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Abstract—Block Landweber scheme plays an important role
in linear image reconstruction field. In this paper, we propose a
block partition strategy based on oblique QR decomposition so
as to improve the computational efficiency of block Landweber
scheme. And then we provide sensitivity analysis of subproblem
from the linear imaging system. Furthermore, in order to
prevent excessive memory usage in the process of oblique
QR decomposition, we design pseudo code to update these
two partition criteria. Finally, we test the performance of our
strategy by the image reconstruction of block simultaneous
algebra reconstruction technique which is a well known special
case of Landweber scheme. Compared with sequential partition,
our block partition strategy provides reconstructed images with
smaller root mean square errors, but with fewer iteration cycles.

Index Terms—Linear imaging system, QR decomposition,
block partition, block Landweber scheme, computational ef-
ficiency.

I. INTRODUCTION

W ITH the development of medical diagnosis, there
are growing concerns about the medical imaging

methods. An important model of modern medical imaging
is the linear imaging model. However, the imaging matrix
in linear imaging model is large and sparse, and its cor-
responding inverse problem is often ill-posed. Therefore,
many researchers have shifted their attention to the design
of reconstruction algorithms, regularization methods and the
acceleration of reconstruction algorithms in order to get high
quality reconstructed images.

There are a number of classical iterative methods used to
solve the linear image reconstruction problem. The Kacz-
marz method, also known as the algebra reconstruction
technique (ART), is an effective iteration algorithm for
solving overdetermined systems of linear equations [1]. The
traditional Kaczmarz method has a fixed order of iterations,
which follows the linear system perse. To accelerate the
convergence speed of the Kaczmarz algorithm, many scholars
have studied the block partition method and the order of
iterations [2], [3], [4], [5], [6]. Some other classical itera-
tive methods such as symmetric successive overrelaxation
method (SSOR) and conjugate gradient (CG) method can
be used to solve the linear equations with square coefficient
matrix. Their preconditioned methods were also studied to
improve the efficiency [7], [8]. Moreover, to solve the ill-
posed inverse problems, minimizing residual ULT method
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was established by applying minimizing residual technique
to a series of upper and lower triangular methods[9]. In
addition, the Landweber scheme can partially deal with the
ill-posedness of the problem. It is a general form of a series
widely used iterative algorithms [10], covering simultaneous
algebra reconstruction technique (SART) [11], Cimmino’s
method [12], the component averaging (CAV) algorithm [13]
and diagonal weighting (DWE) algorithm [14], and so on.
The image sequence generated by Landweber scheme con-
verges to a weighted least squares solution of the linear
system if the relaxation coefficients are chosen properly [10],
[15], [16], [17], but semi-convergence may occur due to the
noise of the observed data and the inconsistency of linear
equations. To tackle this problem, the stopping rules were
involved in [18], [19], [20].

In a sense, the acceleration of reconstruction algorithm is
one of the key factors for better application of the algorithm
to the actual imaging system. In [10], the authors emphasize
that careful selection of the block partitions and the relax-
ation coefficients can generate high-quality reconstructions
with improved computational efficiency. The appropriate
relaxation coefficients not only ensure the convergence of
the algorithm, but also improve the convergence speed of the
algorithm. To achieve faster convergence, some researchers
proposed symmetric block iteration based on the symmetric
structure of the projection line [21] and some researchers
used a strategy of partition the imaging matrix according
to the projection angle [22]. To find the optimal relaxation
coefficients, a matlab package was designed in 2011 [23].
Different from the matlab package, new relaxation strategies
and new weighting matrix were proposed to accelerate the
convergence of the iteration [24]. In term of computational
efficiency improvement, block iteration is a useful technique.
In [25], the authors defined column correlations of the matrix
transformed from QR decomposition of the imaging matrix
and applied the block partition method based on column
correlations to Kaczmarz method. Similarly, for Landweber
scheme, the fixed block-iteration and variable block-iteration
were introduced utilized [26], [27].

In order to improve the computational efficiency of the
block iterative method, in this paper we also study the block
partition method of imaging matrix from the perspective of
well-posedness of submatrices. A weighted relative volume
method is to better solve the linear imaging problem. The
relative volume method was widely used in surveying and
mapping science [28]. To make this method more applicable
to weighted least squares problem, we desire weighted rel-
ative volume criterion for block partition. To stabilize block
partition results, the weighted column correlation is used as
an auxiliary criterion. Different from the cases in surveying
and mapping science, the system matrix in imaging problem
is huge and it is difficult to directly calculate and store the
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results of oblique QR decomposition in RAM. Therefore,
we also design pseudo codes where the R matrix is directly
used to update partition strategy while the Q matrix is not
stored. Finally, numerical experiments are conducted to test
the performance of our block partition strategy.

The rest of the paper is organized as follows. Section II
induces the linear imaging problem as well as the Landweber
scheme. In Section III, we describe the details of block
partition strategy based on oblique QR decomposition and
then provide the concrete realization of the strategy. Then we
validate the performances of the block partition strategy by
the numerical tests of block Landweber scheme in Section
IV. Some related issues are also discussed in this section.
Finally, the conclusion is presented in Section V.

II. LINEAR IMAGE RECONSTRUCTION PROBLEM AND
BLOCK LANDWEBER SCHEME

A linear imaging system in real space can be modeled as

Ax = b, (1)

where A ∈ Rm×n is the imaging matrix, b ∈ Rm is the
measurement data, and x ∈ Rn is the unknown image to be
reconstructed.

In consideration of the ill-posedness of the problem and
noisy observed data b, the solution of the linear imaging
problem is usually found through the following weighted
least squares problem

min
x∈Rn

V

LW (x) =
1

2
‖Ax− b‖2W . (2)

Here W and V are two positive definite diagonal matrices of
orders m and n, respectively. The weighted norm ‖ · ‖V and
weighted inner product 〈·, ·〉V in Rn are defined as follows

‖x‖V =
√
〈x,x〉V , 〈x,x〉V = 〈V x,x〉, ∀x ∈ Rn. (3)

The weighted inner product 〈·, ·〉W and weighted norm ‖·‖W
can be defined similarly.

The Landweber scheme is a widely used method to solve
the linear imaging problem. Its iteration formula is

x(k+1) = x(k) + λkV
−1ATW (b−Ax(k)),

k = 1, 2, . . . (4)

where λk > 0 is the relaxation coefficient. A block
version of Landweber scheme can be used so as to im-
prove computational efficiency. Assume that Bt (t =
1, 2, . . . , T ) is a nonempty subset partitioned from the index
set {1, 2, · · · ,m} and each of Bt consists of mt ≥ 1 indices.
Let At ∈ Rmt×n, bt ∈ Rmt and Wt ∈ Rmt×mt be the
corresponding blocks from A, b and W with respect to
the partition Bt. Then the block version of the Landweber
scheme can be written as

x(kT+t+1) = x(kT+t)+

λkT+tV
−1(At)

TWt(bt −Atx
(kT+t)),

t = 1, 2, . . . , T. (5)

III. BLOCK PARTITION STRATEGY BASE ON OBLIQUE QR
DECOMPOSITION

In this section, we propose a partition strategy based on
thin oblique QR decomposition with respect to weighted nor-
m, and then provide the concrete realization of the strategy.

A. Block Partition Strategy

Assume that the tth block AT
t contains s vectors and its

thin oblique QR decomposition AT
t = QtRt is with the

form

(aT
it1
, · · · ,aT

its
) = (qit1 , · · · , qits)

 rit11 · · · rit1s
. . .

...
ritss

 , (6)

where

〈qitk , qitj 〉V −1
t

=

{
0, k 6= j,
1, k = j.

(7)

For a new vector aits+1
, we calculate new thin QR decom-

position

(AT
t ,a

T
its+1

) = (Qt, qits+1
)R̃t. (8)

Let R̃t = (r1, · · · , rs, rs+1). Given two predetermined
thresholds κ1 and κ2, once

max
1≤k≤s+1

{ritkk
}

min
1≤k≤s+1

{ritkk
}
≤ κ1 and

s+1∏
k=1

‖rk‖W̃t√
det(R̃t

T
W̃tR̃t)

≤ κ2, (9)

then aT
its+1

can be added to AT
t .

Remark III.1. 1. The former criterion in (9) represents the
weighted column correlation of (AT

t ,a
T
its+1

).
2. The latter criterion in (9) is the weighted relative volume:

1)
√

det(R̃T
t W̃tR̃t) represent the volume of the hyper-

parallel polyhedron composed by the non-zero column
vectors of R̃T

t w.r.t. W̃t-norm.
2)
∏s+1
i=1 ‖ri‖W̃t

represents the maximum volume of a
hyper-parallel polyhedron that is formed by the same
set of column vectors after changing azimuth.

Proposition III.2. Let Āt = W
1
2
t AtV

− 1
2 . Consider the thin

QR decomposition of ĀT
t and thin oblique QR decomposition

of AT
t

ĀT
t = Q̄tR̄t, AT

t = QtRt. (10)

Then

1) 〈q̄itk , q̄itj 〉 = 〈qitk , qitj 〉V −1 .

2) R̄T
t = W

1
2
t RT

t .

Proof: By simple calculation, we have

Q̄tR̄t = ĀT
t = V −

1
2AT

t W
− 1

2
t = V −

1
2QtRtW

− 1
2

t . (11)

Let R̄t = RtW
1
2
t and Q̄t = V −

1
2Qt. Using the column

block form of Q̄t and Qt, we have

〈q̄itk , q̄itj 〉 = 〈V − 1
2 qitk ,V

− 1
2 qitj 〉

= 〈V −1qitk , qitj 〉 = 〈qitk , qitj 〉V −1 . (12)
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B. Sensitivity Analysis

Applying thin oblique QR decomposition to the tth sub-
problem, the linear equations can be written as

RT
t yt = bt, (13)

where yt = QT
t xt. In the following, we analyze the

sensitivity of above equation.

Theorem III.3. Let Ft = (FT
1 , · · · ,FT

s )T ∈ Rs×s, bδt =
(bδ1, · · · , bδs)T ∈ Rs. From the parameterized system

(RT
t + εFt)yt(ε) = bt + εbδt , yt(0) = yt, (14)

it can be deduced that

‖yt(ε)− yt‖2
‖yt‖2

≤ εκ1
(
‖bδt‖2
‖bt‖2

+
‖Ft‖2
‖RT

t ‖2

)
+O(ε2), (15)

and

‖yt(ε)−yt‖W−1
t

‖yt‖W−1
t

≤ εκ2
s∑
i=1

(
|bδi |
|bti |

+
‖Fi‖Wt

‖ri‖Wt

)
+O(ε2). (16)

Proof: 1. The Taylor series expansion for yt(ε) has the
form

yt(ε) = yt + εẏt(0) +O(ε2), (17)

where ẏt(0) = R−Tt (bδt − Ftyt). Thus

‖yt(ε)− yt‖2
‖yt‖2

≤ ε
‖R−Tt (bδt − Ftyt)‖2‖RT

t ‖2
‖RT

t ‖2‖yt‖2
+O(ε2)

≤ ε‖R−Tt ‖2‖RT
t ‖2

(
‖bδt‖2
‖bt‖2

+
‖Ft‖2
‖RT

t ‖2

)
+O(ε2). (18)

According to the definition of matrix norm and (9), we get
the estimation (15).

2. Let M [i,j] be a matrix obtained from M by deleting
the ith row and jth column of M , and M [i,·] be a matrix
obtained from M by deleting the ith row of M .

According to Cauchy-Binet Theorem and Hadamard in-
equality, we have

s∑
j=1

det((RT
t W

1
2
t )[i,j]) det((RT

t W
1
2
t )[i,k])

= det((RT
t W

1
2
t )[i,·](W

1
2
t R)

[·,k]
t )

≤
∏s
j=1 ‖W

1
2
t rj‖2

‖W
1
2
t ri‖ ‖W

1
2
t rk‖

=

∏s
j=1 ‖rj‖2Wt

‖ri‖Wt ‖rk‖Wt

, (19)

for 1 ≤ i, k ≤ s. Using Cramer’s Rule, we calculate

‖ẏt(0)‖2
W−1

t
=

s∑
j=1

(W
− 1

2
t ẏt(0))2j

=
1

det(RT
t WtRt)

s∑
j=1

{
s∑
i=1

(−1)i+j(bδi − Fiyt)

s∑
i=1

det((RT
t W

1
2
t )[i,j])

}2

=
1

det(RT
t WtRt)

s∑
i=1

s∑
k=1

(−1)i+k

(bδi − Fiyt)(b
δ
k − Fkyt)

s∑
j=1

det((RT
t W

1
2
t )[i,j]) det((RT

t W
1
2
t )[k,j])

≤
∏s
j=1 ‖rj‖2Wt

det(RT
t WtRt)

{
s∑
i=1

(−1)i
bδi − Fiyt
‖ri‖Wt

}2

≤ κ22‖yt‖2W−1
t

{
s∑
i=1

(
|bδi |
|bti |

+
‖Fi‖Wt

‖ri‖Wt

)}2

. (20)

Combining with (17) and (20), we finally arrive at (16).

C. Construction of Upper Triangle Matrix

In image reconstruction problem, the imaging matrix A
is large and sparse. But the matrix Qt is no longer sparse
and therefore it is more difficult to store Qt in RAM.
In the following we provide the details of the new block
partition strategy without storing matrices A and Qt. We
first construct Rt following Gram-Schmidt method.

1) Calculating the first element rit11 of Rt.
Using {

rit11qit11 = aT
it11
, rit11 ≥ 0,

〈qit11 , qit11〉V −1 = 1,
(21)

we have

rit11 =

√〈
aT
it11
,aT

it11

〉
V −1

. (22)

2) Appending column vector of Rt.
Since

aT
its+1

=
s∑

k=1

ritk,s+1
qitk + rits+1,s+1

qits+1
, (23)

then

rit1,s+1
=
〈
qit1 ,a

T
its+1

〉
V −1

=
1

rit11

〈
aT
it1
,aT

its+1

〉
V −1

, (24)

and for k = 2, . . . , s

ritk,s+1
=
〈
qitk ,a

T
its+1

〉
V −1

=
1

ritkk

〈
aT
itk
−
k−1∑
l=1

ritl,kqitl ,a
T
its+1

〉
V −1

=
1

ritkk

(〈
aT
itk
,aT

its+1

〉
V −1
−
k−1∑
l=1

ritl,kritl,s+1

)
.(25)
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Finally, the last element of Rt can be calculated by

r2its+1,s+1
=
〈
aT
its+1

,aT
its+1

〉
V −1
−

s∑
l=1

r2itl,s+1
. (26)

Next, we introduce an algorithm of updating the upper
triangular matrix Rt. Suppose RT

t is stored in a lower
triangular structure R and there are s rows in R. The vector
to be examined is aits+1

. Then the (s + 1)th row of R can
be calculated by Algorithm 1.

Algorithm 1 Construction of lower triangular storage struc-
ture
Require: The new vector to be checked: aits+1

Lower triangular storage structure R with s rows
Ensure: Lower triangular storage structure R with s + 1

rows
1: for j from 1 to s+ 1 do
2: R[s+ 1][j]←

〈
aT
its+1

,aT
itj

〉
V −1

3: end for
4: R[s+ 1][1]← R[s+ 1][1]/R[1][1]
5: for j from 2 to s do
6: for l from 1 to j − 1 do
7: R[s+ 1][j]← R[s+ 1][j]−R[j][l] ∗R[s+ 1][l]
8: end for
9: R[s+ 1][j]← R[s+ 1][j]/R[j][j]

10: end for
11: for l from 1 to s do
12: R[s + 1][s + 1] ← R[s + 1][s + 1] − R[s + 1][l] ∗

R[s+ 1][l]
13: end for
14: R[s+ 1][s+ 1]←

√
R[s+ 1][s+ 1]

D. Realization of Block Partition Strategy
Once the lower triangular storage structure is fixed, Algo-

rithm 2 is put to use achieving the row partition of matrix
A. Let MaxNum be the upper limit of storage elements
allowed in each block, κ1 and κ2 be predetermined numbers
of block partition criteria. The outputs of Algorithm 2 are two
long vectors. The first vector Block stores the row indices of
different blocks, and the second vector BlockLength stores
the number of vectors in each block in turn.

Block BlockLength
B1 = {i11, . . . , i

1
m1
} m1

...
...

Bt = {it1, . . . , i
t
mt
} mt

...
...

Bs = {is1, . . . , i
s
ms
} ms

Fig 1. The outputs of Algorithm 2

IV. NUMERICAL TESTS FOR BLOCK PARTITION AND
BLOCK LANDWEBER SCHEME

In this section, we study the reconstruction performance
of block Landweber scheme with the new partition method
introduced above. All the numerical tests are taken on a DEL-
L OptiPlex 9020 desktop with memory 8GB and processor
Intel(R) Core(TM) i7-4790 CPU @360GHz (8 CPUs). The
operating system is Ubuntu with kernel 3.19.0-93-generic.
The compiler is gcc 4.9.2.

Algorithm 2 Block partition method without storing orthog-
onal matrix
Require: Block partition criterion κ1, κ2

Maximum number of indices allowed in each block
MaxNum
Number of rows of system matrix: m

Ensure: A vector of indices sets: Block
A vector of the length for each block: BlockLength

1: Initialization of indicator set: idx = {1, 2, . . . ,m}
2: Block, BlockLength← ∅
3: while idx.size() > 0 do
4: Get the first element of idx: it1
5: Bt ← {it1}
6: Remove it1 from idx
7: s← 1

8: R[1][1]←
√〈

aT
it1
,aT

it1

〉
V −1

9: d, r ← R[1][1] ∗R[1][1] ∗W [it1]
10: dmin, dmax ← R[1][1]
11: pnt points to the first element of idx
12: while pnt dose not point to the end of idx doaaa

and s < MaxNum do
13: Get the element its+1 pointed by pnt

and the vector aits+1

14: pnt points to the next element in idx
15: Update R using Algorithm 1
16: for i from 1 to s do
17: rtemp[i]← r[i] +R[i][s+ 1] ∗R[i][s+ 1]

∗W [its+1]
18: end for
19: if max{dmax,R[s+1][s+1]}

min{dmin,R[s+1][s+1]} ≤ κ1 thenaaaaaaa
and

∏s
i=1 rtemp[i]

d ≤ κ2 then
20: Push back its+1 to Bt
21: Remove its+1 from idx
22: d← d ∗R[s+ 1][s+ 1]∗

R[s+ 1][s+ 1] ∗W [its+1]
23: for i from 1 to s do
24: r[i]← rtemp[i]
25: end for
26: Push back R[s+ 1][s+ 1]∗

R[s+ 1][s+ 1] ∗W [its+1] to r
27: dmax ← max{dmax, R[s+ 1][s+ 1]}
28: dmin ← min{dmin, R[s+ 1][s+ 1]}
29: s← s+ 1
30: else
31: Remove last row of R
32: end if
33: end while
34: Push back Bt to Block
35: Push back s to BlockLength
36: end while

A. Phantom and Parameter Setting

A fan-beam X-ray CT model is used in our numerical
experiments. The parameters of the imaging model are listed
in Table I.

SART is a well known special case of general Landweber
scheme. We use SART to reconstruct the image in the
following. The diagonal weighted matrices V and W of
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TABLE I
PARAMETER SETTING RELATED TO IMAGING

Imaging model fan-beam X-ray CT
Detectors 256× 360 (m = 256× 360)
Phantom low contract Shepp-Logan
Image resolution 256× 256 (n = 256× 256)
aij length of the intersection line between

the ith ray and the jth pixel

SART are defined as

vj = A+,j =
m∑
i=1

| aij |, (27)

1

wi
= Ai,+ =

n∑
j=1

| aij |, (28)

where vj and wi are the diagonal elements of V and W ,
respectively.

We treat the measurement data obtained from one projec-
tion as a whole. That means the row indices corresponding
to the same angle in sinogram either enter the block at the
same time or not. The parameters of block partition method
are set as Table 2. Selecting the first index randomly from 1
to 360 and executing Algorithm 2, we get the output blocks
of partition. Next we can apply the partitioned blocks to
block version of SART.

TABLE II
PARAMETER SETTING RELATED TO BLOCK PARTITION METHOD

κ1 5.00
κ2 σs,

where σ = 1.03 is a scale factor and s is
the number of row indicators in the current block

MaxNum 256× 4

Relative residual (RES) and root mean squared error
(RMSE) are often used to measure reconstruction efficiency
and reconstruction quality. Combining the weighted matrices
W and V , RES and RMSE are defined as

RES =
‖b−Ax(k)‖2W
‖b‖2W

, (29)

RMSE =
1√
n
‖x(k) − x∗‖V , (30)

where x(k) is the reconstructed result of the kth iteration
cycle and x∗ is the real image.

B. Reconstruction with Sequential Blocks
To test the performance of the block partition method

proposed in this paper (QRBlock), we compared other two
different partition methods as follows.
• SeqBlock1: Bt = {210(t− 1) + 1, . . . , 210t}.
• SeqBlock2: Bt = {

∑t−1
i=1mi + 1, . . . ,

∑t
i=1mi}.

Assume that the traversal of all blocks is a block iteration
cycle, and during one block iteration cycle λk is a constant.
The iteration process from x(kT ) to x((k+1)T ) is

x((k+1)T ) =
1∏

t=T

(
I − λkV −1AT

t WtAt

)
x(kT )+

T−1∑
t=1

[(
t+1∏
s=T

(I−λkV −1AT
sWsAs)

)
λkV

−1AT
t Wtbt

+λkV
−1AT

t Wtbt
]
. (31)

Let λk = 20.0. After 20 cycles, the reconstructed images
using three different block partition methods are shown
in Fig 2. All the images are shown in displayed range
[0.95, 1.05]. From left to right and from top to bottom:
(a) real image, (b) reconstructed image with SeqBlock1, (c)
reconstructed image with SeqBlock2, and (d) reconstructed
image with QRBlock. Reconstruction results show that all
block partition methods can provide proper reconstructed
images.

(a) (b)

(c) (d)

Fig 2. Results of the 20th iteration cycle using block traversal method

The RES and RMSE of different partition methods are
listed in Table III. To more intuitively analyze the data,
the changes of RES and RMSE with iteration cycles are
also shown in Figs 3 and 4. The RES of the reconstruction
algorithm decreases with the iteration cycles. However, the
RMSE of reconstructed images decrease significantly at the
beginning of iteration cycles, and increases slightly with the
further increase of iteration cycles. According to Table III, if
we use the same RES as the stopping criterion, the iteration
cycle using QRBlock is less than the iteration cycles using
SeqBlock1 and SeqBlock2, and the reconstructed image
obtained by QRBlock has much smaller RMSE.

10 15 20 25 30
Iteration Cycles

1

1.5

2

2.5

3

3.5

4

R
E

S

×10-5

SeqBlock1
SeqBlock2
QRBlock

Fig 3. RES plotted against iteration cycles
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10 15 20 25 30
Iteration Cycles

0.455

0.46

0.465

0.47

0.475

0.48

0.485

R
M

S
E

SeqBlock1
SeqBlock2
QRBlock

Fig 4. RMSE plotted against iteration cycles

C. Reconstruction with Random Order of Blocks

To observe the influence of the block order on the re-
construction results, random sorting and random selection
methods are introduced to generate the serial number of the
blocks used in iteration cycle.

• Random sorting: generate a random sequence of
{1, 2, . . . , T}, that means the order in which blocks are
used is random.

• Random selection: randomly select an index from the
set {1, 2, . . . , T} and repeat the selection for T times.
Indices can be reused in one iteration cycle.

Following the block partition methods and parameter settings
in previous subsection, we study the change of RMSE with
iteration cycles. Considering the uncertainty of the random
methods, the following data is derived from the mean of 10
groups of repeated experiments.

The mean and standard deviation of RMSE of two dif-
ferent random methods are listed in Table IV and Table V,
respectively. And the mean of RMSE is also shown in Figs 5
and 6. From the tables and the figures, we find out that
the RMSE of the iterative sequence generated by random
QRBlock is better than that of SeqBlock1 and SeqBlock2.
According to the standard deviation of the random experi-
ments, RMSE is less affected by the order of QRBlock than
that of SeqBlock1 and SeqBlock2. Next we compare the two
different random method. The iteration sequence constructed
by random sorting method not only converges faster than that
constructed by random selection method, but also has smaller
RMSE. One of the reasons is that during one iteration cycle,
it is very likely that some blocks are not used and some
blocks are reused for random selection method.
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Fig 5. RMSE plotted against iteration cycles of random sorting methods
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Fig 6. RMSE plotted against iteration cycles of random selection methods

D. Discussions on Numerical Tests

To make it clearer, we provide some remarks on the
numerical experiments of block partition strategy and block
iterative method.
• Two criteria, namely, weighted column correlation and

weighted relative volume are used to construct the
blocks. If the former criterion is adopted alone, the
criterion only affects a small part of the row vectors of
A, and too many small blocks will be formed by those
vectors. And if the latter criterion is adopted alone, it
will lead to too few elements in some blocks. Therefore,
the two need to be satisfied same.

• The block strategy we proposed is suitable for the
imaging matrices. Multiple parts in iterative formula
(31) can be calculated in advance if the blocks are
determined, so that proper reconstructed image can be
achieved faster.

• If the relaxation coefficient λk is set up to 100 or more,
the RMSE decreases faster but meanwhile the images
of different iteration cycles oscillate dramatically. It is
not conducive to obtaining stable reconstructed images.
According to known results of SART, the condition
λk → 0 guarantees the convergence of the sequence.
Therefore, we propose using variable coefficients to
obtain stable results in future tests.

• With the progress of the iteration, although the RES is
still declining, the RMSE is gradually recovering step
by step. Therefore, timely stopping of the iteration is of
necessity in running the reconstruction algorithm.

V. CONCLUSION

In this paper, we propose a block partition strategy for the
block Landweber scheme. Using thin oblique QR decompo-
sition, we translate the analysis of the sub imaging matrix
At into the analysis of the upper triangular matrix Rt. We
examine the hyper-parallel polyhedron represented by Rt,
and combine the relative volume criterion and the ratio of
the maximum to minimum diagonal elements criterion to
construct the block partition of imaging matrix A. Then
a follow-up sensitivity analysis is conducted. In order to
solve the memory consumption problem of oblique QR
decomposition, we also design pseudo code for updating the
two criteria of block partition. Finally, in numerical tests,
we apply our block partition strategy to X-ray CT imaging
matrix A, and use block SART to reconstruct the image.
The numerical tests show that our block partition method
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TABLE III
RES AND RMSE OF DIFFERENT BLOCK PARTITION METHODS

Iteration RES RMSE
cycles SeqBlock1 SeqBlocl2 QRBlock SeqBlock1 SeqBlocl2 QRBlock

11 3.42691E-05 3.43069E-05 2.94580E-05 0.474944 0.474919 0.467769
12 3.01920E-05 3.02252E-05 2.59123E-05 0.470474 0.470447 0.463791
13 2.70350E-05 2.70644E-05 2.32111E-05 0.467131 0.467102 0.460910
14 2.45425E-05 2.45686E-05 2.11109E-05 0.464636 0.464606 0.458842
15 2.25405E-05 2.25638E-05 1.94480E-05 0.462786 0.462755 0.457384
16 2.09079E-05 2.09289E-05 1.81099E-05 0.461432 0.461400 0.456390
17 1.95586E-05 1.95774E-05 1.70174E-05 0.460462 0.460429 0.455749
18 1.84296E-05 1.84466E-05 1.61136E-05 0.459793 0.459759 0.455380
19 1.74747E-05 1.74901E-05 1.53570E-05 0.459359 0.459325 0.455222
20 1.66590E-05 1.66729E-05 1.47166E-05 0.459112 0.459077 0.455227
21 1.59559E-05 1.59686E-05 1.41692E-05 0.459014 0.458979 0.455359
22 1.53450E-05 1.53565E-05 1.36970E-05 0.459033 0.458998 0.455590
23 1.48102E-05 1.48207E-05 1.32863E-05 0.459147 0.459112 0.455899
24 1.43388E-05 1.43483E-05 1.29263E-05 0.459337 0.459301 0.456268
25 1.39206E-05 1.39294E-05 1.26086E-05 0.459587 0.459552 0.456683
26 1.35475E-05 1.35555E-05 1.23262E-05 0.459886 0.459850 0.457135
27 1.32128E-05 1.32202E-05 1.20738E-05 0.460223 0.460188 0.457614
28 1.29112E-05 1.29180E-05 1.18469E-05 0.460592 0.460557 0.458114
29 1.26380E-05 1.26442E-05 1.16418E-05 0.460985 0.460951 0.458630
30 1.23895E-05 1.23952E-05 1.14556E-05 0.461398 0.461364 0.459156

TABLE IV
MEAN AND STANDARD DEVIATION OF RMSE USING RANDOM SORTING

Iteration SeqBlock1 SeqBlock2 QRBlock
mean std mean std mean std

11 0.469595 1.16214E-03 0.469823 8.29025E-04 0.468653 6.53275E-04
12 0.465682 1.14355E-03 0.465885 8.02771E-04 0.464689 6.49087E-04
13 0.462833 1.12568E-03 0.463016 7.80029E-04 0.461817 6.44076E-04
14 0.460778 1.10838E-03 0.460942 7.59752E-04 0.459757 6.38521E-04
15 0.459321 1.09192E-03 0.459468 7.41554E-04 0.458305 6.32531E-04
16 0.458319 1.07600E-03 0.458450 7.25325E-04 0.457314 6.26061E-04
17 0.457664 1.06090E-03 0.457782 7.10412E-04 0.456676 6.19798E-04
18 0.457278 1.04645E-03 0.457384 6.96893E-04 0.456309 6.13111E-04
19 0.457100 1.03267E-03 0.457195 6.84308E-04 0.456151 6.06845E-04
20 0.457084 1.01968E-03 0.457169 6.72390E-04 0.456155 6.00391E-04
21 0.457195 1.00674E-03 0.457271 6.61442E-04 0.456287 5.94011E-04
22 0.457405 9.94895E-04 0.457472 6.50957E-04 0.456517 5.87853E-04
23 0.457693 9.83293E-04 0.457752 6.41235E-04 0.456824 5.81961E-04
24 0.458041 9.71954E-04 0.458093 6.32144E-04 0.457191 5.75792E-04
25 0.458436 9.61369E-04 0.458482 6.23250E-04 0.457605 5.70097E-04
26 0.458868 9.51107E-04 0.458908 6.15173E-04 0.458054 5.64400E-04
27 0.459328 9.41062E-04 0.459362 6.07224E-04 0.458531 5.58903E-04
28 0.459809 9.31619E-04 0.459838 5.99691E-04 0.459028 5.53577E-04
29 0.460306 9.22286E-04 0.460331 5.92438E-04 0.459541 5.48314E-04
30 0.460815 9.13599E-04 0.460835 5.85550E-04 0.460064 5.43238E-04

TABLE V
MEAN AND STANDARD DEVIATION OF RMSE USING RANDOM SELECTION

Iteration SeqBlock1 SeqBlock2 QRBlock
mean std mean std mean std

11 0.497201 4.49855E-03 0.496885 4.78216E-03 0.491668 2.04716E-03
12 0.490863 3.87034E-03 0.490211 4.67901E-03 0.486056 1.94324E-03
13 0.486039 3.18215E-03 0.485990 4.16539E-03 0.481578 1.84636E-03
14 0.482228 2.90154E-03 0.482421 3.75170E-03 0.478307 1.53615E-03
15 0.479284 2.60307E-03 0.479899 3.85578E-03 0.475846 1.38901E-03
16 0.477075 2.20408E-03 0.477902 3.48999E-03 0.473932 1.14902E-03
17 0.475638 2.15564E-03 0.476224 3.48478E-03 0.472521 1.10669E-03
18 0.474461 2.20548E-03 0.474880 3.42949E-03 0.471497 1.36817E-03
19 0.473412 2.15669E-03 0.473910 3.44566E-03 0.470635 1.22799E-03
20 0.472857 2.26411E-03 0.473330 3.30741E-03 0.470150 1.22144E-03
21 0.472347 2.17319E-03 0.472815 3.22079E-03 0.469811 1.31117E-03
22 0.472008 2.11292E-03 0.472524 3.19330E-03 0.469478 1.32197E-03
23 0.471659 1.95085E-03 0.472324 3.11777E-03 0.469278 1.36146E-03
24 0.471686 2.00967E-03 0.472180 3.06352E-03 0.469267 1.20274E-03
25 0.471571 1.88960E-03 0.472109 2.98274E-03 0.469331 1.28729E-03
26 0.471643 1.75472E-03 0.472134 2.99456E-03 0.469461 1.25532E-03
27 0.471633 1.64003E-03 0.472292 2.82730E-03 0.469771 1.27374E-03
28 0.471934 1.66084E-03 0.472448 2.87689E-03 0.470159 1.20503E-03
29 0.472046 1.61957E-03 0.472610 2.84246E-03 0.470305 1.27871E-03
30 0.472348 1.69673E-03 0.472830 2.91351E-03 0.470607 1.12123E-03
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can provide better reconstructed images with fewer iteration
cycles when compared with sequential block partition under
the same stopping rule of RES.
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