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Abstract—This paper proposes and investigates a nonselective
harvesting Lotka-Volterra predator-prey system that incorpo-
rates population closure and the fear effect of the prey. The
boundary equilibrium and positive equilibrium are studied
in terms of their local and global stability characteristics.
Our research indicates that the proportion of commodities
designated for harvesting has a significant impact on the
dynamic behavior of the system. Meanwhile, dynamic behavior
of the system is not affected by the fear effect of the prey species.
To demonstrate the viability of the key findings, numerical
simulations are performed.

Index Terms—predator, prey, harvesting, stability, fear effect

I. INTRODUCTION

THIS paper tries to figure out how the Lotka-Volterra
predator-prey system with non-selective harvesting, par-

tial population closure, and the fear effect of the prey changes
over time. The model is as follows:

du

dt
= r0uf(k, v)− du− au2

−puv − q1Em1u,

dv

dt
= cpuv −mv − q2Em1v,

(1)

where u and v represent the density of prey species and
predator species, respectively, at time t. p represents the
intensity of capture; For the biological meaning of r0, d,
a, m and c, one could refer to system Wang, Zanette, and
Zou[1]. E is the combined fishing effort used to harvest;
m1(0 < m1 < 1) is the fraction of the stock available for
harvesting; k is the level of fear caused by the anti-predator
behaviors of the prey; f(k, v) is consistent with the following
hypotheses:

f(0, v) = 1, f(k, 0) = 1,

lim
k→+∞

f(k, v) = 0, lim
v→+∞

f(k, v) = 0,

∂f(k, v)

∂k
< 0,

∂f(k, v)

∂v
< 0.

(2)
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Scholars hold the predator-prey relationship in high regard
due to its prevalence([1]-[30]). In recent years, the fear effect
of prey species has become one of the most significant
aspects of predator-prey system research[1]-[13]. According
to their research, not only can predators kill their prey
directly, but they can also influence prey behavior, which
is more lethal. Wang, Zanette, and Zou[1] proposed for the
first time the following predator-prey system with fear effect:

du

dt
= r0uf(k, v)− du− au2 − puv,

dv

dt
= cpuv −mv.

(3)

The authors explore the stability of each equilibrium point
of the system.

Meanwhile, the study of resource management, which
includes wildlife management, forestry and fisheries, is
extremely important. See references [31]-[47] for research
on the influence of harvesting on ecological modeling. As
Chakraborty, Das, and Kar[46] pointed out, in order to
achieve long-term ecological sustainability and conservation
of the species, harvesting must be regulated so that the
species can be harvested in a sustainable manner. Since
the works of Chakraborty, Das, and Kar[46], many scholars
([42]-[47]) have conducted research in this area. For instance,
an investigation has been conducted by Lin[45] on the
dynamics of the following two species commensal symbiosis
model:

dx

dt
= x

(
a1 − b1x+

c1y

d1 + y2

)
− q1Emx,

dy

dt
= y(a2 − b2y)− q2Emy.

(4)

According to his findings, depending on the value of m, the
system can collapse, survive partially, or coexist in a stable
state.

Xiao and Lei[43] studied the following single species stage
structure system with nonselective harvesting and partial
population closure.

dx1

dt
= αx2 − βx1 − δ1x1 − q1Emx1,

dx2

dt
= βx1 − δ2x2 − γx2

2 − q2Emx2,

(5)

where x1(t) and x2(t) are the densities of the embryonic
and mature species at time t, respectively. Their research
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demonstrated that the proportion of harvestable populations
play crucial roles in the dynamic behaviors of the system.

To the best of our knowledge, no academics have studied
the dynamic behaviors of a predator-prey system that incor-
porates both the fear effect of prey species and nonselective
harvesting. This prompted us to propose the system (1).

This paper aims to provide a comprehensive analysis of
the dynamic behaviours of the system (1). Additionally, we
will consider the impact of partial closure and harvesting.

The rest of the paper is organized as follows. In the section
that follows, we will investigate the existence and local
stability of the equilibrium of the system (1). In Section 3,
we will discuss the global stability of the boundary equilibria
and the positive equilibrium. In Section 4, the effects of
harvesting and partial closure will be discussed. In Section
5, numerical simulations demonstrating the viability of the
principal results are presented. This paper concludes with a
brief discussion.

II. EXISTENCE AND LOCAL STABILITY OF THE SYSTEM’S
EQUILIBRIA

Concerned with the existence of the system (1)’s equilib-
ria, we obtain the following result.

Theorem 2.1. System (1) always have the boundary equilib-
rium E0(0, 0), if r0 > d+q1Em1 holds, then the nonnegative

boundary equilibrium E1

(r0 − d− q1Em1

a
, 0
)

exists. Also,
there exists a unique positive equilibrium E2(u

∗, v∗), if

r0 > d+ q1Em1 +
a(m+ q2Em1)

cp
(6)

holds, where u∗ =
m+ q2Em1

cp
and v∗ satisfies

r0f(k, v
∗)− d− au∗ − pv∗ − q1Em1 = 0.

Proof. System (1)’s equilibria satisfy the equation

r0uf(k, v)− du− au2 − puv − q1Em1u = 0,

cpuv −mv − q2Em1v = 0.
(7)

From the second equation of (7), v = 0 or u =
m+ q2Em1

cp
is derived. Substituting v = 0 into the first equation of (7)
yields

r0uf(k, 0)− du− au2 − q1Em1u = 0. (8)

Equation (8) has solutions u1 = 0 and u2 =
r0 − d− q1Em1

a
. System (1) therefore has the boundary

equilibrium E0(0, 0), and if r0 > d+q1Em1 holds, then the

nonnegative boundary equilibrium E1

(r0 − d− q1Em1

a
, 0
)

exists.
Substituting u =

m+ q2Em1

cp
to (7) yields

r0f(k, v)− d− a
m+ q2Em1

cp
− pv − q1Em1 = 0. (9)

Under the assumption of (6), it is straightforward to observe
that (9) admits a unique positive solution v∗, consequently,
system (1) admits a unique positive equilibrium E2(u

∗, v∗).
The proof of Theorem 2.1 is finished.

Theorem 2.2. E0(0, 0) is locally asymptotically stable if

r0 < d+ q1Em1 (10)

holds; E1

(r0 − d− q1Em1

a
, 0
)

is locally asymptotically
stable if

d+ q1Em1 < r0 < d+ q1Em1 +
a(m+ q2Em1)

cp
(11)

holds; E2(u
∗, v∗) is locally asymptotically stable if

r0 > d+ q1Em1 +
a(m+ q2Em1)

cp
(12)

holds.
Proof. The system’s Jacobian matrix is calculated as

J =

(
J11 J12
J21 J22

)
, (13)

where
J11 = r0f(k, v)− d− 2au− pv − q1Em1,

J12 = r0u
∂f(k, v)

∂v
− pu,

J21 = cpv,

J22 = cpu−m− q2Em1.

(14)

Then, the system’s Jacobian matrix about E0(0, 0) is

J
(
E0(0, 0)

)
=

(
r0 − d− q1Em1 0

0 −m− q2Em1

)
.

(15)
The eigenvalues of J(E0) are λ1 = r0 − d− q1Em1, λ2 =
−m− q2Em1 < 0. Thus, if r0 < d+ q1Em1 holds, λ1 < 0
and consequently, E0(0, 0) is locally asymptotically stable.

The Jacobian matrix of the system (1) about E1

(
u, 0
)

is

J
(
E1

(
u, 0
))

=

(
−au r0u

∂f(k, v)

∂v
|v=0 − pu

0 cp
r0 − d− q1Em1

a
−m− q2Em1

)
.

The eigenvalues of J(E1) are λ1 = −au < 0, and λ2 =

cp
r0 − d− q1Em1

a
− m − q2Em1 < 0 if the assumption

(11) holds. Consequently, E1(u, 0) is locally asymptotically
stable.

The Jacobian matrix of the system (1) with respect to
E2(u

∗, v∗) is

J
(
E2(u

∗, v∗)
)

=

(
−au∗ r0u

∗ ∂f(k, v)

∂v
|v=v∗ − pu∗

cpv∗ 0

)
.

(16)
Then we have

DetJ
(
E2(u

∗, v∗))

= −cpv∗
(
r0u

∗ ∂f(k, v)

∂v
|v=v∗ − pu∗

)
> 0,

and
TrJ

(
E2(u

∗, v∗)) = −au∗ < 0.
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Therefore, both eigenvalues of J
(
E2(u

∗, v∗)) have negative
real parts, and E2(u

∗, v∗) is locally asymptotically stable.

The proof of Theorem 2.2 is now over.

III. GLOBAL ASYMPTOTICAL STABILITY

This section’s objective is to investigate the global stability
property of system equilibria. Indeed, the following is the
outcome:
Theorem 3.1. (i) E0(0, 0) is globally asymptotically stable
if

r0 < d+ q1Em1 (17)

holds;

(ii) E1

(r0 − d− q1Em1

a
, 0
)

is globally asymptotically sta-
ble if

d+ q1Em1 < r0 < d+ q1Em1 +
a(m+ q2Em1)

c(p+ r0M)
(18)

holds, where

M = sup
v∈[0,+∞)

∣∣∣∂f(k, v)
∂v

∣∣∣; (19)

(iii) E2(u
∗, v∗) is globally asymptotically stable if

r0 > d+ q1Em1 +
a(m+ q2Em1)

cp
(20)

holds.
Proof. (1) Consider the following Lyapunov function:

V1(u, v) = u+
1

c
v. (21)

Then the time derivative of V1 along the trajectories of (1)
is

D+V1(t)

= r0uf(k, v)− du− au2 − puv − q1Em1u

+
1

c
cpuv − m

c
v − q2Em1

c
v

= r0uf(k, v)− du− au2 − q1Em1u

−m

c
v − q2Em1

c
v

< (r0 − d− q1Em1)u− au2

−
(m
c
+

q2Em1

c

)
v.

Thus, V1(x, y) satisfies the Lyapunov asymptotic stability
theorem, and E0(0, 0) of the system (1) is globally asymp-
totically stable.

(2) Consider the Lyapunov function as follows:

V2(u, v) = u− u− u ln
u

u
+

1

c
v, (22)

where u =
r0 − d− q1Em1

a
.

It follows from (2) that

∂f(k, θv)

∂v
< 0. (23)

Also, from (18) one has

m+ q2Em1

c
−
(
− r0

∂f(k, θv)

∂v
+ p
)
u

≥ m+ q2Em1

c
−
(
r0M + p

)r0 − d− q1Em1

a
> 0.

(24)
Then the time derivative of V2 along the trajectories of (1)
is

D+V2(t)

= (u− u)
(
r0f(k, v)− d− au− pv − q1Em1

)
+
1

c
cpuv − m

c
v − q2Em1

c
v

= (u− u)
(
r0f(k, v)− r0 + d+ q1Em1

+au− d− au− pv − q1Em1

)
+
1

c
cpuv − m

c
v − q2Em1

c
v

= (u− u)
(
r0

∂f(k, θv)

∂v
v − a(u− u)− pv

)
+
1

c
cpuv − m

c
v − q2Em1

c
v

= −a(u− u)2 + r0
∂f(k, θv)

∂v
uv

−
[m+ q2Em1

c
−
(
− r0

∂f(k, θv)

∂v
+ p
)
u
]
v

< 0.
(25)

Thus, E1

(r0 − d− q1Em1

a
, 0
)

of system (1) is globally
asymptotically stable since V2(x, y) fulfills the Lyapunov
asymptotic stability theorem.

(3) The system must not permit a limit cycle in the first
quadrant in order to shown E2(u

∗, v∗) to be globally asymp-
totically stable .

Consider first the Dulac function B(u, v) = u−1v−1, then

∂(PB)

∂u
+

∂(QB)

∂v
= −a

v
< 0, (26)

where

P (u, v) = r0uf(k, v)− du− au2

−puv − q1Em1u,

Q(u, v) = cpuv −mv − q2Em1v.

(27)

Therefore, E2(u
∗, v∗) is globally asymptotically stable, since

accoding to Dulac’s theorem, system (1) has no closed orbit
in the first quadrant.

This ends the proof of Theorem 3.1.

Remark 3.1 One might wonder why we prove (i) and
(ii) by building the suitable Lyapunov function but use a
different method to show that the positive equilibrium is
global asymptotically stable. In fact, we have tried to prove
(iii) by building the Lyapunov function:

V3(u, v) = u− u− u ln
u

u
+ k(u− v − v ln

v

v
), (28)
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In order to make the derivative of V definite, we have to give
more complex conditions. At present, no one knows whether
it is possible to prove the global asymptotic stability of the
positive equilibrium by constructing the suitable Lyapunov
function or not. We will conduct a more in-depth discussion
in this direction.

IV. THE INFLUENCE OF PARTIAL CLOSURE AND
HARVESTING

We will discuss two aspects of this topic.

(1) The influence of partial closure and harvesting on the
positive equilibrium.

Denote
F1(u

∗, v∗, E,m1) = r0f(k, v
∗)− d− au∗

−pv∗ − q1Em1,

F2(u
∗, v∗, E,m1) = cpu∗ −m− q2Em1.

(29)

Then u∗ and v∗ satisfy the following equations:{
F1(u

∗, v∗, E,m1) = 0,
F2(u

∗, v∗, E,m1) = 0.
(30)

And so,

J =
D(F1, F2)

D(u∗, v∗)

=

∣∣∣∣ F1u∗ F1v∗

F2u∗ F2v∗

∣∣∣∣
=

∣∣∣∣∣ −a r0
∂f(k, v)

∂v
|v=v∗ − p

cp 0

∣∣∣∣∣
= −cp

(
r0

∂f(k, v)

∂v
|v=v∗ − p

)
> 0

for all u∗ > 0, v∗ > 0, m1 ∈ (0, 1) and E ∈ [0,+∞).
Therefore, it follows from (30) that u∗ and v∗ could be the
function of E and m1,

u∗ = u∗(E,m1), v∗ = v∗(E,m1)

for all m1 ∈ (0, 1) and E ∈ [0,+∞). Also,

∂u∗

∂m1
= − 1

J

D(F1, F2)

D(m1, v∗)
,

∂v∗

∂m1
= − 1

J

D(F1, F2)

D(u∗,m1)
,

∂u∗

∂E
= − 1

J

D(F1, F2)

D(E, v∗)
,

∂v∗

∂E
= − 1

J

D(F1, F2)

D(u∗, E)
.

Mathematically, we have

(1)
∂u∗

∂m1
=

q2E

cp
> 0. Thus, the prey density u∗ increases as

m1 increases.

(2)
∂v∗

∂m1
= − 1

J
(aq2E + cpq1E) < 0. Thus, the predator

density u∗ decreases as m1 increases.

(3)
∂u∗

∂E
=

q2m1

cp
> 0. Thus, the prey density u∗ increases

as E increases;

(4)
∂v∗

∂E
= − 1

J
(aq2E+cpq1m1) < 0. Thus, the prey density

u∗ decreases as E increases;

(2) Three cases will be discussed now to illustrate the
impact of partial closure:

Case 1. Assuming the inequality r0 < d is valid, it follows
that for any m1 ∈ (0, 1), the inequality (17) is satisfied.
Specifically, in the event of extinction of the system without
harvesting, the species in the system with harvesting, despite
partial closure that prohibits harvesting, will inevitably face
extinction. This outcome is attributed to a low birth rate of
the prey species, which renders it vulnerable to extinction.
Case 2. Assuming that the inequality expressed in (31),
namely

d < r0 < d+
am

cp
(31)

is satisfied, Theorem A suggests that, absent harvesting,
predator species will go extinct while prey species will
persist. If the condition expressed in (32), namely

m1 >
r0 − d

q1E
(32)

is met, then Theorem 3.1 (i) implies that both predator and
prey species will become extinct. In other words, if the
proportion of the stock available for harvesting is excessively
high, then both predator and prey species will face extinction.

If the proportion of available stock for harvesting is
moderate such that the following inequality holds.

r0 − d− am

c(p+ r0M)

q1E +A
< m1 < min

{r0 − d

q1E
, 1
}
, (33)

where A is defined by

A =
aq2E

c(p+ r0M)
(34)

is met, according to Theorem 3.1 (ii), the predator species
will become extinct, while the prey species will remain
sustainable.

In this case, since

u =
r0 − d− q1Em1

a
, (35)

one has
du

dE
=

−q1m1

a
< 0,

du

dm1
=

−q1E

a
< 0. (36)

Thus, if there is a limited amount of stock available for
harvesting, then prey species remain permanent; however,
as harvesting and harvestable stock increase, the ultimate
density of the prey species decreases.
Case 3. Now let’s assume that

r0 > d+
am

cp
(37)

holds. From Theorem A, we know that a system without
harvesting has a unique positive equilibrium E2 that is
globally asymptotically stable.
Now, if

m1 <

r0 − d− am

cp

q1E +
aq2E

cp

(38)

holds, consequently, Theorem 3.1 (iii) states that the system
is stable, and the unique positive equilibrium is globally
asymptotically stable. This allows predator and prey species

IAENG International Journal of Applied Mathematics, 53:3, IJAM_53_3_06

Volume 53, Issue 3: September 2023

 
______________________________________________________________________________________ 



Fig. 1. The phase trajectory of the system (41), the initial condition
(u(0), v(0)) = (1, 2), (2, 1), (0.5, 2) and (2, 0.5), respectively.
m1 = 0.5.

to persist in stable coexistence. In this case, from the above

analysis, we have
∂u∗

∂m1
> 0,

∂v∗

∂m1
< 0, that is, with the

increasing of the stock available for harvesting, the prey
density u∗ will increase, while the predator density v∗ will be
decreasing. The harvesting has a negative impact on predator
species and a positive impact on prey species.

Similarly to the analysis of Case 2, if

r0 − d− am

c(p+ r0M)

q1E +A
< m1 < min

{r0 − d

q1E
, 1
}
, (39)

where
A =

aq2E

c(p+ r0M)
, (40)

then, predator species will become extinct while prey species
will continue to exist. Thus, as the stock available for
extraction increased, so did the likelihood that the predator
would be driven to extinction, while prey species will still
be permanent.

Finally, if m1 >
r0 − d

q1E
, both predator and prey species

will become extinct.

V. NUMERIC SIMULATIONS

Example 5.1. Consider the following example:

du

dt
=

u

1 + v
− 2u− u2 − uv −m1u,

dv

dt
= 1

2uv − v −m1v.

(41)

Here, in accordance with system (1), we take r0 = 1, d =
2, k = a = p = q1 = E = m = q2 = 1, c = 0.5. Then it
became clear that

r0 = 1 < 2 = d (42)

holds true. Hence, it follows from Theorem 3.1 that for
all m1 ∈ (0, 1), E0(0, 0) of system (41) is globally
asymptotically stable. Fig.1 supports this assertion.

Fig. 2. The phase trajectory of the system (43), the initial condition
(u(0), v(0)) = (2, 0.5), (2, 1), (2, 1.5) and (2, 0.1), respectively.
m1 = 0.

Example 5.2. Now contemplate the following illustration:

du

dt
=

2u

1 + v
− u− u2 − uv − 2m1u,

dv

dt
= 1

2uv − v − 2m1v.

(43)

According to system (1), here we choose r0 = 2, d = 1, k =
a = p = q1 = m = q2 = 1, c = 0.5, and E = 2. Then it
could be seen that

d = 1 < r0 = 2 < 3 = d+
am

cp
(44)

is valid. Hence, it follows from Theorem 3.1 of Wang,
Zanette, and Zou[1] that for the system without harvesting
(i.e.,m1 = 0), E1(1, 0) is globally asymptotically stable (see
Fig.2). In addition, according to Theorem 3.1, (33) and (34),
for

0.1 < m1 < 0.5, (45)

the boundary equilibrium E1(u(m1), 0) of system (43) is
globally asymptotically stable, and from (32), for

0.5 < m1 < 1, (46)

E0(0, 0) of the system (43) is globally asymptotically stable,
as supported by numerical simulations (Fig. 3 and Fig. 4).

Example 5.3. Now contemplate the following example:

du

dt
=

3u

1 + v
− u− u2 − uv −m1u,

dv

dt
= uv − v −m1v.

(47)

Here, in accordance with system (1), we set r0 = 3, d =
1, k = a = p = q1 = m = q2 = c and E = 1. Consequently,
based on Theorem 3.1 and (38), for

m1 < 0.5, (48)

the positive equilibrium E2(u
∗(m1), v

∗(m1)) of the system
(47) is globally asymptotically stable, as supported by nu-
merical simulation (Fig. 5).
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Fig. 3. The phase trajectory of the system (43), the initial condition
(u(0), v(0)) = (2, 0.5), (2, 1), (2, 1.5) and (2, 0.1), respectively.
m1 = 0.2.

Fig. 4. The phase trajectory of the system (47), the initial condition
(u(0), v(0)) = (1, 1), (0.5, 1) and (1, 0.5), respectively. m1 =
0.6.

The positive equilibrium of (47) satisfies the following
equation:

3u∗

1 + v∗
− u∗ − (u∗)2 − u∗v∗ −m1u

∗ = 0,

u∗v∗ − v∗ −m1v
∗ = 0.

(49)

From (49), one could easily obtain that

u∗ = m1 + 1;

v∗ = −m1 − 3
2 + 1

2

√
4m2

1 + 4m1 + 3.
(50)

Clearly, u∗ is the increasing function of m1, while v∗ is
the decreasing function of m1. as shown in Figure 6. This
validates the prior analysis.

VI. CONCLUSION

Since the groundbreaking works of Chakraborty, Das and
Kar[46], In ecological modeling, non-selective harvesting
ecosystems with partial closure have been studied exten-
sively for their dynamic behaviors([42]-[47]). On the other

Fig. 5. The phase trajectory of the system (47), the initial con-
dition (u(0), v(0)) = (0.5, 0.7), (2, 0.1), (2, 0.5) and (2, 0.3),
respectively. m1 = 0.2.

Fig. 6. Relationship of v∗ and m1.

hand, recently, there has been considerable interest in the
predator-prey system that incorporates the fear effect of prey
species([1]-[13]). To the best of our knowledge, no aca-
demics have studied the influence of nonselective harvesting
on the predator-prey system with fear effect to date; this
prompted us to propose the system (1).

In this paper, we propose a nonselective harvesting Lotka-
Volterra predator prey system that includes a partial popula-
tion closure. Our research indicates that as the harvesting area
expands, the ultimate density of predator species decreases,
and may even result in the extinction of predator species
or both. To guarantee the sustainable development of the
ecosystem, it is necessary to restrict the harvesting area.
Nonetheless, this study’s main findings are independent of k,
suggesting that the fear effect of the prey species is irrelevant
to the dynamic behaviour of the system.
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