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Abstract—This paper explores the unsteady Helmholtz type
equation with quadratically varying coefficients for anisotropic
inhomogeneous media. The paper proposes using a combined
Laplace transform and boundary element method to find
numerical solutions to problems governed by the equation. The
variable coefficients equation is transformed into a constant
coefficients equation which is then written in a boundary
integral equation involving a time-free fundamental solution.
The boundary-only integral equation is used with a standard
boundary element method to find the numerical solutions. The
results are then transformed numerically using the Stehfest
formula to get solutions in the time variable. The paper
concludes that the combined Laplace transform and boundary
element method is both easy to implement and accurate, as
demonstrated by problems related to anisotropic quadratically
graded media.

Index Terms—computational study, unsteady anisotropic
Helmholtz, quadratically varying coefficients, boundary element
method

I. INTRODUCTION

We will consider initial boundary value problems governed
by a Helmholtz type equation with variable coefficients of
the form

∂

∂xi

[
κij (x)

∂T (x, t)

∂xj

]
+ β2 (x)T (x, t)

= ψ (x)
∂T (x, t)

∂t
i, j = 1, 2 (1)

where the coefficients [κij ] is a symmetric matrix with
positive determinant, and summation convention holds for
repeated indices so that explicitly equation (1) takes the form

∂

∂x1

(
κ11

∂T

∂x1

)
+

∂

∂x1

(
κ12

∂T

∂x2

)
+

∂

∂x2

(
κ12

∂T

∂x1

)
+

∂

∂x2

(
κ22

∂T

∂x2

)
+ β2T = ψ

∂T

∂t

Equation (1) is usually used to model acoustic problems (see
for examples [1], [2]).

Over the past ten years, functionally graded materials
(FGMs) have been the focus of many studies for a range of
applications. FGMs are materials whose properties change
according to a mathematical function, making equation (1)
applicable to them. FGMs are mainly human-made materials
that are designed to have specific properties (see for example
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[3], [4]), making the solution of equation (1) relevant to their
production.

Several studies have been conducted on solving the
Helmholtz equation numerically, and these studies are cat-
egorized based on the anisotropy of the media and the
variability of coefficients (inhomogeneity of the media).
For example, some studies considered a constant coefficient
isotropic equation for homogeneous media (see [5]–[7]),
while others solved an isotropic equation with variable
coefficients for inhomogeneous media (see [8]). Recently,
studies on problems of inhomogeneous anisotropic media
for several types of governing equations had been done (see
for examples, [9], [10], [11], [12]). These studies addressed
classes of inhomogeneities that differ from the constant-plus-
variable inhomogeneity class.

This paper is intended to extend the recently published
works in [11] for steady anisotropic Helmholtz type equation
with spatially variable coefficients of the form

∂

∂xi

[
κij (x)

∂T (x, t)

∂xj

]
+ β2 (x)T (x, t) = 0

to unsteady anisotropic Helmholtz type equation with spa-
tially variable coefficients of the form (1).

Equation (1) will be transformed to a constant coefficient
equation from which a boundary integral equation will de-
rived. The analysis of this paper is purely formal, the main
aim is to construct an effective BEM for a class of equations
which falls within the type (1).

II. THE INITIAL-BOUNDARY VALUE PROBLEM

By knowing the coefficients κij (x) , β2 (x) we will seek
solutions T (x, t) and its derivatives in a spatial-time space
(Ω, t), Ω in R2 with continuous boundary ∂Ω. On the
boundary ∂Ω1, T (x, t) is given and

P (x, t) = κij (x)
∂T (x, t)

∂xi
nj (2)

is specified on ∂Ω2 where ∂Ω = ∂Ω1∪∂Ω2 and n = (n1, n2)
represents the outward pointing normal to ∂Ω. The initial
condition is taken to be

T (x, 0) = 0 (3)

III. THE BOUNDARY INTEGRAL EQUATION

The coefficients κij , β2, ψ are required to take the form

κij (x) = κijg(x) (4)

β2 (x) = β
2
g(x) (5)

ψ (x) = ψg(x) (6)
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where the κij , β
2
, ψ are constants and g is a differentiable

function of x. Further we assume that the coefficients κij (x),
β2 (x) and ψ (x) are quadratically graded by taking g(x) as
a quadratic function

g(x) = (c0 + cixi)
2 (7)

where c0 and ci are constants. Therefore (7) satisfies

κij
∂2g1/2

∂xi∂xj
= 0 (8)

Use of (4)-(6) in (1) yields

κij
∂

∂xi

(
g
∂T

∂xj

)
+ β

2
gT = ψg

∂T

∂t
(9)

Let
T (x, t) = g−1/2 (x)σ (x, t) (10)

therefore substitution of (4) and (10) into (2) gives

P (x, t) = −Pg (x)σ (x, t) + g1/2 (x)Pσ (x, t) (11)

where

Pg (x) = κij
∂g1/2

∂xj
ni Pσ (x) = κij

∂σ

∂xj
ni

Also, (9) may be written in the form

κij
∂

∂xi

[
g
∂
(
g−1/2σ

)
∂xj

]
+ β

2
g1/2σ = ψg

∂
(
g−1/2σ

)
∂t

which can be simplified

κij
∂

∂xi

(
g1/2

∂σ

∂xj
+ gσ

∂g−1/2

∂xj

)
+ β

2
g1/2σ = ψg1/2

∂σ

∂t

Use of the identity

∂g−1/2

∂xi
= −g−1 ∂g

1/2

∂xi

implies

κij
∂

∂xi

(
g1/2

∂σ

∂xj
− σ

∂g1/2

∂xj

)
+ β

2
g1/2σ = ψg1/2

∂σ

∂t

Rearranging and neglecting the zero terms yield

g1/2κij
∂2σ

∂xi∂xj
− σκij

∂2g1/2

∂xi∂xj
+ β

2
g1/2σ = ψg1/2

∂σ

∂t

Equation (8) then implies

κij
∂2σ

∂xi∂xj
+ β

2
σ = ψ

∂σ

∂t
(12)

Taking the Laplace transform of (10), (11), (12) and applying
the initial condition (3) we obtain

σ∗ (x, s) = g1/2 (x)T ∗ (x, s) (13)
Pσ∗ (x, s) = [P ∗ (x, s) + Pg (x)σ

∗ (x, s)] g−1/2 (x) (14)

κij
∂2σ∗

∂xi∂xj
+
(
β
2 − sψ

)
σ∗ = 0 (15)

where s is the variable of the Laplace-transformed domain.

A boundary integral equation for the solution of (15) is
given in the form

η (x0)σ
∗ (x0, s) =

∫
∂Ω

[Γ (x,x0)σ
∗ (x, s)

−Φ (x,x0)Pσ∗ (x, s)] dS (x) (16)

where x0 = (a, b), η = 0 if (a, b) /∈ Ω ∪ ∂Ω, η = 1 if
(a, b) ∈ Ω, η = 1

2 if (a, b) ∈ ∂Ω and ∂Ω has a continuously
turning tangent at (a, b). The so-called fundamental solution
Φ in (16) is any solution of the equation

κij
∂2Φ

∂xi∂xj
+

(
β
2 − sψ

)
Φ = δ (x− x0)

and the Γ is given by

Γ (x,x0) = κij
∂Φ (x,x0)

∂xj
ni

where δ is the Dirac delta function. For two-dimensional
problems Φ and Γ are given by

Φ (x,x0) =


K
2π lnR if β

2 − sψ = 0
ıK
4 H

(2)
0 (ωR) if β

2 − sψ > 0
−K
2π K0 (ωR) if β

2 − sψ < 0

Γ (x,x0) =


K
2π

1
Rκij

∂R
∂xj

ni if β
2 − sψ = 0

−ıKω
4 H

(2)
1 (ωR)κij

∂R
∂xj

ni if β
2 − sψ > 0

Kω
2π K1 (ωR)κij

∂R
∂xj

ni if β
2 − sψ < 0

(17)

where

K = τ̈ /D

ω =

√
|β2 − sψ|/D

D =
[
κ11 + 2κ12τ̇ + κ22

(
τ̇2 + τ̈2

)]
/2

R =

√
(ẋ1 − ȧ)2 + (ẋ2 − ḃ)2

ẋ1 = x1 + τ̇x2

ȧ = a+ τ̇ b

ẋ2 = τ̈x2

ḃ = τ̈ b

where τ̇ and τ̈ are respectively the real and the positive
imaginary parts of the complex root τ of the quadratic

κ11 + 2κ12τ + κ22τ
2 = 0

and H
(2)
0 , H(2)

1 denote the Hankel function of second kind
and order zero and order one respectively. K0, K1 denote
the modified Bessel function of order zero and order one
respectively, ı represents the square root of minus one. The
derivatives ∂R/∂xj needed for the calculation of the Γ in
(17) are given by

∂R

∂x1
=

1

R
(ẋ1 − ȧ)

∂R

∂x2
= τ̇

[
1

R
(ẋ1 − ȧ)

]
+ τ̈

[
1

R

(
ẋ2 − ḃ

)]
Use of (13) and (14) in (16) yields

ηg1/2T ∗ =

∫
∂Ω

[(
g1/2Γ− PgΦ

)
T ∗

−
(
g−1/2Φ

)
P ∗

]
dS (18)
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TABLE I
VALUES OF Vm OF THE STEHFEST FORMULA.

Vm N = 6 N = 8 N = 10 N = 12

V1 1 −1/3 1/12 −1/60
V2 −49 145/3 −385/12 961/60
V3 366 −906 1279 −1247
V4 −858 16394/3 −46871/3 82663/3
V5 810 −43130/3 505465/6 −1579685/6
V6 −270 18730 −236957.5 1324138.7
V7 −35840/3 1127735/3 −58375583/15
V8 8960/3 −1020215/3 21159859/3
V9 164062.5 −8005336.5
V10 −32812.5 5552830.5
V11 −2155507.2
V12 359251.2

Equation (18) provides a boundary integral equation that can
be solved using a standard boundary element method for
determining T ∗ and its derivatives at all points of Ω.

The Stehfest formula is then used for a numerical Laplace
transform inversion to find the solutions and their derivatives
in the original time variable. The obtained solutions and
their derivatives are for the original variable t, which were
previously transformed to the Laplace transform variable s.

The Stehfest formula is

T (x, t) ≃ ln 2

t

N∑
m=1

VmT
∗ (x, sm)

∂T (x, t)

∂x1
≃ ln 2

t

N∑
m=1

Vm
∂T ∗ (x, sm)

∂x1
(19)

∂T (x, t)

∂x2
≃ ln 2

t

N∑
m=1

Vm
∂T ∗ (x, sm)

∂x2

where

sm =
ln 2

t
m

Vm = (−1)
N
2 +m ×

min(m,N2 )∑
k=[m+1

2 ]

kN/2 (2k)!(
N
2 − k

)
!k! (k − 1)! (m− k)! (2k −m)!

IV. NUMERICAL EXAMPLES

To confirm the analysis that was employed in Section
III to obtain the boundary integral equation 18, we will
examine multiple instances. These instances will either serve
as examples of analytical solutions, or they will be problems
that do not have straightforward analytical solutions.

The authors have used standard BEM to get numerical
results and chosen a unit square as the geometrical domain
for all problems in order to keep things simple. A total of
320 elements with equal length, i.e., 80 elements on each
side of the unit square, have been used.

The time domain is chosen to be the interval 0 ≤ t ≤ 5.
The solutions are computed using a FORTRAN script, and a
specific command is included to calculate the amount of time
taken to obtain the solutions on the CPU. A simple script
is also embedded to compute the values of the coefficients
Vm,m = 1, 2, . . . , N for any even number N . Table I shows
the values of Vm for several values of N .

For all problems the inhomogeneity function is taken to
be

g1/2(x) = 1− 0.15x1 − 0.25x2

and the constant anisotropy coefficient κij

κij =

[
1 0.1
0.1 0.85

]
We take the constant coefficient β

2

β
2
= 1

A. Examples with analytical solutions

1) Problem 1:: Other aspects that will be justified are
the convergence (as N increases) and time efficiency for
obtaining the numerical solutions. The analytical solutions
are assumed to take a separable variables form

T (x, t) = g−1/2 (x)h (x) f (t)

where h (x) , f (t) are continuous functions. The boundary
conditions are assumed to be (see Figure 1)

P is given on side AB
P is given on side BC
T is given on side CD
P is given on side AD

-

6

x1

x2

A(0, 0) B(1, 0)

C(1, 1)D(0, 1)

T (x, 0) = 0

P given

P given

T given

P given

Fig. 1. The boundary conditions for Problem 1.

For each N , numerical solutions for T and the derivatives
T1 = ∂T/∂x1 and T2 = ∂T/∂x2 at 19 × 19 points inside
the space domain which are

(x1, x2) = {0.05, 0.1, 0.15, . . . , 0.9, 0.95} ×
{0.05, 0.1, 0.15, . . . , 0.9, 0.95}

and 11 time-steps which are

t = 0.0005, 0.5, 1, 1.5, . . . , 4, 4.5, 5

are computed. The aggregate relative error E is calculated
using the norm

E =

[∑
t

∑19×19
i=1 (ςn,i − ςa,i)

2∑
t

∑19×19
i=1 T 2

a,i

] 1
2
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Fig. 2. The global average error E and efficiency number e = τE for
Case 1 of Problem 1.

where ςn and ςa represent respectively the numerical and an-
alytical solutions T or the derivatives ∂T/∂x1 and ∂T/∂x2.
The elapsed CPU time τ (in seconds) is also computed and
the time efficiency number e for obtaining the numerical
solutions of error E is defined as

e = Eτ

This formula explains that the smaller time τ with smaller
error E, the more efficient the procedure (smaller e).

Case 1:: We take

h(x) = 1− 0.3x1 − 0.7x2

f(t) = 1− exp (−1.75t)

Thus for h(x) to satisfy (15)

ψ = β
2
/s = 1/s

As shown in Figure 2, for the solutions T, ∂T/∂x2 the error
E and efficiency number e get smaller as N moves up to
N = 10, and for the solution ∂T/∂x1 the error E gets
smaller as N moves up to N = 12 and efficiency number
e decreases as N moves up to N = 10. Due to round-off
errors the accuracy will only increase upto a point N , and
then the accuracy will decline (see [13]).

From Table III it is obvious that N = 10 is the optimized
value of N for solutions T, ∂T/∂x2 to achieve their smallest
error E and efficiency number e. Whereas for the solution
∂T/∂x1 the optimized values of N to reach its smallest error
E and efficiency number e are acheived when N = 12 and
N = 10 respectively.

In addition Table IV shows the numerical and analytical
solutions T , ∂T/∂x1 and ∂T/∂x2 at (x1, x2) = (0.5, 0.5).

TABLE II
THE TOTAL ELAPSED CPU TIME τ , THE GLOBAL AVERAGE ERROR E ,

THE EFFICIENCY NUMBER e = τE FOR CASE 1 OF PROBLEM 1.

N 6 8 10 12
τ 249.859 332.906 418.594 498.781

T
E 0.00456413 0.00158719 0.00095128 0.00097223
e 1.140390 0.528384 0.398200 0.484928

∂T
∂x1

E 0.00413618 0.00138737 0.00076626 0.00066876
e 1.033463 0.461865 0.320751 0.333567

∂T
∂x2

E 0.00446496 0.00149382 0.00081896 0.00082135
e 1.115611 0.497304 0.342810 0.409674

TABLE III
THE OPTIMIZED VALUE OF N FOR OBTAINING THE NUMERICAL

SOLUTIONS T, ∂T/∂x1, ∂T/∂x2 OF BEST ERROR E AND EFFICIENCY
NUMBER e FOR CASE 1 OF PROBLEM 1.

T ∂T
∂x1

∂T
∂x2

E N = 10 N = 12 N = 10
e N = 10 N = 10 N = 10

Case 2:: For the analytical solution we take

h(x) = cos (1− 0.3x1 − 0.7x2)

f(t) = t/5

So that in order for h(x) to satisfy (15)

ψ = 0.4515/s

Figure 3 and Tables V and VI show that for solution T the
smallest error E and efficiency number e are reached when
N = 12 and N = 8 respectively, whereas for the solutions
∂T/∂x1, ∂T/∂x2 they are reached when N = 8. Meanwhile,
Table VII shows the numerical and analytical solutions T ,
∂T/∂x1 and ∂T/∂x2 at (x1, x2) = (0.5, 0.5).

Case 3:: We take

h(x) = exp (−1 + 0.3x1 + 0.7x2)

f(t) = 0.16t (5− t)

Therefore (15) gives

TABLE IV
THE SOLUTIONS T , ∂T/∂x1 AND ∂T/∂x2 AT (x1, x2) = (0.5, 0.5) FOR

CASE 1 OF PROBLEM 1.

t
Analytical N = 6 N = 8 N = 10 N = 12

T
0.0005 0.00054 0.00054 0.00054 0.00054 0.00054

1.0 0.51639 0.51525 0.51550 0.51575 0.51582
2.0 0.60612 0.60137 0.60439 0.60528 0.60546
3.0 0.62172 0.61947 0.62117 0.62129 0.62117
4.0 0.62443 0.62398 0.62446 0.62410 0.62385
5.0 0.62490 0.62512 0.62493 0.62444 0.62429

∂T/∂x1

0.0005 -0.00022 -0.00022 -0.00022 -0.00022 -0.00022
1.0 -0.21301 -0.21272 -0.21283 -0.21293 -0.21297
2.0 -0.25002 -0.24828 -0.24953 -0.24989 -0.24997
3.0 -0.25646 -0.25575 -0.25646 -0.25650 -0.25645
4.0 -0.25757 -0.25762 -0.25781 -0.25766 -0.25757
5.0 -0.25777 -0.25809 -0.25801 -0.25781 -0.25772

∂T/∂x2

0.0005 -0.00059 -0.00059 -0.00059 -0.00059 -0.00059
1.0 -0.56157 -0.56048 -0.56075 -0.56103 -0.56109
2.0 -0.65916 -0.65417 -0.65745 -0.65841 -0.65860
3.0 -0.67612 -0.67385 -0.67570 -0.67583 -0.67570
4.0 -0.67906 -0.67876 -0.67928 -0.67888 -0.67860
5.0 -0.67958 -0.68000 -0.67979 -0.67926 -0.67911
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Fig. 3. The global average error E and efficiency number e = τE for
Case 2 of Problem 1.

TABLE V
THE TOTAL ELAPSED CPU TIME τ , THE GLOBAL AVERAGE ERROR E ,

THE EFFICIENCY NUMBER e = τE FOR CASE 2 OF PROBLEM 1.

N 6 8 10 12
τ 399.906 530.906 653.391 765.234

T
E 0.00168221 0.00071267 0.00060798 0.00057896
e 0.672728 0.378362 0.397250 0.443040

∂T
∂x1

E 0.00228414 0.00040042 0.00040509 0.00041696
e 0.913440 0.212583 0.264681 0.319074

∂T
∂x2

E 0.00335038 0.00114237 0.00125029 0.00128123
e 1.339838 0.606494 0.816928 0.980439

ψ = 1.5485/s

Tables VIII and IX show that for solutions T, ∂T/∂x1 the
smallest error E and efficiency number e are achieved when
N = 12 and N = 10 respectively, whereas for the solutions
∂T/∂x2 they are reached when N = 10. Meanwhile, Table
X shows the numerical and analytical solutions T , ∂T/∂x1
and ∂T/∂x2 at (x1, x2) = (0.5, 0.5).

B. A problem without analytical solution

The aim is to show the effect of inhomogeneity and
anisotropy of the considered material on the solution T .

1) Problem 2:: The material is supposed to be either
inhomogeneous or homogeneous and either anisotropic or
isotropic. For a homogeneous material

TABLE VI
THE OPTIMIZED VALUE OF N FOR OBTAINING THE NUMERICAL

SOLUTIONS T, ∂T/∂x1, ∂T/∂x2 OF BEST ERROR E AND EFFICIENCY
NUMBER e FOR CASE 2 OF PROBLEM 1.

T ∂T
∂x1

∂T
∂x2

E N = 12 N = 8 N = 8
e N = 8 N = 8 N = 8

TABLE VII
THE SOLUTIONS T , ∂T/∂x1 AND ∂T/∂x2 AT (x1, x2) = (0.5, 0.5) FOR

CASE 2 OF PROBLEM 1.

t
Analytical N = 6 N = 8 N = 10 N = 12

T
0.0005 0.00011 0.00011 0.00011 0.00011 0.00011

1.0 0.21939 0.21905 0.21955 0.21953 0.21952
2.0 0.43879 0.43810 0.43911 0.43906 0.43904
3.0 0.65818 0.65716 0.65867 0.65859 0.65857
4.0 0.87758 0.87621 0.878229 0.87812 0.87809
5.0 1.09697 1.09527 1.09778 1.09765 1.09761

∂T/∂x1

0.0005 0.00003 0.00003 0.00003 0.00003 0.00003
1.0 0.07709 0.07692 0.07709 0.07708 0.07708
2.0 0.15418 0.15384 0.15419 0.15417 0.15417
3.0 0.23128 0.23076 0.23129 0.23126 0.23125
4.0 0.30837 0.30768 0.30839 0.30835 0.30834
5.0 0.38546 0.38460 0.38549 0.38544 0.38542

∂T/∂x2

0.0005 0.00007 0.00007 0.00007 0.00007 0.00007
1.0 0.15246 0.15196 0.15231 0.15229 0.15228
2.0 0.30492 0.30392 0.30462 0.30458 0.30457
3.0 0.45738 0.45589 0.45693 0.45688 0.45686
4.0 0.60984 0.60785 0.60924 0.60917 0.60915
5.0 0.76230 0.75981 0.76156 0.76147 0.76144

TABLE VIII
THE TOTAL ELAPSED CPU TIME τ , THE GLOBAL AVERAGE ERROR E ,

THE EFFICIENCY NUMBER e = τE FOR CASE 3 OF PROBLEM 1.

N 6 8 10 12
τ 219.906 291.781 361.453 435.750

T
E 0.16845606 0.01074386 0.00066556 0.00055494
e 37.044541 3.134857 0.240570 0.241814

∂T
∂x1

E 0.16858928 0.01092946 0.00059684 0.00056974
e 37.073837 3.189010 0.215730 0.248265

∂T
∂x2

E 0.16871683 0.01109693 0.00029777 0.00030753
e 37.101886 3.237877 0.107630 0.134007

TABLE IX
THE OPTIMIZED VALUE OF N FOR OBTAINING THE NUMERICAL

SOLUTIONS T, ∂T/∂x1, ∂T/∂x2 OF BEST ERROR E AND EFFICIENCY
NUMBER e FOR CASE 3 OF PROBLEM 1.

T ∂T
∂x1

∂T
∂x2

E N = 12 N = 12 N = 10
e N = 10 N = 10 N = 10

TABLE X
THE SOLUTIONS T , ∂T/∂x1 AND ∂T/∂x2 AT (x1, x2) = (0.5, 0.5) FOR

CASE 3 OF PROBLEM 1.

t
Analytical N = 6 N = 8 N = 10 N = 12

T
0.0005 0.00030 0.00030 0.00030 0.00030 0.00030

1.0 0.48522 0.47706 0.48506 0.48550 0.48548
2.0 0.72783 0.69716 0.72637 0.72827 0.72823
3.0 0.72783 0.66030 0.72394 0.72833 0.72825
4.0 0.48522 0.36647 0.47777 0.48566 0.48556
5.0 0.00000 -0.18430 -0.01215 0.00027 0.00013

∂T/∂x1

0.0005 0.00014 0.00014 0.00014 0.00014 0.00014
1.0 0.23654 0.23244 0.23634 0.23655 0.23655
2.0 0.35482 0.33969 0.35392 0.35485 0.35483
3.0 0.35482 0.32173 0.35274 0.35487 0.35484
4.0 0.23654 0.17856 0.23279 0.23664 0.23659
5.0 0.00000 -0.08980 -0.00592 0.00013 0.00006

∂T/∂x2

0.0005 0.00030 0.00030 0.00030 0.000307 0.00030
1.0 0.49129 0.48265 0.49075 0.49119 0.49116
2.0 0.73693 0.70534 0.73489 0.73681 0.73677
3.0 0.73693 0.66804 0.73243 0.73687 0.73680
4.0 0.49129 0.37077 0.48337 0.49136 0.49126
5.0 0.00000 -0.18646 -0.01229 0.00027 0.00014
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g(x) = 1

and if it is isotropic then

κij =

[
1 0
0 1

]
So that there are four cases regarding the material,
namely anisotropic inhomogeneous, anisotropic homoge-
neous, isotropic inhomogeneous and isotropic homogeneous
material. We set ψ = 1 and the boundary conditions are (see
Figure 4)

P = P (t) on side AB
P = 0 on side BC
T = 0 on side CD
P = 0 on side AD

where P (t) takes four forms

P (t) = P1 (t) = 1

P (t) = P2 (t) = 1− exp (−1.75t)

P (t) = P3 (t) = t/5

P (t) = P4 (t) = 0.16t (5− t)

Therefore the system is geometrically symmetric about x1 =
0.5. We use N = 12 for all cases of this problem.

-

6

x1

x2

A(0, 0) B(1, 0)

C(1, 1)D(0, 1)

T (x, 0) = 0

P = P (t)

P = 0

T = 0

P = 0

Fig. 4. The boundary conditions for Problem 2.

The results are shown in Figures 5, 6 and 7. Figure 5
depicts solution T at points (0.2, 0.5) , (0.8, 0.5) when the
material under consideration is an isotropic homogeneous
material. It can be seen that the values of T at point (0.2, 0.5)
coincide with those at point (0.8, 0.5). This is to be expected
as the system is symmetrical about x1 = 0.5 when the
material is isotropic homogeneous. However, if the material
is anisotropic homogeneous the values of T at point (0.2, 0.5)
do not coincide with those at point (0.8, 0.5). See Figure
6. This means anisotropy gives effect on the values of T .
Similarly, if the material is isotropic inhomogeneous (see
Figure 7) the values of T at point (0.2, 0.5) differ from those
at point (0.8, 0.5). This indicates that inhomogeneity also
gives effect on the values of T .

In addition, Figures 5, 6 and 7 show that the trends of
T values (as the time t changes) follow the time variation
of P (t) except for the form of P (t) = 1. This is to be

expected as P (t), acting as the boundary condition on side
AB, is the only time-dependent quantity for the system, and
the coefficients κij (x) , β2 (x) , ψ (x) are time independent.
Moreover, as shown in Figures 5 and 7, it is also expected
that the values of T for the cases of P1 (t) = 1 and P2 (t) =
1−exp (−1.75t) tend to approach same steady state solution
as t increases. Both functions P1 (t) = 1 and P2 (t) = 1 −
exp (−1.75t) will converge to 1 as t gets bigger.
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Fig. 5. Solution T at points (0.2, 0.5) , (0.8, 0.5) for Problem 2 of isotropic
homogeneous material.
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Fig. 6. Solution T at points (0.2, 0.5) , (0.8, 0.5) for Problem 2 of
anisotropic homogeneous material.
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Fig. 7. Solution T at points (0.2, 0.5) , (0.8, 0.5) for Problem 2 of isotropic
inhomogeneous material.

V. CONCLUSION

The authors have utilized a combination of Laplace trans-
form and standard boundary element method to solve initial
boundary value problems for anisotropic quadratically graded
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materials governed by the Helmholtz type equation (1).
This method does not involve time variable fundamental
solution, making it easy to implement and accurate. On the
other hand, methods with time variable fundamental solution
may produce less accurate solutions due to singular time
points and round-off error propagation. In order to use the
boundary integral equation, the boundary conditions in the
time variable t need to be Laplace transformed, highlighting
the importance of accurate numerical Laplace transform
inversion. The approach has been applied to quadratically
graded materials where the coefficients only depend on the
spatial variable with the same inhomogeneity function. The
authors suggest the extension of this study to cases where the
coefficients depend on different gradation functions varying
with the time variable t.
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