
 

 
Abstract—In this article, an ordered weighted averaging 

operator with the degree of orness and the measure of entropy 
was examined by us. The purpose of this paper is twofold. We 
first prove that the maximum value of the degree of orness is 
attained by the weight with a uniform distribution. Next, we 
provide a reasonable explanation to clarify why the induced 
ordered weighted averaging operator can perform better than 
the regression model. Our further examination will help 
researchers understand an ordered weighted averaging method 
and an induced ordered weighted averaging approach in group 
decision-making. 
 

Index Terms—Ordered weighted averaging method, Group 
decision-making, Degree of orness, Induced ordered weighted 
averaging approach 
 

I. INTRODUCTION 

HE ordered weighted averaging operator with the degree 
of orness and the measure of dispersion (or entropy) had 

been examined by many papers. We just list a few of them in 
the following: Bonissone and Decker [1], O’Hagan [2], 
Carbonell et al. [3], Filev and Yager [4], Fuller and Majlender 
[5, 6], Abbasbandy and Hajjari [7], Mendel et al. [8], 
Rodríguez et al. [9], Mendel et al. [10], Rodríguez et al. [11], 
Wan et al. [12], and Liao et al. [13], to show that it is an 
interesting issue among researchers. In this paper, we 
concentrate on Filev and Yager [4] to provide some 
discussions and then we present several improvements. In the 
literature, researchers explained why must apply the ordered 
weighted averaging operator, to replace the weighted 
averaging operator as follows. During a war, estimating the 
number of enemy planes is an important task to decide the 
defense strategy. For this kind of estimation, underestimating 
the force of the enemy planes would be more dangerous than 
overestimating it. Applying the ordered weighted averaging 
operator can give more weight to those priority targets and 
then those unimportant factors will not influence the 
estimated results significantly such that underestimating 
those important targets will not happen. We will first review 
the related published findings and then provide our 
comments and new theorems to improve those results. 
Several other related papers with ordered weighted averaging 
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such as Torra [14],  Tahayori and Sadeghian [15], Rodríguez 
and Martínez [16], Wang [17], Hu et al. [18], Song and Hu 
[19], Gao et al. [20], Zheng et al. [21], Cao et al. [22], Li et al. 
[23], and Qin et al. [24] that are important reference articles 
for this research trend. 

II. REVIEW OF PREVIOUS RESULTS 

We recall the definitions of an ordered weighted averaging 
method with the degree of orness and the measure of 
dispersion (or entropy) as follows. 

The alpha value of W, expressed as  W , is assumed in 

the following, 
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to calculate the level of maxness of the aggregation, as that is 
similar to a max measure. 

The second assessment assumed by Filev and Yager [4] 
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is calculated as the measure of entropy (or dispersion) and 
was defined to assess the level to which W considers how 
much the given data is in the composition. 

Filev and Yager [4] provided an example with the 
following three weighting vectors: 

 2.0,2.0,2.0,2.0,2.01 W ,                (2.3) 

 5.0,0,0,0,5.02 W ,                   (2.4) 

and  

 0,0,1,0,03 W ,                       (2.5) 

such that they derived the following results, 

  5ln1 WH ,                            (2.6) 

  2ln2 WH ,                             (2.7) 

and  

  03 WH .                               (2.8) 

They saw that the higher entropy indicates the homogeneous 
distribution among weights and then they did not provide 
further explanation. 

III. OUR IMPROVEMENT 

We will prepare an analytical explanation to show that the 

maximum value of dispersion will happen at 1W . 

The dispersion of  1,..., nW w w  is 
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If we solve the system for the roots of the first partial 

derivative, from 0
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, it follows that 
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for 1,..., 1i n  . Hence,  1 1,..., nG w w   has one critical 

point at  1/ ,...,1/n n .  

Next, we will show that  1/ ,...,1/n n  is the global 

maximum point. 
We obtain that 
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Therefore, we need to prove that a matrix, say 
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for i j ,  
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and  
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To simplify the computation, we consider another matrix, 

say N , with 

nN w M  .                         (3.9) 

such that if  i j n n
N b


  then 1i jb   for i j , and 

1i i ib c   with i n ic w w . Our goal is to verify that N  

is a positive definite matrix. 
We compute the determinant of N as follows. 

detN det
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If we use row operation 1 jR R   for 2,...,j n , then 

use the last column to compute the determinant then 

detN c det

1 c 1
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We use the row operation 1 jR R  , for 2,..., 1j n  , 

for the first matrix in Equation (3.11) and use the second-row 

expansion repeatedly for 2n  times for the second matrix, 
then it yields 

detN c det

1 c 1
1   1 c
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…        1
1 1 c

 

1 1 ∏ c det c .         (3.12) 
After we further simplify Equation (3.12), then Equation 

(3.11) is verified. 
The rest proof is dependent on the mathematical induction 

to show that det 0N  . 

IV. FURTHER DISCUSSION FOR THE ORDERED WEIGHTED 

AVERAGING OPERATOR  

We recall how to decide the relative weights for the 
ordered weighted averaging operator. The approach to 
deciding weights is a crucial factor that was developed in the 
literature. 

A traditional approach to deciding the weights is related to 
an ordered weighted averaging method with a verbal 
language expressed as a fuzzy subset Q. Following the 
above-mentioned procedure, the weighting vector  with n 
components is assumed as follows 
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for nj ,...,2,1  with   00 Q  and   11 Q . 

Another approach, suggested by O’Hagan [2], is to derive 
a weighting vector by the alpha value and the dispersion of W. 
For a given alpha value  to solve 
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(ii) 1
1
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and 

(iii) 10  jw ,                        (4.5) 

for nj ,...,1 . 

IAENG International Journal of Applied Mathematics, 53:3, IJAM_53_3_05

Volume 53, Issue 3: September 2023

 
______________________________________________________________________________________ 



 

A process to derive the weights was proposed by Filev and 
Yager [4] related to the ordered weighted averaging 
aggregation from observational data with a collection of m 
samples each comprised of an n-tuple of values 

 nkk aa ,...,1 , for mk ,...,1 , called the arguments, and an 

assorted single value called the aggregated value, which is 

denoted as kd . The reordered objects, jkb , is the jth largest 

element of the argument collection  nkk aa ,...,1 . Our 

purpose is to solve the weights for the ordered weighted 

averaging operator  nwwW ,...,1  such that to minimize 

the instantaneous error ke , with 

 211 ...
2

1
knnkkk dwbwbe  ,          (4.6) 

under the constraints 1
1
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i
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nj ,...,1 . 

In a neural society with backpropagation, the gradient 
descent algorithm was adopted  with the initial values of the 

ordered weighted averaging operator 
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the estimate of the aggregated value kd , with 

nnkkk wbwbd  ...
~

11  .                  (4.7) 

To overcome the constraints on iw , we present each the 

weight of the ordered weighted averaging operator as follows 
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and then updating the parameters i  as follows 

      kkkikiii dddbwll 
~~

1  ,   (4.9) 

that   indicates the learning coefficient  10    and 

after the lth iteration,  li  denotes the approximation of 

i . 

In the experiment, the estimated values of i  after 350 

iterations were recorded. 
An induced ordered weighted averaging method is 

expressed as 

  i

n

i
innW bwauauF 




1

11 ,,...,, ,       (4.10) 

where a two-tuple ii au ,  is presented where jb   is the a 

value of the pair having the jth largest u value, and then iu  is 

the ordering inducing variable (locator; descriptor) and ia  is 

the argument variable (prescribed value). 

Assuming g that ii au ,  and ii au ,  satisfying 

ii aa   for ni ,...,1 , then  the monotonicity property is 

assumed 

   iiWiiW auFauF  ,, .            (4.11) 

We recall that Filev and Yager [4] assumed that if the 
monotonicity is not held then the inducing variables are 
preserved in their ordering. On the other hand, Filev and 
Yager [4] pointed out that when a tie occurs then (i) the 
induced ordered weighted averaging approach, and (ii) the 
ordered weighted averaging method must be paid attention to 
their distinction. 

Sometimes, there is no number but linear order. In such 
conditions, researchers applied an implicit lexicographic 

ordering to express as iu  which is similar to the ordering of 

words in dictionaries. We list several examples of the ordered 
weighted averaging operators: 

(i) The nearest neighbor rule:   0,...,0,1W ; 

(ii) The classic exponential smoothing:   11  n
nw  , 

  11  j
jw   for 1,...,1  nj . 

(iii) the moving average of the last m readings: 
m

wj

1
  

for mj ,...,1  and 0jw  for all others j .  

V. MODELING USING INDUCED ORDERED WEIGHTED 

AVERAGING OPERATORS  

The development of a model needs some background 
about the field in which we are trying to build a system. 
Background about a field can obtain through several different 
approaches. One of them is the original raw observational 
data, other kinds of background contain expertise and 
experience. The process of developing a system is partitioned 
into two stages, (i) formation identification, and (ii) variable 

estimation. During data collection, the values of ju  are not 

obtained but they play an important factor to decide the 

weights related to the value of ja . 

We recall the Best Yesterday Model of Filev and Yager [4]. 
First, we quote the prediction data for four experts, A, B, C, 
and D for five days and the actual opening price in Table 1. 
 

Table 1. Expert data 
 Expert predictions Actual

Day# A B C D OP 
1 101 99 82 116 100 
2 97 76 90 121 92 
3 96 75 91 107 100 
4 104 95 90 118 99 
5 105 89 91 112 105 

Reproduction from Filev and Yager [4]. OP: Opening Price. 
 
Filev and Yager [4] first used a linear regression model to 

predict that 

Pk wAXA k wBXB k  
wCXC k wDXD k                      (5.1) 

where kP  is the predicted opening price on day k, Aw  is the 

weight assigned to expert A, and )(kX A  is the estimate 

provided by expert A for day k. They found that 
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84.0Aw , 16.0Bw , 

55.0Cw  and 42.0Dw                (5.2) 

and then the forecasts for the opening price on day k 

25.1071 P , 45.1222 P , 37.883 P , 

18.1164 P  and 75.945 P            (5.3) 

such that the residue-mean sum error of our estimation is 5.11 
apart from the opening price. 

Secondly, they used the induced ordered weighted 
averaging operator model to solve the problem where the 
ordered weighted averaging operator pair is assumed 

   1)1(  kXkTPku AA            (5.4) 

and 

   kXka AA  ,                          (5.5) 

similar to other experts, B, C, and D. Filev and Yager [4]  
tried to use the induced ordered weighted averaging operator 

pair  au,  with the learning model to calculate the 

prediction for day k as 

   )(),(,...,)(),(ˆ kakukakuFkP DDAAW    (5.6) 

under this structure to get the predicted value 

 kywkP
j

jj



4

1

)(ˆ                         (5.7) 

where  ky j  is today’s prediction of yesterday's jth best 

expert. Therefore, the findings of jw  are not related to an 

expert as the linear model but related to the location of 
yesterday's data. Filev and Yager [4] found that 

20.01 w , 12.02 w , 

08.03 w  and 60.04 w                 (5.8) 

and then estimations of the opening price on day k are 
expressed as 

07.1001 P , 14.922 P , 1003 P , 

994 P  and 1055 P                   (5.9) 

such that the residue-mean sum error of our estimation is 0.19 
apart from the opening price. They concluded that in this case, 
the induced ordered weighted averaging operator model 
performs well. 

Filev and Yager [4] mentioned that implicit in their 
solution method is related to the iterative hypothesis, which is 
a hypothesis saying “any model found to provide a good 
approximation to the observations for a large training set will 
also provide a good approximation over other unobserved 
examples.” Filev and Yager [4] also claimed that this 
hypothesis may not hold. It is trivial that we can check human 
history. 

VI. OUR EXPLANATION  

Here, we try to provide an insightful explanation of why 
the induced ordered weighted averaging operator model may 
provide a better explanation. 

Motivated by the construction of  kuA  and  kaA  of 

the equation, we derive the following Table 2 for the ordered 
weighted averaging operator pairs with the expression, 

jcj,  to denote the jth largest  ku  with the 

corresponding distance of expert prediction with the actual 
opening price. 

 
Table 2. The OWA pairs for experts 

 Expert 
Day# A B C D 

1 1.5,1 1.5,1  4,18  3,16
2 2,5 3,16  1,2  4,31
3 1,4 4,25  3,9  2,7
4 2,5 1,4  3,9  4,19
5 1,0 4,16  3,14  2,7

 
From Table 2, we compute the sum of ordinal numbers for 

the jth best prediction from day k to day k+1. 
 

Table 3. The ordinal sum for the jth best prediction 
 From day k to day k+1  
 k=1 k=2 k=3 k=4 SOV 
j=1 2.5 3 2 4 11.5 
j=2 2.5 1 4 1 8.5 
j=3 4 4 3 3 14 
j=4 1 2 1 2 6 
SOV: sum of ordinal values 

 
Table 3 reveals that the special property of the information 

data that the worst prediction for day k will imply the best or 
the second best prediction for day k+1. If we compare with 
Equation (5.8), then there is a trend that the small sum of 
ordinal value will imply the large weight, but there is one 
exception of 1j  and 2j . Hence, we further compute 

the sum for the cardinal value from day k to day  k+1, for 
j=1,...,4, in next Table 4. 

 
Table 4. The cardinal sum for the jth best prediction 

 From day k to day k+1  
 k=1 k=2 k=3 k=4 SCV 
j=1 5 9 5 16 35 
j=2 16 4 19 0 39 
j=3 31 25 9 14 79 
j=4 2 7 4 7 20 

SCV: sum of cardinal values 
 
Table 4 illustrates that the sum of cardinal values is 

consistent with the results of Filev and Yager [4] with 
Equation (5.8). Our work provides a further explanation to 
discover the distinct characteristic of information data. 
Studying the weights from the data is a reasonable approach. 

Induced ordered weighted averaging operators evaluated 
information data in pairs, an ordering for the second 
components was decided by the first component, and then 
they are synthesized. There are many possible application 
areas for induced ordered weighted averaging operators. For 
example, social welfare, distributed detection, sensor fusion, 
and decision-making. 

VII. A RELATED OPEN PROBLEM  

We study the paper of Mandal et al. [25] published in 
Fuzzy Sets and Systems. Mandal et al. [25] developed 
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inventory models under a fuzzy environment, and then they 
applied fuzzy theory and a geometric programming approach 
to derive the optimal solution under fuzzy constraints. There 
are about one hundred papers that have cited Mandal et al. 
[25] in their references. We just list a few of them in the 
following; Yaghin et al. [26], Bean et al. [27], Srivastav 
and Agrawal [28], Shekarian et al. [29], Jafarian et al. [30], 
Lechuga and Sanchez [31], Nobil et al. [32], Pramanik 
and Maiti [33], Moghdani et al. [34], and Taleizadeh et al. 
[35]. 

We have run a literature review to find out that Mandal et 
al. [25] and those referred papers did not examine the optimal 
solution when their fuzzy model reducing to a crisp model. 
To fulfill this research gap, we will study the fuzzy inventory 
model proposed by Mandal et al. [25] under a crisp 
environment. 

VIII. NOTATION AND ASSUMPTIONS  

To be compatible with Mandal et al. [25], we adopt the 
following notation and assumptions. 
S: shortage level (decision variable). 
Q: lot size (decision variable). 
D: demand per unit item (decision variable). 
c : set up cost. 
c : shortage cost per unit item. 
c : holding cost per unit item. 
β: degree of economies of scale, and  β 1. 
α: scaling constant and α 0. 
A deterministic inventory model with an economic 

ordering quantity and shortages allowed, where the demand 
is an additional decision variable was developed by Mandal 
et al. [25]. 

IX. OUR IMPROVEMENT  

Based on our previous discussion, we will try to solve the 
minimum solution for the following inventory model, 

 
Q

cS
DQSTC

2
,, 2

2

 , 

   


 1
3

2

1 2
D

Q

D
c

Q

SQ
c ,            (9.1) 

under the restriction 1 . 

We compute the first partial derivatives with respect to 

,D  ,Q  and S , respectively, then it follows that 
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and 
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Solving the system of first partial derivatives equals to zero, 

by   0,, 



SQDTC
S

, based on Equation (9.4), it 

implies that 

 SccQc 211  .                   (9.5) 

From   0,, 
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, based on Equation (9.2), it 

yields that 
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Using   0,, 



SQDTC
Q

, based on Equation (9.3), it 

follows that 
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213

2
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If we plug Equations (9.5) and (9.6) into Equation (9.7) to 
rewrite as a function in Q only, then we obtain that 
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We multiply  21 cc   on both sides of Equation (9.8) to 

derive that 

 21 cc  2
1Qc  21Qc  

32c  21 cc   




1

3

1











 Q

c
.           (9.9) 

We cancel out  21Qc  from the right-hand side and the 

left-hand side of Equation (9.9) to find that 

2c 3
2

1 2cQc   21 cc   
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We take    power on both sides of Equation (9.10), 

and then we arrange the variable Q on the left-hand side, and 
the rest constant terns are on the right-hand side. Therefore, 
we show that 

 21Q
   

1

321

213 12
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Owing to the restriction of 1 , we know that 

012  .                               (9.12) 

Motivated by Equation (9.12), finally, we solve the 
optimal solution, 

    12

1
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213 12 
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Consequently, We plug our findings of Equation (9.13) 
into Equation (9.6), and then we derive 
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and by the same argument, we plug our results of Equation 
(9.13) into Equation (9.5) to show that 
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Hence, we obtain the optimal solutions that are expressed 
in Equations (9.13-9.15). 

X. MANAGERIAL MEANING OF OUR REVISIONS 

We derive the optimal solution under the crisp 
environment. Owing to those fuzzy parameters containing 
the crisp parameters such that a reasonable fuzzy solution 
derived by Mandal et al. [25] should contain the crisp optimal 
solution developed by our paper. Therefore, our findings 
provide a check condition for those fuzzy solutions obtained 
by various fuzzy and de-fuzzy procedures. 
Several important papers are recently published. We cite 
them for readers for further study: Shoukralla et al. [36], Liao 
and Tang [37],  Zhong et al. [38], Hussain et al. [39], Jiang et 
al. [40], and Timpitak and Pochai [41]. 

XI. OUR IMPROVEMENT FOR A DERIVATIVE 

    In this section, we point out a small computation error that 
were mentioned in four related paper: Moon and Gallego [42], 
Paknejad et al. [43], Wu and Ouyang [43], and Tung et al. 
[44]. They claimed that the equation (7) related to Moon and 
Gallego [42], Paknejad et al. [43], Wu and Ouyang [43], and 
Tung et al. [44], is expressed as follows, 
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However, we examined of Equation (11.1) to find it should 
be revised such that we evaluated 
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Based on the above discussion, we provided an improvement 
for Moon and Gallego [42], Paknejad et al. [43], Wu and 
Ouyang [43], and Tung et al. [44]. Their conclusion of the 
partial derivative with respect to k is positive which is right. 
However, their derivation contained questionable results 
which is improved by Equation (11.2). 

XII. REVISION FOR BUSTINCE 

  We study a pending problem of Bustince et al. [46]. We 
recall the following assertion on Page 506, Line 2, of 
Bustince et al. [46], they mentioned that the expected value of 

 q
tQ  for tq ,...,0  that satisfies 

  q
tQ

 
1L

tmb ,                       (12.1) 

under their assumption of 

yxyxREF 1),( ,                 (12.2) 

and  
φ(x)=x.                                (12.3) 

 
We evaluate that 
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Depending on the sign of )(tmq b , we rewrite Equation 

(12.4) as follows, 
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We recall that  
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Based on Equation (12.6), we rewrite Equation (12.5) as 
follows 
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Consequently, we obtain that 

)(tmb 1
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Based on our above derivations, it points out that simple and 
elegant results proposed by Bustince et al. [46] that contained 
severe questionable derivations. 

XIII. OPEN QUESTION OF CÁRDENAS-BARRÓN 

    We study Cárdenas-Barrón [47] to point out several 
questionable findings to help future researchers. First, we call 
that Cárdenas-Barrón [47] obtained that 



ˆ

*
*





h

dhQ
B .                       (13.1) 

However, Cárdenas-Barrón [47] forgot to check the 

condition of 0* B , that is, there is a restriction of  *Q  that 

satisfies that 

hdQ * ,                            (13.2) 

which is a lower bound for the ordering quantity to have an 
interior optimal solution. 
On the other hand, Cárdenas-Barrón [47] derived that 

   



ˆ

ˆ2 2
*

h

dhAd
Q


 .              (13.3) 

However, Cárdenas-Barrón [47] forgot to check the 

condition of 0* Q , that is, there is a restriction among 

parameters that satisfies that 

   2ˆ2 dhAd   ,                     (13.4) 

to guarantee an interior optimal solution. 
 
There are two inventory models in Cárdenas-Barrón [47], 

EPQ model and EOQ model.  

We can claim that his solution procedure of EPQ model is 

repeated his method for EOQ model. We can predict that 

after changing of expressions, the solution of EOQ model can 

be directly applied to EPQ model. 

Consequently, the repeated solution procedure proposed by 

Cárdenas-Barrón [47] for his EPQ model becomes 

unnecessary. 

Last, but not least, Cárdenas-Barrón [47] completely 
neglected the cases when the optimal solution occurred on the 
two boundaries. Hence, the easy computation procedure 
proposed by Cárdenas-Barrón [47] for inventory models 
solving by algebraic methods is incomplete. 

XIV. CONCLUSION  

Our results provide insight observation for the induced 
ordered weighted averaging operator to show that we can find 
out the distinct characteristic of information data. On the 
other hand, we verify that the weighted vector with the 
uniform distribution will attain the maximum value of the 
orness. Our findings will help practitioners to realize 
interrelationships among various operators and different 

methods. 
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