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Abstract—This article mainly study under what conditions
does the eigenvalue problem have positive solutions, in which
the equation with generalizedp-Laplacian operator involving
both Caputo fractional derivatives and fractional derivatives of
Riemann-Liouville. The novelty here consists of deriving some
different intervals, when the λ is within it, there is at least one
positive function satisfied the problem.

Index Terms—Generalizedp-Laplacian; Eigenvalue; Frac-
tional differential equations; Fixed point theorem.

I. I NTRODUCTION

FOR studying turbulence problems in porous media in
fundamental mechanics of engineering, Leibenson [1]

proposed the following equation

(ϕp(v′(s)))′ = f(s, v(s), v′(s)),

in which ϕp(τ) = |τ |p−2τ, p > 1, 1
p + 1

q = 1 is called p-
Laplacian operator.

Since then, many scholars have been interested in the
p-Laplacian equation. Here we only briefly recall some
remarkable results. D. Ji et al [2] discussed countably many
solutions which is positive for the following multipoint
problem which is singular

(ϕp(ρ′(t)))′ + a(t)f(ρ(t)) = 0, t ∈ (0, 1),

ρ′(0)−
n−2∑

i=1

αiρ(ξi) = 0, ρ′(1) +
n−2∑

i=1

αiρ(ηi) = 0.

Recently, because of the importance of fractional differen-
tial equation in the modelling of many phenomena contained
in engineering technology, many scholars began to study
the differential equations which is fractional order withp-
Laplacian operator [3-7,14,15].

In [3], Zhi wei Lv gave the existence results for the
following relationship with fractional derivative involvedp-
Laplacian operator

Dβ
0+(ϕp(Dα

0+θ(t))) + ϕp(λ)f(t, θ(t)) = 0, t ∈ (0, 1),

θ(0) = 0, Dγ
0+θ(1) =

n−2∑

i=1

ξiD
γ
0+θ(ηi), Dα

0+θ(0) = 0.

The relationship in which involved the generalizedp-
Laplacian has received special attention in the last few years.

H. Wang [8] discussed the equation with generalizedp-
Laplacian operator

(φ(v′))′ + λa(t)f(v) = 0, 0 < t < 1,

v(0) = v(1) = 0.
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In [9], the authors investigated the solutions for the eigen-
value relationship, in which the equation involved general-
ized p-Laplacian operator

Dβ
0+(φ(Dα

0+γ(t))) = λf(γ(t)), t ∈ (0, 1),

γ(0) = γ′(0) = γ′(1) = 0,

φ(Dα
0+γ(0)) = (φ(Dα

0+γ(1)))′ = 0.

Therefore, in order to enrich the research findings of
fractional problems in which equations involved generalized
p-Laplacian operator, here, we deal with such problem

Dβ
0+(φ(cDα

0+y(t))) + λk(t, y(t)) = 0, t ∈ (0, 1), (1)

y(0) + y′(0) = 0, y(1) + y′(1) = 0, cDα
0+y(0) = 0,

φ(cDα
0+y(1)) =

m−2∑

i=1

aiφ(cDα
0+y(ξi)), (2)

whereλ is a constant which is positive,1 < α ≤ 2, 1 <
β ≤ 2, 0 < ai, ξi < 1,

∑m−2
i=1 aiξ

β−1
i < 1, Dβ

0+ is the
fractional derivative which is given by Riemann-Liouville,
cDα

0+ is the Caputo fractional derivative. Furthermore, we
need to introduce the following condition:
(H1) The odd strictly increasing functionφ ∈ C ′(R, R) and
the following relationship holds true

ω1(u)φ(v) ≤ φ(u, v) ≤ ω2(u)φ(v),

for two increasing homeomorphismsω1, ω2 : (0,+∞) →
(0,+∞);
(H2) k ∈ C([0, 1]× (0,+∞), (0,+∞)).

In this work, under some natural assumptions, we obtain
the solvability of the problem (1),(2). By scaling the value
of the Green’s function for (1),(2) and using some theorem,
we obtain some different intervals, when theλ is within it,
there is at least one positive function satisfied the relationship
(1),(2).

II. T HE PRELIMINARY LEMMAS

This part gives some important definitions and useful
Lemmas.

Definition 2.1 [10] Presume the functionh : (0, +∞) →
R, µ > 0,

Iµh(t) =
1

Γ(µ)

∫ t

0

(t− θ)µ−1h(θ)dθ,

theabove relationship refers toµ order fractional integration.
Definition 2.2 [10] Presume the functionh : (0, +∞) →

R, µ > 0,

Dµh(t) =
1

Γ(n− µ)
(

d

dt
)n

∫ t

0

(t− θ)n−µ−1h(θ)dθ,
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in this place n = [µ] + 1, the above equation refers toµ
order fractional derivative of Riemann-Liouville type.

Definition 2.3 [10] Let h : (0,+∞) → R be a function,
µ > 0,

cDµh(t) =
1

Γ(n− µ)

∫ t

0

(t− θ)n−µ−1hn(θ)dθ,

in this placen = [µ] + 1, the above equation refers toµ
order fractional derivative of Caputo type.

Lemma 2.1 [10] Presumeβ > 0, n = [β] + 1,
h,c Dβ

0+h,Dβ
0+h ∈ L′(0, 1), then there is

Iβ cDβh(t) = h(t)− c1 − c2t− · · · − cntn−1,

IβDβh(t) = h(t)− d1t
β−1 − d2t

β−2 − · · · − dntβ−n,

in this placeci, di i = 1, 2, · · · , n are real numbers.
Lemma 2.2 [11] For continuous functionh defined on

interval C[0, 1],

ξ(t) =
∫ 1

0

G(t, s)h(s)ds, (3)

in this place

G(t, s) =





(t−s)µ−1+(1−s)µ−1(1−t)
Γ(µ) + (1−t)(1−s)µ−2

Γ(µ−1) ,

0 ≤ s ≤ t ≤ 1,
(1−t)(1−s)µ−1

Γ(µ) + (1−t)(1−s)µ−2

Γ(µ−1) ,

0 ≤ t ≤ s ≤ 1.
(4)

meet thefollowing equation

cDµ
0+ξ(t) = h(t), 0 < t < 1, (5)

ξ(0) + ξ′(0) = 0, ξ(1) + ξ′(1) = 0. (6)

Lemma 2.3 [11] For continuous functionh defined on
interval C[0, 1], expression (4) satisfies:
(i) The functionG(t, s) is positive and continuous aboutt, s
for s, t belongs to the interval(0, 1);
(ii) The following relationship holds true

max
0≤t≤1

G(t, s) ≤ N(s), s ∈ (0, 1),

min
1
4≤t≤ 3

4

G(t, s) ≥ δ(s)N(s), s ∈ (0, 1),

whereN(s) = 2(1−s)α−1

Γ(α) + (1−s)α−2

Γ(α−1) , s ∈ (0, 1). for some
positive continuous functionδ.

Remark 2.1 [11] The expression ofδ(s) is

δ(s) =
1
4

(α− 1)(1− s)α−2 + (1− s)α−1

(α− 1)(1− s)α−2 + 2(1− s)α−1
, s ∈ (0, 1),

we see thatδ(s) ≥ 1
8 .

Lemma 2.4 [12] Let

p(s) = 1−
∑

s≤ξi

ai(
ξi − s

1− s
)β−1, (7)

thenp(s) is nondecreasingand positive on[0, 1].
Lemma 2.5 Chooseh ∈ C[0, 1], then the following

relationshipv(t)

v(t) =
∫ 1

0

H(t, s)h(s)ds,

in this place

H(t, s) =
1

p(0)Γ(β)





p(s)[(1− s)t]β−1 − (t− s)β−1p(0),
0 ≤ s ≤ t ≤ 1,

p(s)[(1− s)t]β−1,
0 ≤ t ≤ s ≤ 1,

(8)
meet thefollowing equation

Dβ
0+v(t) + h(t) = 0, 0 < t < 1, (9)

v(1) =
m−2∑

i=1

aiv(ξi), v(0) = 0. (10)

Proof: For the equation (9), in light of Lemma 2.1, one
has

v(t) = − 1
Γ(β)

∫ t

0

h(s)(t− s)β−1ds + c1t
β−1 + c2t

β−2,

v(0) = 0 meansc2 = 0.
From

v(1) = − 1
Γ(β)

∫ 1

0

h(s)(1− s)β−1ds + c1,

v(ξi) = − 1
Γ(β)

∫ ξi

0

h(s)(ξi − s)β−1ds + c1ξ
β−1
i ,

andv(1) =
∑m−2

i=1 aiv(ξi), one get

c1 = 1
p(0)Γ(β) [

∫ 1

0
h(s)(1− s)β−1ds

−∑m−2
i=1 ai

∫ ξi

0
h(s)(ξi − s)β−1ds]

= 1
p(0)Γ(β)

∫ 1

0
h(s)p(s)(1− s)β−1ds,

so
v(t) = − 1

Γ(β)

∫ t

0
h(s)(t− s)β−1ds

+ tβ−1

p(0)Γ(β)

∫ 1

0
h(s)p(s)(1− s)β−1ds

=
∫ 1

0
H(t, s)h(s)ds.

Lemma 2.6 [12] The expression (8) satisfies:
(i) H(t, s) is positive, ∀ t, s belong to(0, 1);
(ii) H(t, s) ≥ (1− t)m(1− s)β−1tβ−1s, ∀ s, t ∈ [0, 1];
(iii) H(t, s) ≤ (1− s)β−1Ms, ∀ s, t ∈ [0, 1],
where

m1 = inf
0<s≤1

p(s)− p(0)
s

, M1 = sup
0<s≤1

p(s)− p(0)
s

,

m =
m1 + p(0)
p(0)Γ(β)

, M =
M1 + p(0)(β − 1)

p(0)Γ(β)
.

Lemma 2.7 Let (H1), (H2) are true, the following func-
tion

y(t) =
∫ 1

0

G(t, s)φ−1(
∫ 1

0

λH(s, r)k(r, y(r))dr)ds.

makes equation (1) and condition (2) hold.
Proof: Choosev(t) = φ(cDα

0+y(t)), then the realtion-
ship (1),(2) can be reduced to

Dβ
0+v(t) + λk(t, y(t)) = 0,

v(0) = 0, v(1) =
m−2∑

i=1

aiv(ξi).
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From lemma2.5, we have

v(t) =
∫ 1

0

k(s, y(s))λH(t, s)ds,

this means

φ(cDα
0+y(t)) =

∫ 1

0

k(s, y(s))λH(t, s)ds,

then

cDα
0+y(t) = φ−1(

∫ 1

0

k(s, y(s))λH(t, s)ds)

and
y′(1) + y(1) = 0, y′(0) + y(0) = 0.

Combining the above two formulas with Lemma 2.2, we can
see

y(t) =
∫ 1

0

G(t, s)φ−1(
∫ 1

0

k(r, y(r))λH(s, r)dr)ds.

Lemma 2.8 [9] Assuming condition(H1) are met, then

ω−1
1 (u)v ≥ φ−1(uφ(v)) ≥ ω−1

2 (u)v, u, v ∈ (0,+∞).

Lemma 2.9 [13] We denoteK is a cone of Banach space
B. Ω1,Ω2 with 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2 are boundedopen set
in B. SupposeS mappingK to K is continuous and it is
compact. If one of the following holds true
(i) ‖Sv‖ ≤ ‖v‖, ∀v ∈ K∩∂Ω1, ‖Sv‖ ≥ ‖v‖, ∀v ∈
K ∩ ∂Ω2;
(ii) ‖Sv‖ ≥ ‖v‖, ∀v ∈ K∩∂Ω1, ‖Sv‖ ≤ ‖v‖, ∀v ∈
K ∩ ∂Ω2.
Then there is at least one functionv(t) ∈ K ∩ (Ω2\Ω1)
satisfiesSv(t) = v(t).

III. E XISTENCE

Under the standard norm‖v‖ = max0≤t≤1 |v(t)|, the
spaceC[0, 1] defined asB is a space which is completed.
We markK as

K = {v ∈ B|v(t) ≥ 1
8
‖v‖, t ∈ [0, 1]}. (11)

Define the following mapT : K → K

(Ty)(t) =
∫ 1

0

G(t, s)φ−1(
∫ 1

0

k(r, y(r))λH(s, r)dr)ds.

(12)
Moreover, if y satisfiesTy = y, the y is solutions for (1),
(2).

Lemma 3.1 Let (H1), (H2) are true, thenT defined by
(12) mappingK to K is compact, moreover,T is continuous.

Proof: In light of Lemma 2.3 and Remark 2.1, we have

‖Ty(t)‖ ≤
∫ 1

0

φ−1(
∫ 1

0

k(r, y(r))λH(s, r)dr)N(s)ds,

Ty(t) ≥ 1
8

∫ 1

0
φ−1(

∫ 1

0
k(r, y(r))λH(s, r)dr)N(s)ds

≥ 1
8‖Ty‖.

Thus,T (K) is included inK. The functionsG,H andk is
nonnegativeness and continuity, which give the result thatT
mappingK to K is continuous. According to the classical
proof method, we can proveT mappingK to K is compact.
In a word, we haveT mappingK to K is continuous and
compact.

We denote

k0 = lim
y→0+

sup
t∈[0,1]

k(t, y)
φ(y)

,

k0 = lim
y→0+

inf
t∈[0,1]

k(t, y)
φ(y)

,

k∞ = lim
y→+∞

sup
t∈[0,1]

k(t, y)
φ(y)

,

k∞ = lim
y→+∞

inf
t∈[0,1]

k(t, y)
φ(y)

,

B1 =
∫ 1

0

ω−1
1 (

∫ 1

0

M(1− r)β−1rdr)N(s)ds,

B2 = 1
8

∫ 3
4
1
4

N(s)ω−1
2 (sβ−1(1− s))

ω−1
2 (

∫ 1

0
(1− r)β−1rmω1( 1

8 )dr)ds,

B3 = 1
8

∫ 3
4
1
4

N(s)ω−1
2 (sβ−1(1− s))

ω−1
2 (

∫ 1

0
(1− r)β−1mrdr)ds.

Theorem 3.1Let (H1), (H2) are true andk∞ω1(B−1
1 ) >

k0ω2(B−1
2 ), then for

λ ∈ (ω2(B−1
2 )k−1

∞ , ω1(B−1
1 )(k0)−1), (13)

there is at least one positive function satisfied problem (1),
(2). In this place we writek−1

∞ = 0 if k∞ = +∞ and
(k0)−1 = +∞ if k0 = 0.

Proof: From (13), there existsε > 0 satisfying

(k0 + ε)−1ω1(B−1
1 ) ≥ λ ≥ (k∞ − ε)−1ω2(B−1

2 ). (14)

First, by the notation ofk0,

k(t, y) ≤ φ(y)(k0 + ε), 0 < t < 1, 0 < y ≤ r1, (15)

for somer1 > 0. SelectΩ1 as {y ∈ B : ‖y‖ < r1}. Then
for any y belongs toK ∩ ∂Ω1, from (14), (15), one get

‖Ty(t)‖ ≤ ∫ 1

0
N(s)φ−1(λ

∫ 1

0
M(1− r)β−1

r(k0 + ε)φ(r1)dr)ds
≤ ω−1

1 (λ(k0 + ε))B1r1 ≤ r1 = ‖y‖,
thus,

‖Ty‖ ≤ ‖y‖, for y belongs toK ∩ ∂Ω1. (16)

Second, by the notation ofk∞,

k(t, y) ≥ (k∞ − ε)φ(y), 0 < t < 1, y ≥ r3, (17)

for some r3 > 0. Let r2 = max{2r1, r3}, select Ω2 as
{y ∈ B : ‖y‖ < r2}. Then for anyy belongs toK ∩ ∂Ω2,
from (14), (17), one get

‖Ty(t)‖ ≥ ∫ 1

0
G(t, s)φ−1(λ

∫ 1

0
k(r, y(r))H(s, r)dr)ds

≥ ∫ 3
4
1
4

G(t, s)φ−1(λ
∫ 1

0
k(r, y(r))H(s, r)dr)ds

≥ ∫ 3
4
1
4

1
8N(s)φ−1(λ

∫ 1

0
msβ−1(1− s)(1− r)β−1

r(k∞ − ε)φ( 1
8‖y‖)dr)ds

≥ ∫ 3
4
1
4

1
8N(s)ω−1

2 (λ
∫ 1

0
msβ−1(1− s)(1− r)β−1

r(k∞ − ε) 1
8r2dr)ds

= ω−1
2 (λ(k∞ − ε))B2r2 ≥ r2 = ‖y‖,

thus,

‖Ty‖ ≥ ‖y‖, for y belongs toK ∩ ∂Ω2. (18)
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Therefore, inview of (16), (18) and Lemma 2.9, there exists
y belongs toK ∩ (Ω2\Ω1) andTy = y with r1 ≤ ‖y‖ ≤ r2.
Obviously,y is a positive function satisfied problem (1), (2).

Theorem 3.2 Let (H1), (H2) are true andk0ω1(B−1
1 ) >

k∞ω2(B−1
2 ), then for

λ ∈ (ω2(B−1
2 )k−1

0 , ω1(B−1
1 )(k∞)−1), (19)

there is at least one positive function satisfied problem (1),
(2). In this place we writek−1

0 = 0 if k0 = +∞ and
(k∞)−1 = +∞ if k∞ = 0.

Proof: From (19), there existsε > 0 satisfying

(k∞ + ε)−1ω1(B−1
1 ) ≥ λ ≥ (k0 − ε)−1ω2(B−1

2 ). (20)

First, by the notation ofk0,

k(t, y) ≥ (k0 − ε)φ(y), 0 < t < 1, 0 < y ≤ r1. (21)

for somer1 > 0. SelectΩ1 as {y ∈ B : ‖y‖ < r1}. Then
for any y belongs toK ∩ ∂Ω1, from (20), (21), one get

‖Ty(t)‖ ≥ ∫ 1

0
G(t, s)φ−1(λ

∫ 1

0
k(r, y(r))H(s, r)dr)ds

≥ ∫ 3
4
1
4

G(t, s)φ−1(λ
∫ 1

0
k(r, y(r))H(s, r)dr)ds

≥ ∫ 3
4
1
4

1
8N(s)φ−1(λ

∫ 1

0
msβ−1(1− s)(1− r)β−1

r(k0 − ε)φ( 1
8‖y‖)dr)ds

≥ ∫ 3
4
1
4

1
8N(s)φ−1(λ

∫ 1

0
msβ−1(1− s)(1− r)β−1

r(k0 − ε)ω1( 1
8 )φ(r1)dr)ds

≥ ∫ 3
4
1
4

1
8N(s)ω−1

2 (sβ−1(1− s))ω−1
2 (mω1( 1

8 ))

ω−1
2 (

∫ 1

0
(1− r)β−1rdr)ds · ω−1

2 (λ(k0 − ε))r1

= ω−1
2 (λ(k0 − ε))B2r1 ≥ r1 = ‖y‖,

thus,

‖Ty‖ ≥ ‖y‖, for y belongs toK ∩ ∂Ω1. (22)

Second, we choose a positive constantR1 which satisfy

k(t, y) ≤ φ(y)(k∞ + ε), 0 < t < 1, y ≥ R1. (23)

In the following, we will prove it by dividing it intok is
bounded andk is unbounded.
(i) k is bounded,

k(t, y) ≤ D, for 0 < t < 1, 0 < y < +∞,

for some positive constant D. Let r3 =
max{2r1, φ

−1(λD)B1}, selectΩ3 as {y ∈ B : ‖y‖ < r3}.
Then for anyy belongs toK ∩ ∂Ω3, from (20), (23), one
get

‖Ty(t)‖ ≤ ∫ 1

0
N(s)φ−1(λ

∫ 1

0
M(1− r)β−1

rk(r, y(r))dr)ds

≤ ∫ 1

0
N(s)φ−1(λ

∫ 1

0
M(1− r)β−1rDdr)ds

≤ ∫ 1

0
N(s)φ−1(λD)ω−1

1 (
∫ 1

0
M(1− r)β−1rdr)ds

= φ−1(λD)B1 ≤ r3 = ‖y‖,
thus,

‖Ty‖ ≤ ‖y‖, for y belongs toK∩ ∂Ω3.

(ii) k is unbounded,

k(t, y) ≤ k(t, r4), for 0 < t < 1, 0 < y ≤ r4,

for some positive constantr4 > max{2r1, R1}. SelectΩ4 as
{y ∈ B : ‖y‖ < r4}. Then for anyy belongs toK ∩ ∂Ω4,
from (20), (23), we get

‖Ty(t)‖ ≤ ∫ 1

0
N(s)φ−1(λ

∫ 1

0
M(1− r)β−1

rk(r, u(r))dr)ds

≤ ∫ 1

0
N(s)φ−1(λ

∫ 1

0
M(1− r)β−1r

(k∞ + ε)φ(r4)dr)ds
= ω−1

1 (λ(k∞ + ε))B1r4 ≤ r4 = ‖y‖,
thus,

‖Ty‖ ≤ ‖y‖, for y belongs toK ∩ ∂Ω4.

Considering the above two cases, selectΩ2 as {y ∈ B :
‖y‖ < r2 = max{r3, r4}}, we get

‖Ty‖ ≤ ‖y‖, for y belongs toK ∩ ∂Ω2.

Therefore, Lemma 2.9 implies that there existsy belongs to
K ∩ (Ω2\Ω1) andTy = y with r1 ≤ ‖y‖ ≤ r2. Obviously,
y is a positive function satisfied problem (1), (2).

Theorem 3.3 The following inequality holds

λ min
0≤t≤1, 1

8 r1≤y≤r1

k(t, y) ≥ φ(
r1

B3
),

λ max
0≤t≤1,0≤y≤r2

k(t, y) ≤ φ(
r2

B1
),

for somer2 > r1 > 0, then there exists a positive function
y satisfying problem (1), (2), moreoverr1 ≤ ‖y‖ ≤ r2.

Proof: First, let Ω1 as {y ∈ B : ‖y‖ < r1}. Thus for
any y ∈ K ∩ ∂Ω1, we get

‖Ty‖ ≥ ∫ 1

0
G(t, s)φ−1(λ

∫ 1

0
H(s, r)k(r, y(r))dr)ds

≥ ∫ 3
4
1
4

G(t, s)φ−1(λ
∫ 1

0
H(s, r)k(r, y(r))dr)ds

≥ ∫ 3
4
1
4

1
8N(s)φ−1(λ

∫ 1

0
msβ−1(1− s)(1− r)β−1

r min0≤r≤1, 1
8 r1≤y≤r1

k(r, y(r))dr)ds

≥ r1
B3

B3

≥ r1 = ‖y‖,
Second, letΩ2 as {y ∈ B : ‖y‖ < r2}. Then for anyy
belongs toK ∩ ∂Ω2, we get

‖Ty‖ ≤ ∫ 1

0
N(s)φ−1(λ

∫ 1

0
M(1− r)β−1

rk(r, y(r))dr)ds

≤ ∫ 1

0
N(s)φ−1(λ

∫ 1

0
M(1− r)β−1r

max0≤r≤1,0≤y≤r2 k(r, y(r))dr)ds
≤ r2

B1
B1

= r2 = ‖y‖,
Therefore, inlight of Lemma 2.9, there exists a functiony
satisfyingTy = y, moreover,y ∈ K ∩ (Ω2\Ω1) and r1 ≤
‖y‖ ≤ r2. Obviously, y is a solution which is positive for
the relationship (1), (2).
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