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Abstract—In this paper, using the rational contraction we
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over partially ordered ultrametric spaces. Further, these results
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I. INTRODUCTION

F ixed-point theory plays one of the key roles in the
advancement of functional analysis. The research in

fixed point theory was initiated by Poincare in the 19th
century. Fixed point theory and its applications are an
emerging field of research as they have applications in
solving a growing number of nonlinear problems. A famous
principle known as the Banach contraction principle was
introduced by Banach [4] in 1922 and played a major role
in obtaining the sufficient conditions for the existence of
fixed points and further proving its uniqueness in various
algebraic spaces. The author of [4] demonstrated that
every contraction mapping has a unique fixed point in
complete metric spaces. Several fascinating extensions
and generalizations have been obtained for the Banach
contraction principle.

A new contractive principle known as rational contraction,
was developed by Dass and Gupta [7] in 1975 for the
existence of fixed points which was stated as follows: Let
(χ, d) be a complete metric space and ⊤ is a self map on χ
such that there exists ϱ, ϑ ≥ 0 with ϱ+ ϑ < 1 satisfy

d(⊤x,⊤y) ≤ ϱ
d(x,⊤x)(1 + d(y,⊤y))

1 + d(x, y)
+ ϑd(x, y),

for all x, y ∈ χ, then ⊤ has a fixed point.

Further, in 1997, Jaggi [12] introduced a new rational type
contractive condition which also helped to demonstrate the
uniqueness of fixed points in metric spaces and the theorem
is stated as follows:

Suppose ⊤ is a continuous self-map defined on a complete
metric space (χ, d). Let ⊤ satisfies the following contractive
condition:

d(⊤x,⊤y) ≤ ϱ
d(x,⊤x)d(y,⊤y)

d(x, y)
+ ϑd(x, y),
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for all x, y ∈ χ, for some ϱ,ϑ ∈ [0, 1) and ϱ + ϑ < 1, then
⊤ has a unique fixed point in χ.

The existence of fixed points for self-mappings defined
over partially ordered sets was initially discussed by Ran
and Reurings [27]. Further, they gave some applications
for matrix equations. Thereafter, the results of [27] were
generalized to partially ordered sets [28]. Some related
results about partially ordered sets can be found in [1] and
the references therein.

Later, Cabrera [6] proved the results of Dass and Gupta
over partially ordered metric spaces. The same results have
been presented by Poom Kumam [19] through rational
contractions in ordered metric spaces. Harjani et al., [10]
proved a fixed point theorem in partially ordered metric
spaces, meeting a rational type contractive condition
attributed to Jaggi [12].

The concept of weakly increasing property on maps was
investigated by Nashine and Samet [17]. In 1996, Junck
[13] generalized the notion of weakly commuting maps by
introducing the concept of compatible maps. In 1998, Pant
[18] initiated the notion of reciprocally continuous maps and
obtained some fixed point results. This idea has been well
utilized in checking the compatibility between the mappings.

In 1897, German mathematician Hensel [11] introduced
the concept of p-adic numbers. The number theory involves
significant use of p-adic numbers. The completion of the
field Q of rational numbers concerning a p-adic valuation
| · |p is called the field of p-adic numbers denoted by Qp.

Further, the concept of ultrametric spaces was introduced
by Van Rooij [26] in 1978. Using generalized contractive
mappings, Gajic [8] proved some fixed point theorems in
a spherically complete ultrametric spaces. Rao et al., [25]
discussed some coincidence point theorems for three and four
self-maps using generalized contractive conditions. Some
fixed point theorems in ultrametric spaces have been in-
vestigated by Kirk and Shahzad [14]. There are numerous
studies on this topic have been conducted including [5],
[9], [16], [20], [21], [22], [29]. In the year 2017, Hamid
Mamghaderi et al., [15] proved some fixed point theorems in
partially ordered ultrametric and non-Archimedean normed
spaces which he considered single-valued and strongly con-
tractive mappings. Also, Ramesh Kumar and Pitchaimani
[23], [24] analyzed some set-valued contractions and Prešić-
Reich types of mappings in ultrametric spaces.
Motivated by the above results, in this paper, we investigate
the various fixed point results in ultrametric spaces using
p-adic distance under rational-type contractive conditions.
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II. PRELIMINARIES

Definition 2.1. [2] Consider a fixed prime number p. Also,
let c ∈ R, where 0 < c < 1 and c will be fixed. If κ is any
rational number other than zero, we can write κ in the form

κ = pα
a

b
,

where α ∈ Z, a, b ∈ Z and p ∤ a,p ∤ b. Clearly, α may be
positive, negative or zero depending on X. We now define

|κ|p = cα and |0|p = 0,

it follows immediately from the definition that, |κ|p ≥ 0
and equals 0 if and only if κ = 0.

Example 2.1. [2] Take κ = 19
216 . Suppose if we want to find

its 2-adic absolute value (where p=2), first, we write κ in
the following form

κ =
19

8× 27
= 2−3 × 19

27
,

which implies that |κ|2 = 23 = 8.
Then, what about its 19-adic absolute value? It will simply
be |κ|19 = 1

19 because

κ = 19× 1

216
thus |κ|19 =

1

19
.

Also, it is trivial that the p-adic absolute value of a rational
number when p divides neither the numerator nor the
denominator is 1, since p0 = 1.

Definition 2.2. [26] A non-Archimedean metric known as an
ultrametric is a function dp : X2 → R+ such that

(i) dp(κ, y) ≥ 0 and dp(κ, y) = 0 iff κ = y,

(ii) dp(κ, y) = dp(y,κ),
(iii) dp(κ, y) ⪯ max {dp(κ, z), dp(z, y)}

(stronger triangle inequality),

for all κ, y, z ∈ X. The p-adic valuation |.|p induces
the above metric dp and so it can be defined by
dp(κ, y) = |κ − y|p.

Definition 2.3. [15] Let X be a non-void set. A partially or-
dered relation ⪯ over X is a relation satisfying the following
conditions:

(i) for all κ ∈ X, κ ⪯ κ, (Reflexive)
(ii) for all κ, y ∈ X,

κ ⪯ y and y ⪯ κ imply κ = y,

(anti-symmetry)
(iii) for all κ, y, z ∈ X,κ ⪯ y and y ⪯ z

imply κ ⪯ z. (transitivity)

Then, the pair (X,⪯) is called a partially ordered set. If
(X,⪯) is a partially ordered set, then κ and y are called
comparable elements of X if either κ ⪯ y or y ⪯ κ.

Partial ordered sets have been extensively studied by
Ran and Reurings [27]. Here we introduce the concept of
partially ordered ultrametric spaces as follows.

Definition 2.4. Let (X, dp,⪯) is said to be partially ordered
ultrametric spaces, if dp is defined over the partially ordered
set (X,⪯).

Definition 2.5. Let (X, dp) be a complete ultrametric
spaces, then the triple (X, dp,⪯) is said to be partially
ordered complete ultrametric spaces.

Definition 2.6. Let (X, dp,⪯) be an ultrametric space.
Assume that X is regular if and only if there is a non-
decreasing sequence {κn} in X such that

lim
n→∞

κn = κ,

then κn ⪯ κ, for all n ∈ N .

Definition 2.7. Let (X, dp,⪯) be an ultrametric spaces and
⊤,R : X → X be the mappings such that ⊤X ⊆ RX. Then
⊤ is called weakly increasing with respect to R if and only
if

⊤κ ⪯ ⊤y, ∀ κ ∈ X, y ∈ R−1(⊤κ).

Definition 2.8. Let R,⊤ be the self maps on X with an
ultrametric dp, then the pair {R,⊤} is called reciprocally
continuous if and only if

lim
n→∞

R⊤κn = Rz and lim
n→∞

⊤Rκn = ⊤z,

for every sequence {κn} in X satisfying

lim
n→∞

Rκn = z = lim
n→∞

⊤κn, for some z ∈ X.

Definition 2.9. Let R,⊤ be the self maps on X with an ultra-
metric dp.Then, the pair {R,⊤} is called weakly reciprocally
continuous if and only if

lim
n→∞

R⊤κn = Rz,

for every sequence {κn} ∈ X satisfying

lim
n→∞

Rκn = z = lim
n→∞

⊤κn for some z ∈ X.

Definition 2.10. Let R,⊤ be the self maps on X with metric
dp. Then the ultrametric spaces (X, dp) is called compatible
if and only if

lim
n→∞

dp(R(⊤(κn)),⊤(R(κn))) = 0,

whenever a sequence {κn} in X such that

lim
n→∞

Rκn = lim
n→∞

⊤κn = z,

where z ∈ X.

Example 2.2. Let X = [0, 1] and dp be the ultrametric on
X. The mappings A,S : X → X defined by

S(κ) =

 3κ − 2, if κ ∈ [0, 1],

0, otherwise

A(κ) =

 κ2, if κ ∈ [0, 1],

0, otherwise.

Now, consider the sequence {κn} = {1− 1
n} in X. Then
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lim
n→∞

Aκn = lim
n→∞

(
1− 1

n

)2

= 1

1 = lim
n→∞

Sκn = lim
n→∞

3

(
1− 1

n

)
− 2

lim
n→∞

ASκn = lim
n→∞

A
(
3

(
1− 1

n

)
− 2

)
= lim

n→∞
A
(
1− 3

n

)
= lim

n→∞

(
1− 3

n

)2
= 1.

Similarly,
lim
n→∞

SAκn = lim
n→∞

S
(
1− 1

n

)2
= lim

n→∞
3
(
1− 1

n

)2 − 2 = 1.

Therefore, the pair (A,S) is compatible.
Inspired by the notions of rational type contraction, we

introduce a new p-adic rational type contractive condition
and prove some fixed point theorems in partially ordered
ultrametric spaces.

III. MAIN RESULTS

In this section, we use our new p-adic rational type
contractive condition and prove some fixed point results
which has been discussed by Poom Kumam et al. [19] for
the classical case.
Theorem 3.1. Let (X,⪯, dp) be a partially ordered complete
ultrametric spaces. Let ⊤,R : X → X be the two functions
with

dp(⊤κ,⊤y) ⪯ 1

|ϑ|
dp(Rκ,⊤κ)dp(Ry,⊤y)

dp(Rκ,Ry)
+

1

|ϱ|
dp(Rκ,Ry),

(1)

where ϱ, ϑ ∈ [0, 1) with ϱ+ ϑ < 1 and assume that
(i) the pair (R,⊤) is both weakly reciprocally continuous

and commuting,
(ii) X is regular and ⊤ is weakly increasing with R.

Then there exist a coincidence point u ∈ X of ⊤ and R such
that Ru = ⊤u.

Proof: Let κ0 be an arbitrary point in X. Since ⊤X ⊆
RX, we construct a sequence {κn} in X by

⊤κn−1 = Rκn. (2)

As κ1 ∈ R−1(⊤κ0) and x2 ∈ R−1(⊤κ1), from definition
2.7, we obtain

Rκ1 = ⊤x0 ⪯ ⊤κ1 = Rκ2 ⪯ ⊤κ2 = Rκ3 ⪯ ⊤κ3 = Rκ4.

Continuing this process indefinitely, we get
Rκ1 ⪯ Rκ2 ⪯ Rκ3 ⪯ .. ⪯ Rκn−1 ⪯ Rκn ⪯ Rκn+1 ⪯ · · · .

Now, to prove that R(κn) is a Cauchy sequence. Since
R(κ1) ≥ R(κ0), using (1),we have

dp(Rκ1,Rκ2) = dp(⊤κ0,⊤κ1)

⪯ 1

|ϑ|
dp(Rκ0,⊤κ0)dp(Rκ1,⊤κ1)

dp(Rκ0,Rκ1)

+
1

|ϱ|
dp(Rκ0,Rκ1),

dp(Rκ1,Rκ2) ⪯
1

|ϑ|
dp(Rκ1,Rκ2) +

1

|ϱ|
dp(Rκ0,Rκ1)

(1− 1

|ϑ|
)dp(Rκ1,Rκ2) ⪯

1

|ϱ|
dp(Rκ0,Rκ1)

|ϑ− 1

ϑ
|dp(Rκ1,Rκ2) ⪯

1

|ϱ|
dp(Rκ0,Rκ1)

dp(Rκ1,Rκ2) ⪯ | ϑ

ϱ(1− ϑ)
| dp(Rκ0,Rκ1).

Where κ = ϑ
ϱ(1−ϑ) < 1,

=⇒ dp(Rκ1,Rκ2) ⪯ |κ| dp(Rκ0,Rκ1). (3)

For n > 0, As R(κn+1) ≥ R(κn), using(1), we have

dp(Rκn+1,Rκn+2) = dp(⊤κn,⊤κn+1)

⪯ 1

|ϑ|
dp(Rκn,⊤κn) dp(Rκn+1,⊤κn+1)

dp(Rκn,Rκn+1)

+
1

|ϱ|
dp(Rκn,Rκn+1),

⪯ 1

|ϑ|
dp(Rκn,Rκn+1) dp(Rκn+1,Rκn+2)

dp(Rκn,Rκn+1)

+
1

|ϱ|
dp(Rκn,Rκn+1),

dp(Rκn+1,Rκn+2) ⪯
1

|ϑ|
dp(Rκn+1,Rκn+2)

+
1

|ϱ|
dp(Rκn,Rκn+1),

dp(Rκn+1,Rκn+2) ⪯ | ϑ

ϱ(1− ϑ)
|dp(Rκn,Rκn+1).

dp(Rκn+1,Rκn+2) ⪯ |κ|n+1dp(Rκ0,Rκ1), (4)

with κ = ϑ
ϱ(1−ϑ) .

Now, let κn ∈ X, then using (4), we get

dp(Rκn,Rκn+1) ⪯ |κn| dp(Rκ0,Rκ1), (5)

this implies that,

dp(Rκn,Rκn+1) → 0 as n → ∞

since 0 < κ =
ϑ

ϱ(1− ϑ)
< 1.

Therefore, the sequence {Rκn} is Cauchy. Further, since X
is complete, there exists a κ ∈ X such that

lim
n→∞

⊤(κn) = lim
n→∞

R(κn) = κ. (6)

Also, by commutativity of ⊤ and R, we have

R(Rκn+1) = R(⊤κn) = ⊤(Rκn),

this implies that R−1(⊤(Rκn)) = Rκn+1.
Since ⊤ is weakly increasing with R, we can write

R(Rκn+2) = ⊤(Rκn+1) ≥ ⊤(Rκn) = R(Rκn+1). (7)

So that, R(Rκn) is non decreasing. Since R and ⊤ are weakly
reciprocally continuous,

lim
n→∞

R(⊤κn−1) = lim
n→∞

R(Rκn) = Rκ,

hence by the regularity of X, we obtain that

R(Rκn) ⪯ Rκ. (8)

i.e., R(Rκn) and Rκ are comparable.
Now, by using the triangle inequality and using equation (1),
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we have

dp(Rκ,⊤κ) ⪯ max

{
dp(Rκ,R(Rκn+1)), dp(R(Rκn+1),⊤κ)

}
⪯ max

{
dp(Rκ,R(Rκn+1)), dp(R(⊤κn),⊤κ)

}
⪯ max

{
dp(Rκ,R(Rκn+1)), dp(⊤(Rκn),⊤κ)

}
⪯ max

{
dp(Rκ,R(Rκn+1)),

1

|ϑ|
dp(R(Rκn),⊤(Rκn))dp(Rκ,⊤κ)

dp(R(Rκn),Rκ)

+
1

|ϱ|dp(R(Rκn),Rκ)
}
.

On taking limit as n → ∞, and using equation (8), we get

dp(Rκ,⊤κ) = 0,

so that Rκ = ⊤κ. As a result, we have demonstrated that R
and ⊤ have a coincidence point.
Theorem 3.2. Let (X,⪯, dp) be a partially ordered complete
ultrametric spaces. Let ⊤,R : X → X be the two functions
with

dp(⊤κ,⊤y) ⪯ 1

|ϑ|
dp(Rκ,⊤κ)dp(Ry,⊤y)

dp(Rκ,Ry)
+

1

|ϱ|
dp(Rκ,Ry),

(9)

where ϱ, ϑ ∈ [0, 1) with ϱ+ ϑ < 1 and presume that
(i) ⊤ is weakly increasing with R,

(ii) the pair (⊤,R) is compatible and reciprocally contin-
uous.

Then there exist a coincidence point κ ∈ X of ⊤ and R such
that Rκ = ⊤κ.

Proof: Proceeding in a similar way of the above Theo-
rem 3.1, there exist a sequence {κn} such that

lim
n→∞

R(κn) = lim
n→∞

⊤(κn) = κ. (10)

We now prove that, κ is the coincidence point of R and ⊤.
Since {⊤,R} is compatible and reciprocally continuous, we
have

lim
n→∞

dp(R(⊤(κn)),⊤(R(κn))) = 0, (11)

R(κ) = lim
n→∞

R⊤κn, ⊤(κ) = lim
n→∞

⊤Rκn, (12)

whenever,

lim
n→∞

R(κn) = lim
n→∞

⊤(κn) = κ. (13)

Further, using equation (12) in (11), we get,

dp(⊤κ,Rκ) = 0, so that ⊤κ = Rκ.
As a consequence of Theorems 3.1 and 3.2, we have the

following.
Theorem 3.3. Let (X,⪯, dp) be a partially ordered complete
ultrametric spaces. Let ⊤ : X → X be a non decreasing
mapping satisfying

dp(⊤κ,⊤y) ⪯ 1

|ϑ|
dp(κ,⊤κ)dp(y,⊤y)

dp(κ, y)
+

1

|ϱ|
dp(κ, y),

(14)

where ϱ, ϑ ∈ [0, 1) such that ϱ+ ϑ < 1 and presume that
(i) ⊤κ ⪯ ⊤(⊤κ), ∀ κ ∈ X,

(ii) either ⊤ is continuous or X is regular.

Then ⊤ has a fixed point.
Proof: In equation (1) of Theorem 3.1, taking R to be

an identity mapping on X, we get the proof of the theorem.

Property (A): If R(κn) is a non decreasing sequence in
X such that lim

n→∞
R(κn) = κ, then R(κn) is comparable to

Rκ, for all n ∈ N .

Theorem 3.4. Let (X,⪯, dp) be a partially ordered complete
ultrametric spaces. Let ⊤,R : X → X be the two functions
with

dp(⊤κ,⊤y) ⪯ 1

|ϑ|
dp(Rκ,⊤κ)dp(Ry,⊤y)

dp(Rκ,Ry)
+

1

|ϱ|
dp(Rκ,Ry),

(15)

where ϱ, ϑ ∈ [0, 1) such that ϱ+ ϑ < 1 and presume that
(i) κ is regular and ⊤ is weakly increasing with R,

(ii) the pair (⊤,R) is both commuting and weakly recip-
rocally continuous,

(iii) R satisfies the property (A).
Then ⊤,R have a common fixed point.

Proof: Proceeding in a similar way as discussed in
Theorem 3.1, one can construct a non decreasing sequence
{Rκn} such that lim

n→∞
Rκn+1 = lim

n→∞
⊤κn = κ and

⊤(κ) = R(κ).
Since R(κn) and R(κ) are comparable, by using equation
(15), we have

dp(Rκ,Rκn+1) = dp(⊤κ,⊤κn)

⪯ 1

|ϑ|
dp(Rκ,⊤κ)dp(Rκn,⊤κn)

dp(Rκ,Rκn)
+

1

|ϱ|
dp(Rκ,Rκn).

Now, taking the limit as n → ∞, one can get
κ = Rκ = ⊤κ. Hence the proof.
Theorem 3.5. Let (X,⪯, dp) be a partially ordered complete
ultrametric spaces. Let ⊤,R : X → X be the two functions
with

dp(⊤κ,⊤y) ⪯ 1

|ϑ|
dp(Rκ,⊤κ)dp(Ry,⊤y)

dp(Rκ,Ry)
+

1

|ϱ|
dp(Rκ,Ry)

(16)

where ϱ, ϑ ∈ [0, 1) such that ϱ+ ϑ < 1 and presume that
(i) ⊤ is weakly increasing with R,

(ii) the pair (⊤,R) is compatible and reciprocally contin-
uous,

(iii) R satisfies the property (A).
Then ⊤ and R have a common fixed point.

Proof: Proof is similar by the way of Theorems 3.2 and
3.4.
Remarks 3.1. The above theorems cannot be proved when
ϱ or ϑ is equal to zero.

Theorem 3.6. Let (X,⪯, dp) be a partially ordered complete
ultrametric spaces. Let ⊤,R : X → X be the two functions
with

dp(⊤κ,⊤y) ⪯ 1

|ϑ|
(1 + dp(Rκ,⊤κ))dp(Ry,⊤y)

1 + dp(Rκ,Ry)

+
1

|ϱ|
dp(Rκ,Ry), (17)

where ϱ, ϑ ∈ [0, 1) with ϱ+ ϑ < 1 and presume that
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(i) the pair (R,⊤) is both weakly reciprocally continuous
and commuting,

(ii) X is regular and ⊤ is weakly increasing with R.
Then there exist a coincidence point u ∈ X of ⊤ and R
such that Ru = ⊤u.

Theorem 3.7. Let (X,⪯, dp) be a partially ordered complete
ultrametric spaces. Let ⊤,R : X → X be the two functions
with

dp(⊤κ,⊤y) ⪯ 1

|ϑ|
(1 + dp(Rκ,⊤κ))dp(Ry,⊤y)

1 + dp(Rκ,Ry)

+
1

|ϱ|
dp(Rκ,Ry), (18)

where ϱ, ϑ ∈ [0, 1) with ϱ+ ϑ < 1 and presume that
(i) ⊤ is weakly increasing with R,

(ii) the pair (⊤,R) is compatible and reciprocally contin-
uous.

Then there exist a coincidence point κ ∈ X of ⊤ and R
such that Rκ = ⊤κ.

Theorem 3.8. Let (X,⪯, dp) be a partially ordered complete
ultrametric spaces. Let ⊤,R : X → X be the two functions
with

dp(⊤κ,⊤y) ⪯ 1

|ϑ|
(1 + dp(Rκ,⊤κ))dp(Ry,⊤y)

dp(Rκ,Ry)

+
1

|ϱ|
dp(Rκ,Ry), (19)

where ϱ, ϑ ∈ [0, 1) such that ϱ+ ϑ < 1 and presume that
(i) κ is regular and ⊤ is weakly increasing with R,

(ii) the pair (⊤,R) is both commuting and weakly recip-
rocally continuous,

(iii) R satisfies the property (A).
Then ⊤,R have a common fixed point.
Theorem 3.9. Let (X,⪯, dp) be a partially ordered complete
ultrametric space. Let ⊤,R : X → X be the two functions
with

dp(⊤κ,⊤y) ⪯ 1

|ϑ|
(1 + dp(Rκ,⊤κ))dp(Ry,⊤y)

dp(Rκ,Ry)

+
1

|ϱ|
dp(Rκ,Ry), (20)

where ϱ, ϑ ∈ [0, 1) such that ϱ+ ϑ < 1 and presume that
(i) ⊤ is weakly increasing with R,

(ii) the pair (⊤,R) is compatible and reciprocally contin-
uous,

(iii) R satisfies the property (A).
Then ⊤ and R have a common fixed point.

Example 3.1. Let X be a partially ordered ultrametric space
and ⊤,R be the self maps on X defined by

⊤κ =
κ
2
+

1

8
and Rκ = 2κ − 1

4

with the distance function dp defined in equation(15) , then
⊤ and R have a common fixed point.

Solution: From the Definition 2.1, of ⊤κ and Rκ, we get

dp(⊤κ,⊤y) = 1
2 |κ − y|p, dp(Rκ,⊤κ) = 3

2 |κ − 1
4 |p

dp(Ry,⊤y) = 3
2 |y −

1
4 |p, dp(Rκ,Ry) = 2|κ − y|p

consider the values of ϑ and ϱ lies between 0 and 1, with
ϑ+ ϱ < 1.

Let κ and y be fixed such that κ = 1
3 , y = 1

2 and using
the inequality (15) we obtain the following results:
In table,

R =
1

|ϑ|
dp(Rκ,⊤κ)dp(Ry,⊤y)

dp(Rκ,Ry)
+

1

|ϱ|
dp(Rκ,Ry)

Table I: p-adic calculation of (15) of the Theorem 3.5

p-adic ϱ ϑ dp(⊤κ,⊤y) R
0.1 0.8 90

0.2 0.7 96.42857143
0.3 0.6 110
0.4 0.5 130.5

2-adic 0.5 0.4 4 162
0.6 0.3 215
0.7 0.2 321.4285714
0.8 0.1 641.25

0.1 0.8 30.13888889
0.2 0.7 15.15873016
0.3 0.6 10.18518519
0.4 0.5 7.722222222

3-adic 0.5 0.4 3 6.277777778
0.6 0.3 5.37037037
0.7 0.2 4.841269841
0.8 0.1 4.861111111

0.1 0.8 11.25
0.2 0.7 6.428571429

5-adic 0.3 0.6 5
7-adic 0.4 0.5 4.5
11-adic 0.5 0.4 1 4.5
13-adic 0.6 0.3 5

0.7 0.2 6.428571429
0.8 0.1 11.25
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Figure 1: Existence of common fixed point.

From the above table, we obtain the common fixed point as
R( 14 ) = ⊤( 14 ) =

1
4 , which is clearly shown in figure 1.
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Example 3.2. Let X be a partially ordered ultrametric spaces
and ⊤,R be the self maps on X defined by

⊤κ = κ3 + 2 and Rκ = 2κ3 + 1

with the distance function dp defined in equation (1), then
⊤,R have a point of coincidence .
Solution: From the Definition 2.1, of ⊤κ and Rκ, we get

dp(⊤κ,⊤y) = |κ3 − y3|p, dp(Rκ,⊤κ) = |κ3 − 1|p

dp(Ry,⊤y) = |y3 − 1|p, dp(Rκ,Ry) = 2|κ3 − y3|p.

Consider the values of ϑ and ϱ lies between 0 and 1, with
ϑ+ ϱ < 1.

Let κ and y be fixed such that κ = 1
3 and y = 1

2 and
using the inequality (1) we obtain the following results:
In table,

R1 =
1

|ϑ|
dp(Rκ,⊤κ)dp(Ry,⊤y)

dp(Rκ,Ry)
+

1

|ϱ|
dp(Rκ,Ry)

Table II: p-adic calculation of (1) of the Theorem 3.1.

p-adic ϱ ϑ dp(⊤κ,⊤y) R1

0.1 0.8 271.25
0.2 0.7 136.4285714
0.3 0.6 91.66666667
0.4 0.5 69.5

3-adic 0.5 0.4 27 56.5
0.6 0.3 48.33333333
0.7 0.2 43.57142857
0.8 0.1 43.75

0.1 0.8 11.25
0.2 0.7 6.428571429
0.3 0.6 5

5-adic 0.4 0.5 4.5
11-adic 0.5 0.4 1 4.5

0.6 0.3 5
0.7 0.2 6.428571429
0.8 0.1 11.25

0.1 0.8 10.17857143
0.2 0.7 5.204081633
0.3 0.6 3.571428571

7-adic 0.4 0.5 2.785714286
0.5 0.4 1 2.357142857
0.6 0.3 2.142857143
0.7 0.2 2.142857143
0.8 0.1 2.678571429

0.1 0.8 10.09615385
0.2 0.7 5.10989011
0.3 0.6 3.461538462

13-adic 0.4 0.5 2.653846154
0.5 0.4 1 2.192307692
0.6 0.3 1.923076923
0.7 0.2 1.813186813
0.8 0.1 2.019230769

From the above table, we obtain the coincidence point as
R(1) = ⊤(1) = 3, which is clearly shown in figure 2.
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Figure 2: Existence of coincidence point.

Example 3.3. Let X be a partially ordered ultrametric spaces
and ⊤,R be the self maps on X defined by

⊤κ = κ2 and Rκ = κ3

with the distance function dp defined in equation (19) , then
⊤ and R have a common fixed points.

Solution: From the Definition 2.1, of ⊤κ and Rκ, we get

dp(⊤κ,⊤y) = |κ2 − y2|p, dp(Rκ,⊤κ) = |κ3 − κ2|p

dp(Ry,⊤y) = |y3 − y2|p, dp(Rκ,Ry) = |κ3 − y3|p.

Consider the values of ϑ and ϱ lies between 0 and 1, with
ϑ+ ϱ < 1.

Let κ and y be fixed such that κ = 1
3 , y = 1

2 and using
the inequality (19), we obtain the following results:
In table,

R2 =
1

|ϑ|
(1 + dp(Rκ,⊤κ))dp(Ry,⊤y)

1 + dp(Rκ,Ry)
+

1

|ϱ|
dp(Rκ,Ry)
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Figure 3: Existence of common fixed point.

From the below table, we obtain the common fixed point
as R(0) = ⊤(0) = 0, and R(1) = ⊤(1) = 1 which is clearly
shown in figure 3.
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Table III:p-adic calculation of (19) of the Theorem 3.8.

p-adic ϱ ϑ dp(⊤κ,⊤y) R2

0.1 0.8 81.66666667
0.2 0.7 41.9047619
0.3 0.6 28.88888889
0.4 0.5 22.66666667

2-adic 0.5 0.4 4 19.33333333
0.6 0.3 17.77777778
0.7 0.2 18.0952381
0.8 0.1 23.33333333

0.1 0.8 271.25
0.2 0.7 136.4285714
0.3 0.6 91.66666667
0.4 0.5 69.5

3-adic 0.5 0.4 9 56.5
0.6 0.3 48.33333333
0.7 0.2 43.57142857
0.8 0.1 43.75

0.1 0.8 11.25
0.2 0.7 6.428571429

5-adic 0.3 0.6 5
7-adic 0.4 0.5 4.5
11-adic 0.5 0.4 1 4.5
13-adic 0.6 0.3 5

0.7 0.2 6.428571429
0.8 0.1 11.25

IV. CONCLUSION

In this paper, we established some new fixed point results
using rational type contraction with the help of p-adic dis-
tance over partially ordered complete ultrametric spaces. Our
results are the extensions of the fixed point results discussed
recently by Poom kumam [19]. Further, we justified our main
results by suitable examples. The uniqueness of fixed points
is still an open problem to discuss in future.
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