which improves disturbance rejection performance.

The switching function and sliding-mode control law are
designed as follows:

Ξ(s̄(t)) = arctan s̄(t) = arctan(y(t)− ŷ(t)), Ks = 40.

According to Fig.3, our method’s peak-peak value in
steady state is approximately 0.0165, nevertheless, the peak-
peak value of the SMO-EID method is about 0.5187. It is
clear that the presented method accomplishes disturbance
rejection more successfully than the SMO-EID method since
it reduces the peak-peak value of the steady state to 31 times.
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ŵ (t)e

EID estimator

J+

J

J
d

w(t)

x(t) x(t)
s-1I

H
1

H
2

N

w(t)

D
y(t)

e-hs

L
1

  (s (t))

J s-1I N

H
1

H
2 e-hs

K
p

           Plant

-

.

y(t)
^

x(t)^x̂(t)

.

K
s

z(t)

-

Sliding-mode observer

Fig. 2: Configuration of SMO-EID control system.
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Fig. 3: System output for SMO-EID method and our method.

V. CONCLUSION

This paper is the first time to consider the dissipation of
time-delay systems based on a modified PIO. The traditional
Luenberger observer is replaced by a modified PIO and
the time delay is also considered. The state of the time-
delay system is reconstructed using the observer. A sufficient
stability criterion is obtained and the parameters of the
controller are designed on the basis of the stability criterion.
The efficiency of the presented method is demonstrated by
comparisons between it and SMO-EID and EID approaches.

REFERENCES

[1] W. B. Chen, F. Gao, S. Y. Xu, Y. M. Li, and Y. M. Chu, “Robust
Stabilization for Uncertain Singular Markovian Jump Systems via
Dynamic Output-Feedback Control,” Systems & Control Letters, vol.
171, pp. 105433, 2023.

[2] L. Yao, X. F. Jiang, M. C. Wang, and Y. W. Zhang, “An Improved
Stability Criterion for a class of Linear Systems with Interval Time-
Varying Delay,” in Lecture Notes in Chinese Control and Decision
Conference 2018, pp. 2801-2805.

[3] A. J. van der Schaft, “Cyclo-Dissipativity Revisited,” IEEE Transactions
on Automatic Control, vol. 66, no. 6, pp. 2920-2924, 2020.

[4] P. N. Kohler, M. A. Muller and F. Allgower, “Approximate Dissipativity
of Cost-Interconnected Systems in Distributed Economic MPC,” IEEE
Transactions on Automatic Control, vol. 68, no. 4, pp. 2170-2182, 2022.

[5] R. Saravanakumar, G. Rajchakit, C. K. Ahn, and H. R. Karimi, “Ex-
ponential Stability, Passivity, and Dissipativity Analysis of Generalized
Neural Networks with Mixed Time-Varying Delays,” IEEE Transactions
on Systems, Man, and Cybernetics: Systems, vol. 49, no. 2, pp. 395-405,
2017.

[6] J. C. Willems, “Dissipative Dynamical Systems Part I: General Theory,”
Archive for Rational Mechanics and Analysis, vol. 45, no. 5, pp. 321-
351, 1972.

[7] J. H. She, M. X. Fang, Y. Ohyama, H. Hashimoto, and M. Wu, “Improv-
ing Disturbance-Rejection Performance based on an Equivalent-Input-
Disturbance Approach,” IEEE Transactions on Industrial Electronics,
vol. 55, no. 1, pp. 380-389, 2008.

[8] J. H. She, X. Xin and T. Yamaura, “Analysis and Design of Control Sys-
tem with Equivalent-Input-Disturbance Estimation,” in Lecture Notes in
IEEE International Conference on Control Applications 2006, pp. 1463-
1469.

[9] Q. Zhong, K. Wang, K. Mao, B. T. Dong, and Q. Kuang, “Fault-
Tolerant Control of Demagnetization for Ltra-High-Speed PMSM based
on Improved Equivalent-Input-Disturbance Approach,” in Lecture Notes
in 25th International Conference on Electrical Machines and Systems
2022, pp. 1-5.

[10] Q. C. Mei, J. H. She, Z. T. Liu, and M. Wu, “Estimation and
Compensation of Periodic Disturbance Using Internal-Model-Based
Equivalent-Input-Disturbance Approach,” Information Sciences, vol. 65,
no. 182205, 2022.

[11] Y. W. Du, W. H. Cao, J. H. She, M. Wu, M. X. Fang, and S. Kawata,
“Disturbance Rejection and Control System Design Using Improved
Equivalent Input Disturbance Approach,” IEEE Transactions on Indus-
trial Electronics, vol. 67, no. 4, pp. 3013-3023, 2019.

[12] P. Yu, K. Z. Liu, X. D. Liu, J. H. She, and X. L. Li, “Error-Driven-
Based Performance Analysis of Nonlinear Equivalent-Input-Disturbance
Approaches,” in Lecture Notes in IEEE/ASME International Conference
on Advanced Intelligent Mechatronics 2022, pp. 915-920.

[13] M. Wu, F. Gao, P. Yu, J. H. She, and W. H. Cao, “Improve Disturbance-
Rejection Performance for an Equivalent-Input-Disturbance-Based Con-
trol System by Incorporating a Proportional-Integral Observer,” IEEE

IAENG International Journal of Applied Mathematics, 53:2, IJAM_53_2_37

Volume 53, Issue 2: June 2023

 
______________________________________________________________________________________ 



Transactions on Industrial Electronics, vol. 67, no. 2, pp. 1254-1260,
2019.

[14] P. P. Khargonek, I. R. Petersen and K. M. Zhou, “Robust Stabilization
of Uncertain Linear Systems: Quadratic Stabilizability and H∞ Control
Theory,” IEEE Transactions on Automatic Control, vol. 35, no. 3, pp.
356-361, 1990.

[15] D. W. C. Ho and G. Lu, “Robust Stabilization for a class of Discrete-
Time Nonlinear System via Output Feedback: the Unified LMI Ap-
proach,” International Journal of Control, vol. 76, no. 2, pp. 105-115,
2003.

[16] W. J. Cai, “Disturbance-Rejection and Tracking Control for Quadrotor
UVAs based on Equivalent-Input-Disturbance Approach,” China Uni-
versity of Geosciences, 2020.

IAENG International Journal of Applied Mathematics, 53:2, IJAM_53_2_37

Volume 53, Issue 2: June 2023

 
______________________________________________________________________________________ 




