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Abstract—The analysis, modeling, and forecast of oil prices
are among the most important studies related to global and
local economic trends. Such studies are necessary to increase
investments and reduce risks because oil prices exert a signif-
icant impact on supply and demand in global markets. In the
current work, four models are proposed, namely, autoregressive
fractionally integrated moving average (ARFIMA), ARFIMA
with additive Holt–Winters (ARFIMA-AHW), ARFIMA with
multiplicative Holt–Winters (ARFIMA-MHW), and ARFIMA
with Kalman filter (ARFIMA-KF), for modeling monthly Brent
crude oil prices. Accordingly, this study aims to extend the re-
searchers’ previous work by comparing the performance of the
proposed statistical methods to provide an accurate individual
or hybrid model for the efficient and reliable modeling of these
prices. In addition, the characteristics of the optimal and most
accurate method are identified to refinement the prediction
outcomes of the ARFIMA model by using the Kalman filter
and Holt–Winters methods in hybridization. The capabilities of
these proposed models are evaluated in view of the root-mean-
square error and by conducting the autoregressive conditional
heteroscedasticity with Lagrange multiplier and Ljung–Box
tests. This study shows that the ARFIMA (2,0.3589648,2)-KF
model outperforms the other proposed models on the basis of
the test results.

Index Terms—ARFIMA, KF, HW, Hybrid Approach, Mod-
eling.

I. INTRODUCTION

AT present, the analysis of time series data set continues
to be an important topic in many fields, the main ones

are for example, economics, business, and the stock market.
Moreover, modeling, simulation and forecasting methods
are being increasingly used by researchers. Popular exam-
ples of these methods include autoregressive fractionally
integrated moving average (ARFIMA), Kalman Filter (KF),
Holt–Winters (HW), and hybrid methods. The ARFIMA
models have been implemented in diverse fields, such as in
prices. The HW methods have been applied to know the
production and prices also. The KF methods have been used
in crude oil prices. That is, all these methods contribute
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to the modeling and forecasting field. So, they have their
own strengths and weaknesses, as will be discussed in later
sections.

Different methods and approaches have been used to
improve modeling and forecasting. The ARFIMA model is
utilized to fit time series data set, make sense the behavior
of it, or forecast the future. The importance of forecasts
in the financial economics field is extremely significant at
the national, and international levels because forecasts can
help investors to increase profits and decrease financial risks
despite the fluctuations of the international economy. Another
method, KF, can be used to obtain optimal and high accuracy
forecasts [1]. The KF approach was initially verified to be
most useful in engineering and space technology, and then it
started being used in the field of statistics [2], [3]. In the same
studies, the researchers mentioned that the primary feature
of this method is its capability to update system knowledge
after receiving a new observation, minimizing error terms and
time (t) by filtering noisy terms. Consequently, KF is widely
used in stationary and nonstationary data analysis due to its
appropriate performance; it is also computationally efficient,
requiring only an extremely small storage capacity [1].

With numerous competing models for obtaining the best
forecast, selecting a suitable one has become a problem [2].
Researchers may find choosing the appropriate model for
their study difficult because many methods are available.
Another challenge is the difficulty in applying methods. The
HW method is a simple, fast, and inexpensive procedure that
is widely used in forecasting; it can cope with trends and
seasonal variations [4], [5]. This technique differs from other
forecasting methods because it does not rely on fitting for
any statistical modeling procedure; it also employs repeated
steps to obtain the future values of the forecast [6]. The
HW method has two versions, depending on whether the
seasonal pattern in the series is modeled in an additive or
multiplicative process. Moreover, the HW method is not a
special case of the Box–Jenkins procedure for all practical
purposes [4].

Another strategy for obtaining accurate forecasts is using a
hybrid method to obtain the future values of the forecast and
overcome the disadvantages and inefficiencies of individual
models, such as the presence of non-normal residuals. Hybrid
procedures can solve many problems of both linear and non-
linear time series structures. These procedures are known as
hybrid models. In the current paper, the KF and HW methods
are hybridized with the ARFIMA model to demonstrate the
aforementioned phenomenon. This study aims to determine
if the ARFIMA model can be improved by integrating either
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the KF or HW method or both. Accordingly, a general
problem is highlighted through empirical comparisons of the
datasets used in this study, as discussed in later sections.

Crude oil is a highly essential commodity for all countries
globally; it impacts everyone’s daily life in different aspects
[3]. Given the increasing request for crude oil in all aspects of
life [2], its pricing poses a challenge to the world’s economy
and to domestic and international investments. Therefore,
developing the best strategic plans for understanding the
price changes of crude oil, particularly Brent crude oil, is
imperative.

However, despite the numerous studies on Brent crude oil
prices, the following question remains unanswered: which
hybridization approach is the most appropriate for model-
ing the problem of non-normal residual distribution in the
ARFIMA model?

To answer this question, the purpose of this work is as
follows. Firstly, the primary target is to compare the perfor-
mance of statistical methods, namely, ARFIMA, ARFIMA-
KF, ARFIMA-AHW, and ARFIMA-MHW, to obtain an
effective and accurate individual model or hybrid model
for the reliable modeling of Brent crude prices. Secondly,
the characteristics of the optimal and most accurate method
to increase the effectiveness and quality of the modeling
procedure for the ARFIMA model using the KF or HW
hybridization method will be determined. Thirdly, this study
also intends to check the following hypothesis: the model
that has the best Akaike information criterion (AIC) is not
necessarily the best forecast model for a dataset.

II. LITERATURE REVIEW

Several researchers have studied the ARFIMA model for
modeling and forecasting crude oil prices. For example,
[7]. While, [2] explained the KF procedure by comparing
it with the ARIMA, generalized autoregressive conditional
heteroskedastic, and ARIMA-KF models. They concluded
that the performance of ARIMA-KF is considerably better
than other models. Thereafter, [8] suggested using the KF-
ARIMA (1,1,1) model to get accurate predictions relevant to
the COVID-19 pandemic in Pakistan during the period from
February 26, 2020 until to April 30, 2020. The experimental
result showed that the proposed model achieved the lowest
mean absolute percentage error (MAPE) compared with the
SutteARIMA and HW models.

Various techniques have been utilized in modeling and
forecasting in which the primary focus is on trend, sea-
sonality, or a combination of both in certain time series
dataset. One of these techniques is the HW method. The
HW literature is extensive, and the application of this method
has spread over many scientific areas. [9] used the ARIMA,
ARFIMA, and HW smoothing procedures to evaluate and
forecast the air quality in Chandigarh City from 2009 until
to 2010. The ARFIMA (2,0.3051,2) model was suitable and
better than the other models. [10] found that the MHW model
outperformed the Seasonal ARIMA (0,1,1)(0,1,1)12 model
when using monthly dataset on India’s inbound tourism
from January 2001 until to June 2018 based on the mean
absolute error (MAE), MAPE, and mean-square error (MSE).
[11] studied the Box–Jenkins (ARIMA), MHW, and AHW
methods for Potato prices covering the period from January
2005 until to July 2019. The results indicated that the

ARIMA (1,1,2) method achieved better forecasting accuracy
based on root-mean-square error (RMSE), MAPE, and mean
absolute deviation (MAD) compared with other methods.

The hybrid method is frequently used in practical pre-
diction applications for several fields. [12] examined and
compared numerous individual and hybrid models, namely,
ARIMA, SARIMA, ARFIMA, HW, singular spectrum analy-
sis, ARIMA-wavelet, ARFIMA-wavelet, SARIMA-wavelet,
ARIMA-KF, ARFIMA-KF, and SARIMA-KF, for predict-
ing the future workload of CPU, RAM, and network. The
SARIMA-KF hybrid model outperformed the other models
and achieved extremely high forecasting accuracy based on
MAPE.

Many researchers have attempted to model and forecast
Brent crude oil prices using time series, individual, and
hybrid statistical models [2], [13]–[22]. Forecasting oil prices
exerts a considerable impact on supply and demand in global
markets. Moreover, oil price expectations remain highly im-
portant for investors and researchers. They pose a challenging
problem to them by reason of the special characteristics of
oil prices and their remarkable effect on several economic
and financial sectors in the world, particularly in the current
situation due to the COVID-19 pandemic. We choose this
type of data for our study because of the aforementioned
reason.

III. METHODOLOGY OF RESEARCH

This section presents all methods and the dataset used in
this study by employing the real-time series dataset. The
dataset, methods, tests, criteria, and accuracy measures are
introduced as follows.

A. Dataset

The monthly Brent crude oil prices datasets have
been used in this study which are obtained from the
website: www.indexmundi.com/commodities/?commodity=
crude-oil-brent. The monthly datasets were selected from
January 1979 until to July 2019, totaling 487 observations.
The long period covered allows considering historical obser-
vations, i.e., after the 1973 oil crisis, as described by [23].
The preceding statement justifies our selected period for our
dataset. Thus, the dataset covering the period from January
1979 until to July 2018, totaling 475 observations, were used
as a training dataset. While the remaining observations were
used as the testing dataset. R software (version 3.5.3) has
been used to implement all statistical analyses in this work.

B. Long Memory

In this section, we use the same methodology that used by
the authors in [19] to propose and find a new hybridization
method based on ARFIMA models, thus improving the
performance of the forecasting model.

The existence of the long memory behavior is detected
if the autocorrelation function (ACF) decreases more slowly
than the exponential decrease as explained by [7]. In addition,
the presence of this memory can be noted through a nonsta-
tionary structural break [24]. Therefore, testing the structural
breaks of any dataset is necessary because it specifies that
the long memory is present or imaginary [24]–[26]. In
1960, [27] introduced a test for determining the presence
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of structural breaks. Then in 2015, [28] modified it into a
Quandt likelihood ratio (QLR) test (also called the supremum
F-statistic) for structural breaks between t0 and t1, which was
given by

Sup F = max{F (t0), F (t0 + 1), . . . , F (t1)}, (1)

where the supremum F-statistic is the largest.
Numerous statistical methods are used to verify the ex-

istence of the long memory feature as mentioned in [29].
These methods include the R/S Hurst, aggregated variance,
and Higuchi methods. Moreover, numerous approaches are
available for testing and estimating long memory parameters.
These approaches are presented in detail in the following
subsections.

1) Hurst Exponent: This method depends on the range
(R(n)) of subtotals with values that deviate from their mean
in the time series divided by the standard deviation (S(n)),
as explained in [29], [30]. It is symbolized as (Q(n)) and
written as:

Q(n) =
R(n)

S(n)

=
max

1≤k≤n

k∑
i=1

(Xi−Xn)− min
1≤k≤n

k∑
i=1

(Xi−Xn)(
n∑

i=1
(Xi−Xn)2

) 1
2

,
(2)

where

Xn =
1

n

n∑
i=1

Xi, (3)

and (n) is the sample size.
2) Geweke and Porter–Hudak (GPH) : In 1983, [31]

proposed the estimation for the parameter (d̂n) based on the
regression equation (Yi) in accordance with the following
equation:

d̂n = −

(
n∑

i=1

(
Xi − X̄

)2)−1( n∑
i=1

(
Xi − X̄

) (
Yi − Ȳ

))
,

(4)
where

Yi = α+ βXi + εi, (5)

Ȳ =
1

n

n∑
i=1

Yi. (6)

3) Smoothed Periodogram (Sperio) and Fractionally Dif-
ferenced (fracdiff): By contrast, the Sperio and fracdiff are
functions in R software that are employed to estimate the (d)
value in accordance with the following paragraphs:

In 1994, [32] explained the first function, which estimates
the (d) value in the ARFIMA(p, d, q) model. The Sperio
function is denoted by fa(w) through the Parzen lag window,
as it follows:

fa (wj) =
1

2π

m∑
−m

k
( a

m

)
R (a) cos (awj) , (7)

where

k(v) =

 1− 6v2 + 6|v|3 , |v| ≤ 1
2

2(1− |v|)3 , − 1
2 < v ≤ 1

0 , v > 1

 . (8)

k(v) is called the Parzen lag window generator. (m) is the
truncation point, and

R(a) = 1
n

(
n−a∑
i=1

(Xi − X̄)(Xi+a − X̄)

)
,

a = 0,±1, . . . ,±(n− 1),

(9)

which indicates the autocovariance function.
While in 1981, [33] explained the fracdiff operator, which

employs the regression estimation method to estimate the (d)
value for the ARFIMA model [34]. This factor (i.e., d value)
is determined by a Binomial series, as:

∇d = (1−B)
d
=

∞∑
l=0

(
d

l

)
(−B)

l

= 1− dB − 1

2
d (1− d)B2 − 1

6
d (1− d) (2− d)B3 − . . . .

(10)

C. ARFIMA Model

The general formula for the ARFIMA(p, d, q) model can
be given as

ϕp(B)(1−B)dxt = θq (B) ϵt for 0 < d < 0.5, (11)

the parameter (d) is a non-integer value and a nonseasonal
difference order which is defined using Equation (10); {xt}
is a time series variable at time (t); (ϵt) is a white noise; and
ϕp (B) and θq (B) represent AR(p) autoregression for order
(p) and MA(q) moving average for order (q) components
with backward shift operators (B), respectively (more details,
see [30] and [35]).

D. Kalman Filter (KF)

KF is an optimum linear estimator, and it deduces model
parameters from observations that are indirect, unconfirmed,
and inaccurate as explained by [2], [3]. This procedure
exhibits an important advantage that distinguishes it from
other technologies, i.e., the system updates after receiving
each new observation. Thus, the error is also reduced. Before
learning about the KF technique, the presentation of state
space (SS) modeling is essential in order to KF use SS model
terminologies as demonstrated by [2], [3]. The procedure
of the SS model, also called a dynamic linear model [3],
consists of two phases. First, a state vector is formed to
capture the significant components of the time series and
then added until the end. The smallest vector (i.e., the state
vector) summarizes the past behavior of the overall system
by playing the key role in SS modeling, which determines
the state vector [36]. The SS modeling approach explains
the smoothing of the series in the format of two linear
equations. Equation (12)), called the observation equation,
shows the relationships between the present observation and
the unobserved cases [2]. While equation (13), called the
state equation, shows the progress in the states over time and
updates the state vector continuously [2]. The state vector is
updated continuously through the state equation (the state
equation is a vector that contains the undetected components
of a series, such as the trend, seasonality, and level of the
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AR and MA factors of a time series) as mentioned by
[2]. Accordingly, the general formula for the SS model is
presented as follows:

xt = T ′ γt + εt, (12)

γt = H ′ γt−1 + F ωt, (13)

where {xt} represents the observed vector of the variables,
and {γt} displays the vector of the unobserved variables.
Moreover, [T ] , [H], and [F ] are parametric matrices; and(εt)
and (ωt) are the white noise terms with their covariance
matrices [Q] and [R], respectively [37].

Thus, the filter is an algorithm used for solving and clari-
fying the linear SS models, while the equations for predicting
and updating the system are called KF. The new part of
the time series {xt} is called innovations and equivalent
to the residuals of KF. KF forecasts the state estimates of
the series {xt} recursively on the basis of past information
with a variance of the prediction error. In addition, εt is
the innovation at time (t), which is the new information in
{xt} and not supposed to be forecasted from the previous
information; it is indicated as a one-step-ahead forecasting
error [38].

E. Holt-Winters (HW)

This method for exponential smoothing includes trend and
seasonality, which is based on three smoothing equations:
level, trend, and seasonality [5]. HW models have two types,
depending on the seasonal pattern in a series of characteris-
tics: an additive HW (AHW) model, which is employed when
the seasonal component is constant, and a multiplicative HW
(MHW) model, which is employed when the size of the
seasonal component is proportional to the trend level [4].
A technical description of the two types is presented in the
succeeding subsections, as explained by [5].

1) MHW: Seasonal MHW is inapplicable if the time series
has zeros or negative values. Its equation is as follows:

ft+m = (Lt + btm)St−s+m, (14)

where Lt, bt, and St are given by

Lt = α
yt

St−s
+ (1− α)(Lt−1 + bt−1), (15)

bt = β(Lt − Lt−1) + (1− β)bt−1, (16)

st = γ
yt
Lt

+ (1− γ) st−s, (17)

such that (ft+m) presents a forecast for m periods ahead of
time (t), yt is the observed series at time (t), (Lt) shows the
level of the series at time (t), (bt) shows the slope (trend) of
the series at time (t), (st) shows the seasonal component of
the series at time (t), and (s) shows the number of seasons
in a year. The constants α, β and γ ∈ [0, 1] represent the
smoothing parameters.

2) AHW: Seasonal AHW differs from seasonal MHW in
terms of the smoothing and forecast processes. Its equation
is as follows:

ft+m = Lt + btm+ St−s+m, (18)

where Lt, bt and St are given by

Lt = α (yt − st−s) + (1− α)(Lt−1 + bt−1), (19)

bt = β(Lt − Lt−1) + (1− β)bt−1, (20)

st = γ (yt − Lt) + (1− γ) st−s, (21)

where (ft+m), yt, (Lt), (bt), (st), (s), (α), (β) and (γ) are
defined in previous subsections.

F. Hybrid Methods

Various methods for time series modeling that use a
combination of several models instead of only one model
have been advanced over the previous decades to improve
forecasting results. These composite models are called hybrid
methods. The hybrid model shows the capability of being a
reliable tool for increasing the accuracy of the final prediction
and facilitating the capture of various kinds of behaviors in
any time series dataset [17]. In this study, the first method
uses KF and the second one uses HW. Both models are
applied to the ARFIMA model, which functions as the
basic model. Consequently, hybrid models are proposed for
simultaneously modeling a time series dataset.

The hybrid ARFIMA-KF model uses the estimated values
of the ARFIMA model as the starting values for KF repeti-
tion. This means, in the hybrid model, the ARFIMA model is
first applied to obtain the parameter estimate of this model.
Then, these estimated values are applied as the beginning
values for the KF repetition. That is, when using KF based
on Section (III-D), the matrices of [F ], [H], [Q], and [R] must
be estimated. Subsequently, the forecasts obtained using the
two models are combined to determine the ultimate expected
value of the suggested hybrid model. Thus, hybridizing KF
with ARFIMA can provide better forecasts and improve the
forecasting capability of the ARFIMA model.

Based on the above, the proposed hybrid algorithm (i.e.,
the ARFIMA with the KF) can select optimal parameters
through a training and iteration process based on the period
of the Brent crude oil dataset. Therefore, the results in this
study will depend on the period of training and the frequency
of observations, as discussed by [1] and [3]. Apart from the
aforementioned hybrid KF procedure, this study also makes
the following practical recommendations for a hybrid HW
procedure, whether in additive or multiplicative form, with
the ARFIMA model. The suggested hybrid model involves
of two phases. The first one uses the ARFIMA model and
its parameters, i.e., Equation (11). In the second phase, the
HW method is used to analyze the residuals obtained in the
first phase, i.e., Equation (14) or (18). Equation (22) shows
the hybridized approach.

yt = Lt + ft+m, (22)
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where yt refers to the real-time series dataset for the period
(t), (Lt) is the linear portion estimated by the ARFIMA
model, and (ft+m) represents the AHW or MHW portion
of the residual series. In this manner, the forecasting values
of Equation (22) can be obtained as follows:

ŷt = L̂t + f̂t+m, (23)

where ŷt refers to the forecasting values of the real
dataset for the time (t); (L̂t) is the forecast values for the
time (t) from the applied relationship in Equation (11);
and (f̂t+m) is the forecast values for the time (t) from the
applied relationship in Equation (14) or (18). Thereafter, the
forecasts gotten from these models are collected to know
the ultimate expected value of the suggested hybridization
model. Being meticulous is necessary when selecting the
correct hybrid HW model, either additive or multiplicative.
Thus, determining whether the additive model is better than
the multiplicative model, or vice versa, is beneficial for
the hybridization process. Although hybrid HW modeling
requires effort, such effort is considerably less than that
required by the hybrid KF procedure. Moreover, practical
considerations exclude the hybrid MHW procedure if nega-
tive observations or zeros are present.

G. Stationarity and Normality Tests

To check the stationarity of the dataset, augmented Dickey-
Fuller (ADF) and Phillips-Perron (PP) tests are performed
[39], [40]. Meanwhile, numerous methods are available for
evaluating whether a dataset is normally distributed. These
methods can be classified into two major categories: graphi-
cal [41], [42] and statistical [42]. The most common are the
Jarque-Bera [43] and Shapiro-Wilk [44] tests, which are used
in the current study.

H. Autoregressive Conditional Heteroscedasticity with La-
grange Multiplier (ARCH-LM) and Ljung–Box Tests

[45] recommended the Lagrange multiplier (LM) test
to determine whether disturbances follow an autoregressive
conditional heteroscedasticity (ARCH) process. This test is
used to check if an error (ϵt) in the resulting model residuals
is a heteroscedastic operation [28]. In addition, the Ljung-
Box test is another necessary phase in checking the existence
of the correlation among the residuals in the model [46].

I. Information Criterion and Accuracy Measure

The fit model selection depends on several criteria, such as
AIC, as noted by [47] and [35]. This criterion is formulated
in the following equation:

AIC = −2 ln (l) + 2k, (24)

where (l) is a maximum likelihood for the model, and (k)
is the total number of the parameters (k = p + q) through
Equation (11). Furthermore, RMSE is an accuracy measure
used to evaluate a model’s performance, as clarified by [46].

RMSE =

√√√√ 1

n

n∑
t=1

(Yt − Ŷt)
2

(25)

where (Yt) is the real value, and (Ŷt) is the predicted value.

TABLE I
STRUCTURAL BREAK TEST

QLR P-value

1190 < 2.2× 10−16

Although there are many measures of forecasting accuracy,
this study used only one, the RMSE, since this measure is
considered more useful than other performance measures,
according to the following explanations. The RMSE is better
suited for understanding model performance than the MAE
when the error distribution is expected to be Gaussian
and enough samples are available (i.e., n ≥ 100); thus,
reconstructing the error distribution using the RMSE value
is considered more reliable. Moreover, the RMSE satisfies
the triangle inequality requirement for a distance measure
as reported by [48]. They also stated that the RMSE pe-
nalizes variance because it gives errors with larger absolute
values more weight than errors with smaller absolute values,
whereas the MAE gives the same weight for all errors and
is most commonly used for outliers due to its sensitivity.
[48] also mentioned that the best statistics measures should
provide a performance measure for the forecasting model
with a representation of the error distribution simultaneously.
Finally, they confirmed that when evaluating various models
using one accuracy measure, differences in the error distri-
butions become more significant. Therefore, we have chosen
this type of accuracy measure for the previously mentioned
reasons.

IV. DISCUSSION AND RESULTS

The monthly price ($/bbl) graph for the Brent crude oil
series is shown in Fig.1. {xt} denotes the price, and (t)
represents the time in all months of the period from January
1979 until to July 2019. This series indicates stable prices
followed by a gradual fluctuation. That is, the series exhibits
considerable fluctuations over time, particularly in 2008. The
statistical measures for that series are as follows: the mean
is 42.95, the median is 30.20, and the right skewness is
1.177466. Furthermore, all four structural breaks for the
series are shown in Fig.1 in 1986, 1999, 2005, and 2013. That
occurred in the 1980s, 1990s, 2000s, and 2010s refer to the
oil crisis period since 1973. These break points correspond
to that period, as described in Section III-A.

Table I presents the preliminary result of the QLR struc-
tural breaks test on all the dates. The null hypothesis for
this test is not accepted because the supremum F-statistic is
extremely large while the P-value is extremely small.

Moreover, the ACF (Fig.2) exhibits a slow decline, which
is an ideal behavior of the long memory process. Thus, a
preliminary conclusion is drawn that a long memory exist,
and this conclusion is confirmed in Table II in accordance
with several statistical methods. Table II presents the results
of checking for an existing long memory. All the (H) values
are higher than 0.5, providing a confirmed conclusion for the
presence of a long memory feature in the series. Thus, based
on a P-value (< 2.2 × 10−16) for the Jarque-Bera test and
the skewness value above-mentioned, the null hypothesis for
this test is rejected (i.e., this series is not normal).

Notably, the previous tables (i.e., Tables I and II) were
taken from [19] for use in the hybrid proposed models in
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Fig. 1. Monthly Brent prices with all breaks and their confidence intervals

Fig. 2. ACF plot for the {xt} series

TABLE II
LONG MEMORY TESTS

R/S Analysis Aggregated variance method Higuchi method

H = 0.8531864 H = 0.7910981 H = 0.9578515

this study.
Consequently, {xt} transformation must be implemented.

Accordingly, the {Yt} series refers the growth rate for the
{xt} series because the difference would be taken after that,
as shown in the succeeding equation:

Yt = log (xt). (26)

The fractional difference (d) for the {Yt} series is ap-
preciated through various methods and functions, as shown
in Table III. The (d) value through the R/S Hurst analysis
is 0.3589648, the Sperio estimate is 0.4984955, and the
fractionally differenced estimate is 0.4994726. By contrast,
we exclude GPH estimation because its value is greater than
0.5.

After calculating the fractional difference (di) applying
Equation (26), the series is transformed as follows:

TABLE III
LONG MEMORY ESTIMATION FOR THE Yt SERIES

Method / Function d

R/S Hurst (d = H − 0.5) d1 = 0.3589648

Sperio (bandw.exp = 0.3, beta = 0.74) d2 = 0.4984955

Fractionally differenced (fracdiff) d3 = 0.4994726

GPH d4 = 0.7676326

Zt(di) = diff (Yt) = Yt(1−B)
di
, (27)

where di = d1, d2, and d3. The stationary results of the
Zt(di) series are presented in Table IV. The P-values for the
ADF and PP tests (Table IV) indicate that the series became
stationary (i.e., the null hypothesis for these tests is rejected)
after computing the fractional difference.

From Equation (24) and the results of the practical
analysis of the aforementioned dataset, the best qualify-
ing models are ARFIMA(1, d1, 0), ARFIMA(2, d1, 1), and
ARFIMA(2, d1, 2) based on the lowest AIC criterion of
−962.91,−966.25, and −966.07, respectively. It is noted
that the three models belong to the lowest (d) value estimate.

Thus, the three models were selected and will be compared

IAENG International Journal of Applied Mathematics, 53:3, IJAM_53_3_13

Volume 53, Issue 3: September 2023

 
______________________________________________________________________________________ 



TABLE IV
STATIONARY TEST FOR THE Zt(di) SERIES

Method / Function Tests Value

R/S Hurst ADF test for the Zt(d1) series -4.1727
PP test for the Zt(d1) series -82.923

Sperio ADF test for the Zt(d2) series -5.1927
PP test for the Zt(d2) series -151.34

Fracdiff ADF test for the Zt(d3) series -5.2001
PP test for the Zt(d3) series -151.89

TABLE V
NORMALITY TESTS OF THE RESIDUALS

Model
Ljung–Box test Shapiro-Wilk

Lag (12) Lag (24) Lag (36) normality test

ARFIMA (1, d1, 0) 0.02570 0.02195 0.04968 1.585 × 10−8

ARFIMA (2, d1, 1) 0.08763 0.06623 0.15880 1.919 × 10−9

ARFIMA (2, d1, 2) 0.12860 0.11040 0.22870 1.686 × 10−9

to determine which is the best one. The succeeding step
involves the testing of residuals [49]. Residual testing is
a requisite step in this stage for examining any model by
using different techniques, including ACF graphs and the
Ljung–Box residual test. These techniques are also necessary
when considering the correlations among residuals [46].
Table V indicates that these models do not exhibit the feature
of the unit root for the residuals based on the P-values for
the Ljung-Box test at different lags and on the P-values of
the Shapiro-Wilk normality test. In addition, the P-value of
the Jarque-Bera test for the residual’s models is less than
2.2 × 10−16. Thus, all previous results confirm that the
residuals of these models are not normally distributed (i.e.,
rejecting the null hypothesis for these tests).

From the previous result, the procedure used in the next
step should be eligible to address the problem of having
non-normal structures in the selected time series type. This
procedure is KF. Therefore, these three models can be
hybridized with KF depending on the results of the first phase
(ARFIMA modeling). Thus, the best training period models
for our series are identified and their estimated coefficients
are provided in Table VI. The ARFIMA-KF model uses the
estimated values of the ARFIMA models given in Table VI
as the initial values of KF recursion.

Table VI also shows that all the AR and MA coefficients of
the three models are statistically significant because their P-
values are 0.000, except for MA (2) of the last model, which
is statistically insignificant because its P-value (0.1773) is
greater than the typical significance level of 0.05. Thus, these
coefficients will exert different effects on the accuracy of
filtering, as shown in Table VII.

Table VII summarizes the information related to the se-
lected models in terms of AIC and RMSE. RMSE shows the
performance of all models relative to the test set, and AIC
presents the best ones. The experimental analysis emphasizes
that the RMSE of these models is within 0.1 (i.e., close to
the real values of the series). The table also exhibits the
relationship among the ARFIMA models and the ARFIMA-
KF hybrid models in term of the RMSE values for the test
set, as the RMSE values in the hybrid models depends on the
RMSE values of the ARFIMA models (i.e., the relationship
between them is an incremental relationship for the same

basic model). Thus, the best individual model is the ARFIMA
(2, d1, 2) model and the best hybrid model is the ARFIMA
(2, d1, 2)-KF model, which have the smallest values for these
measurements.

In Table VIII, the Ljung-Box test of the residuals for
the first model shows that the residuals are not white noise
and dependent [50], while these results differ from those
of the hybrid model. Therefore, the ARFIMA (2, d1, 2)-KF
model is appropriate for studying the Brent series because
its residuals are white noise. Furthermore, the model shows
no evidence of the ARCH effect when the ARCH-LM test
is used. Notably here, the ARFIMA (2, d1, 2)-KF model
has a good advantage, it takes 677 steps during processing
to model. Conversely, this hybridization technique has an
obvious disadvantage, it deals with linear estimators in the
modeling.

The second major purpose of this paper is to determine
if the ARFIMA results can be improved using the HW
method through hybridization. From the previous results, the
proposed models should be eligible to deal with the non-
normality residuals problem for the real time series dataset.
These proposed models are AHW and MHW. Therefore, the
residuals obtained from the three models mentioned in the
ARFIMA modeling phase are analyzed and hybridized with
HW models (i.e., ARFIMA-AHW and ARFIMA-MHW).
Table IX summarizes the RMSE results that related to
the test dataset of all models. The experimental analysis
proves that the performance of the RMSE for all models
is within 0.1 (i.e., close to the real values of the time
series). The ARFIMA (2, d1, 2) and ARFIMA (2, d1, 1)-
AHW models have the smallest values for this measurement.
In agreement with the aforementioned results, the best hy-
brid model is the ARFIMA(2, d1, 1)-AHW model, followed
by the ARFIMA(2, d1, 2)-AHW model. Moreover, the table
shows a summary of the AIC values for the training dataset
of these models. The model with the best AIC value does not
produce the best forecast model for the dataset, which is not
equivalent to the smallest RMSE value in the same model,
as mentioned in [49]. In addition, Table IX shows that the
MHW procedure is not applied to the residual series in our
dataset because it is an inappropriate method for negative
data.

The initial judgment on the AHW hybrid method is that
it is accurate and efficient compared with other methods in
accordance with RMSE (Table IX). However, this judgment
is disproved when the result of the ARCH-LM test (Table
X) is considered, although AHW hybrid forecasts are better.

The ARCH-LM and Ljung-Box tests of the residuals of
different models are presented in Table X. Although the
Ljung-Box test of the residuals for the ARFIMA(2, d1, 1)-
AHW and ARFIMA(2, d1, 2)-AHW models confirms that
the residuals are white noise and independent [50], the
ARCH-LM test for these models is less than 0.05, indicating
the occurrence of the heteroscedasticity effect. Meanwhile,
the ARFIMA(2, d1, 2) model fails both tests. Thus, the
ARFIMA-AHW hybrid model clearly does not meet all the
model validation criteria. Accordingly, this hybrid model
cannot be used to improve the ARFIMA model and to
forecast the monthly Brent series.

The fitted ARFIMA and AHW models have common
features based on the ARCH-LM test value for both model
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TABLE VI
ESTIMATION RESULTS OF THE ARFIMA MODELS

Model Coefficient Estimate Std. Error z-value P-value

ARFIMA (1, d1, 0) AR (1) 0.8893 0.0218 40.887 < 2.2× 10−16

AR (1) 1.8036 0.0413 43.668 < 2.2× 10−16

ARFIMA (2, d1, 1) AR (2) -0.8053 0.0403 -19.983 < 2.2× 10−16

MA (1) -0.9646 0.0215 -44.858 < 2.2× 10−16

AR (1) 1.7593 0.0608 28.954 < 2× 10−16

ARFIMA (2, d1, 2) AR (2) -0.7617 0.0592 -12.8611 < 2× 10−16

MA (1) -0.8682 0.0782 -11.0979 < 2× 10−16

MA (2) -0.0844 0.0625 -1.3492 0.1773

TABLE VII
AIC AND RMSE VALUES

Model Training set Test set
AIC RMSE

ARFIMA (1, d1, 0) -962.91 0.08981462
ARFIMA (2, d1, 1) -966.25 0.08886256
ARFIMA (2, d1, 2) -966.07 0.08800826

ARFIMA (1, d1, 0)-KF -370.18 0.12225460
ARFIMA (2, d1, 1)-KF -280.01 0.11904290
ARFIMA (2, d1, 2)-KF -970.69 0.09090624

TABLE VIII
ARCH-LM AND LJUNG–BOX TESTS FOR THE RESIDUAL SERIES

Model Residual test
ARCH-LM test Ljung–Box test

ARFIMA (2, d1, 2) 9.66× 10−6 0.02449
ARFIMA (2, d1, 2)-KF 0.2667 0.1208

TABLE IX
SUMMARY OF MODELS

Model Training set Test set
AIC RMSE

ARFIMA (1, d1, 0) -962.91 0.08981462
ARFIMA (2, d1, 1) -966.25 0.08886256
ARFIMA (2, d1, 2) -966.07 0.08800826

ARFIMA (1, d1, 0)-AHW 629.5825 0.08080500
ARFIMA (2, d1, 1)-AHW 630.2137 0.07599763
ARFIMA (2, d1, 2)-AHW 629.3643 0.07768752

TABLE X
ARCH-LM AND LJUNG–BOX TESTS OF THE RESIDUALS

Model ARCH-LM test Ljung–Box test

ARFIMA (2, d1, 2) 9.66× 10−6 0.02449
ARFIMA (2, d1, 1)-AHW 2.585× 10−5 0.97540
ARFIMA (2, d1, 2)-AHW 5.815× 10−6 0.19970

types in Table X. That is, both models (i.e., individual
ARFIMA and hybrid AHW) do not yield an acceptable result
in the residual test. In such case, the AHW model exhibits
practically no improvement in hybrid modeling fit. Moreover,
the ARCH-LM test restricts the quality and efficiency of
the listed models, explaining why the performance of these
models is not too good.

Lastly, from the results presented in Tables VIII and X,
the ARFIMA individual and ARFIMA-AHW hybrid mod-
els are inappropriate for modeling and forecasting Brent
crude oil prices, but the ARFIMA(2, d1, 2)-KF model sat-

isfies all model measurement validation criteria, although
the ARFIMA-AHW hybrid models outperformed in terms
of the RMSE criterion for the test set compared to
the other proposed hybrid KF models. Notably here, the
ARFIMA(2, d1, 1)-AHW model has a good advantage, it
takes 633 steps during processing to model.

From the aforementioned results, the ARFIMA model
produces good results with the KF procedure. Thus, the
proposed model (i.e., ARFIMA-KF) is an efficient fore-
casting method for obtaining an accurate forecast model.
Moreover, the KF approach improves the ARFIMA method
and enhances the accuracy and efficiency of the appropriate
hybrid model compared with the AHW or MHW methods.
However, the best model for the dataset does not achieve the
best AIC value, and thus, the hypothesis of this study can
be accepted. Another significant result is the incapability of
individual ARFIMA models to model accurately the dataset
used in this study. Consequently, the attained experimental
results are stimulating, in the sense that realizing precision in
the modeling of Brent prices is hard and it requires caution
and accuracy. Therefore, the hybrid proposed model can be
popularized for other commodities, not just oil, as mentioned
in [51]. This is confirmed by [2] that the hybridization
method with the KF has major significance for statistical
applications in econometrics. For that, this study discussed
how to choose an effective modeling technique and modify
it to improve the efficiency and quality of the chosen model
for any real-time series dataset. Accordingly, the empirical
comparison results present that this technique has two main
advantages over other techniques proposed in this study.
First, its performance is highly dependent on the number
and values of the initial modeling parameters which must
be carefully and accurately estimated. Second, we find that
the KF hybridized technique is more accurate than others
when tested and evaluated through necessary statistical tests.
In addition, (Fig.3) shows the ARFIMA(2,0.3589648,2)-KF
model with the actual data series set used in our study to
ensure the accuracy of its efficiency. These findings show that
increasing the number of parameters in the base model allows
the filtering technique to approximate the resulting data to
the actual values more accurately, especially in necessary
forecast times. This is due to the fact that the filtering system
is continuously updated after new observations are received,
which reduces the error percentage of the resulting values,
thus the hybrid model becomes able to forecast accurately.
In other words, this process can be likened to a cycle, where
the previous step is the starting value of the next step. Thus,
the results highlight the significance of the proposed filtering
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Fig. 3. The time series and Hybrid ARFIMA(2,0.3589648,2)-Kalman filter

methodology. However, the question remains open, to what
extent the KF improves the accuracy and suitability of linear
and nonlinear hybrid models when modeled?

For future research, we recommend replacing the hybrid
method for individual models by using KF because it saves
time and steps required for modeling in the case of non-
normality in residuals. In addition to focusing on the KF
procedure and the hybrid HW model based on ARFIMA
and their use of actual time series because both may be
used as a tool by modelers and forecasters, we realize that
choosing between them is a difficult task, as confirmed by our
study. The ARCH-LM test of the models’ residuals signifies
the need to practice caution when selecting a fit model for
forecasting, and thus, we also recommend the importance of
performing this model residual test when modeling. Thus,
by furthering our understanding of modeling optimization,
researchers’ choice of filtering techniques can be stimulated
(e.g., the hybridization with the KF) to increase the impact of
improving model accuracy when the empirical analysis and
the modeling are used. Consequently, this paper focuses the
value of the extent to which this proposed method deserves
to be disseminated and popularized.

V. CONCLUSION

In this study, we improve the ARFIMA model to avoid two
problems, namely, non-normality residuals and inaccuracy
in selecting an appropriate model for forecasting, by using
the KF approach. The simulation outcomes exhibit that the
performance of the ARFIMA-KF model is better in terms
of accuracy compared with those of other models, such as
ARFIMA-AHW and ARFIMA-MHW, by using the ARCH-
LM and Ljung-Box tests. Moreover, the primary feature of
the proposed ARFIMA(2, d1, 2)-KF model, is its ability to
capture many of the features found in the series of Brent
prices through the unique characteristics of the individual
models that compose it. The most important among them,
is the new observations processing cycle through the use of
filtering technology (this means, the KF controls feedback

processing over time). This leads to the fact that, the KF has
the ability and the force to control the reduction of the error
value. Moreover, the simulation results confirmed that using
different methods in one hybrid model integrates the power
of the individual models and produces a more accurate and
efficient model.
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