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Abstract—The recent currency fluctuations, which have cre-
ated uncertainty in currency markets about the movement
of exchange rates, have spurred renewed interest in portfolio
dependence modelling and risk modelling. Currency exchange
portfolio risks can be measured using Value at Risk (VaR)
and Conditional Value at Risk (CVaR) based on Monte Carlo
simulation. However, this method of risk estimation involves
considerable challenges owing to the complexity of modelling
the joint multivariate distribution of the assets in the portfolio.
Therefore, copula functions, such as the t-Student and Clay-
ton copulas, have been proposed to measure the dependence
structure of the return of a currency exchange portfolio. This
study proposes the use of the copula-VaR and copula-CVaR
approaches to make strategic choices in currency management
when evaluating the risks of equal- and mixed-weighted port-
folios of the returns of investment in five foreign currencies
in Malaysia: the United States dollar, United Kingdom pound
sterling, European Union euro, Japanese yen, and Singapore
dollar. The generalised autoregressive conditional heteroscedas-
ticity (GARCH)-copula models are also evaluated. We find
that the marginal distribution of the returns series of the
currency exchange rates can be modelled using the Glosten–
Jagannathan–Runkle (GJR)-GARCH model with the t-Student
distribution, and the dependence structure of the currency
exchange portfolio can be depicted by the t-Student copula. The
best investment performance tends to the Singapore dollar.

Index Terms—GARCH-copula model, Exchange rate, Port-
folio risk, VaR and CVaR.

I. INTRODUCTION

CURRENCY fluctuations are changes in the value of
a currency relative to another currency. Financial data

usually fluctuate rapidly due to factors such as supply and
demand, economic growth of countries, and inflation, giving
rise to heteroscedasticity. Currency fluctuations significantly
influence risk estimation in financial markets. The outbreak
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and spread of COVID-19 in 2019 caused economic insta-
bility. The resulting subdued market sentiment slowed down
economic activity and triggered currency fluctuations. Such
fluctuations may lead to uncertainties about exchange rate
movements in currency exchange portfolio, increasing cur-
rency exchange portfolio risks and complicating investment
decision-making.

Currency exchange portfolio risks need to be studied
because investment in currency exchange rates affects the
amount of money investors see at the end of the day, and this
in turn determines the ultimate rate of return for investors.
Previous studies have used methods such as the standard
deviation, value at risk (VaR), and conditional value at risk
(CVaR) to measure portfolio risk [1], [2], [3]. VaR and CVaR
are applied to estimate currency exchange portfolio risks in
this study because they are a quantile risk measure and a
coherent risk measure, respectively, with properties such as
translation invariance, positive homogeneity, monotonicity,
and sub-additivity. VaR is a statistical risk assessment mea-
sure that gives the probability that a portfolio will experience
losses within a fixed time frame with a specified probability.
The greatest advantage of using VaR is that risks can be
represented by a single number [3]. CVaR is a risk assess-
ment measure that quantifies the tail risk of a portfolio at a
certain confidence level. CVaR is similar to VaR except that it
provides a relatively conservative measure of loss [4]. This
study uses VaR and CVaR to estimate currency exchange
portfolio risks.

The autoregressive conditional heteroscedasticity (ARCH)
and generalised autoregressive conditional heteroscedasticity
(GARCH) models are used to capture the heteroscedasticity
effect of marginal returns. It is an appropriate method to
measure VaR because uncertainties about exchange rate
movements in currency exchange portfolios increase cur-
rency exchange portfolio risks and complicate investment
decision-making. The positive and negative errors assumed
by the GARCH model will have the same volatility ef-
fect (symmetry). However, because most data show that
the positive and negative errors of market volatility are
asymmetric, the symmetry assumption is often violated in
financial markets. A drawback of the GARCH model is
the problems stemming from the asymmetric effect, as the
model assumes that all coefficients are greater than zero.
This drawback makes the model difficult to apply. The GJR-
GARCH model, which was introduced by Glosten et al.
[5] to deal with the asymmetry problem, analyses volatility
effects from asymmetric conditional heteroscedasticity by
adding seasonal terms to distinguish the positive and negative
shocks. In the present study, the ARCH/GARCH family of
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models and the GJR-GARCH model are used to measure
portfolio risk.

Further, financial data are not always independently and
identically distributed; they exhibit a heteroscedasticity ef-
fect. To improve the accuracy of the predicted results, it is
crucial to understand the factors that contribute to currency
exchange portfolio risks. Typically, the risks faced by in-
vestors may increase if a high dependence structure exists.
For several reasons, copula-VaR is the best fit to apply. The
assumption of joint normality is not required in the copula.
Copula-VaR allows high-dimensional joint distributions to
be decomposed into marginal distributions and links them
together to estimate currency exchange portfolio risks. In
addition, the nonlinear, asymmetrical structure of multiple
risk factors can be accurately described using the copula.
Many applications of copula-VaR have been described in [6],
[7], and other works. In the present study, an elliptical copula
model (t-Student) and an Archimedean copula (the Clayton
copula) are used to depict the dependence structure of the
residuals and obtain the copula parameters.

II. THE MODEL

Financial data are statistically analysed to summarise the
data series and observe the nature of data before fitting
mathematical and statistical models. However, financial data
are not always independently and identically distributed; they
often exhibit a heteroscedasticity effect. Therefore, the time
series model is used to fit the data. The ARCH model, which
was introduced by Engle [8], is applied to estimate financial
time series because it considers the relationship between
the past conditional variance and the current conditional
variance. Let εt be the error term of the time series; the
return Rt can then be represented as

Rt = µt + εt. (1)

µt is the independent variable’s vector multiplied by the
slope’s vector. In the ARCH model, we model the residual
term εt, which can be represented as

εt = σtzt. (2)

zt is a stochastic piece that follows a normal distribution with
a mean of zero and a variance of one. That is, zt ∼ N(0, 1).
By modelling σ2

t with an autoregressive model, σ2
t can be

represented as

σ2
t = α0 +

q∑
j=1

αjε
2
t−j . (3)

Engle [8] showed that for a positive σ2
t , the parameters

must be constrained as follows: α0 > 0 and αj ≥ 0 for
j = 1, 2, ..., q, where q > 0 and q is the length of the
ARCH lags. Unfortunately, when the ARCH model is used
to describe volatility, the length of the lag q may become
very large. Therefore, the GARCH(p,q) model, which uses
the autoregressive moving average model instead of the
autoregressive model to describe conditional variance, is
much more suitable for modelling the conditional variance:

Rt = µt + εt (4)

εt = σtzt (5)

σ2
t = α0 +

q∑
j=1

αjε
2
t−j +

p∑
i=1

βiσ
2
t−i, (6)

where βi is the parameter of the GARCH(p, q) component
model, and σ2

t−i is the conditional variance in the previous
i time step. Bollerslev [9] showed that the parameters must
be constrained as follows for a positive σ2

t : α0 > 0, αj ≥
0 for j = 1, 2, ..., q, where q > 0, and βi ≥ 0 for i =
1, 2, ..., p, where p ≥ 0.

∑q
i=1 αi +

∑p
j=1 βj < 1. However,

the positive and negative return rates of assets have different
effects on volatility, and a negative effect on volatility is often
greater than a positive effect (the leverage effect) of the same
magnitude. The GJR-GARCH model is used to consider this
asymmetry, and its general form is as follows:

Rt = µt + εt (7)

εt = σtzt (8)

σ2
t = α0 +

q∑
i=1

αiε
2
t−i +

r∑
k=1

γkIt−kε
2
t−k +

p∑
j=1

βjσ
2
t−j , (9)

where zt ∼ N(0, 1), and γk is the GJR’s threshold value.
[5] showed that for a positive σ2

t , the parameters must be
constrained as follows: α0 > 0, αi > 0, βj > 0, and
βj + γk ≥ 0,

∑q
i=1 αi + 1

2

∑r
k=1 γk +

∑p
j=1 βj < 1.

It−k is an indicator variable that takes the value of 1 if
an error (defined as εt−k < 0) occurs and zero otherwise.∑r
k=1 γkIt−kε

2
t−k is the leverage when εt−k < 0. If the

residual εt−i > 0, the positive effect will be (αk+0)×εt−i.
If εt−k < 0, the negative effect will be (αk + γk) × εt−k.
When γk > 0, the model shows a larger negative effect
than the positive effect. Therefore, the GJR-GARCH model
can be considered a GARCH model that includes leverage
by capturing the asymmetrical nature of a time series. To
select the best-fit model for capturing the volatility of returns,
the log-likelihood function (LLF) is used. Some tests are
presented in the next section to validate this model. Let Ri
be the return of asset i, and Li be the loss of asset i; the
return of n assets at time t in vector R and the loss of n
assets at time t in vector L can be represented as

Rt = [R1t, R2t, ..., Rnt] (10)

and
Lt = [L1t, L2t, ..., Lnt]. (11)

The weight of an optimal portfolio of n assets can be
expressed as W = [w1, w2, ..., wn], where 0 ≤ wi ≤ 1 and
w1 +w2 +w3 + ...+wn = 1. The total returns (TR) of the
portfolio are obtained by the above simulation as follows:

TR = Rt ×WT

= [R1t, R2t, ..., Rnt]× [w1, w2, ..., wn]T . (12)

The risks of equal-weighted and mixed-weighted portfo-
lios are computed by using VaR and CVaR, which are defined
as below:

VaRα (L) = inf{l, FL(l) ≥ α} (13)

CVaR is the mean of the losses that exceed VaR threshold:
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CVaRα (L) = E [L|L > V aRα] , (14)

Assuming an equal-weighted portfolio with n assets, the
weight in each asset should be the same, that is, W =[
1
n ,

1
n , ...,

1
n

]
. The TR can be represented as

TR = [R1t, R2t, ..., Rnt]×
[

1

n
,

1

n
, ...,

1

n

]T
= E[R̄it]. (15)

The total portfolio return is therefore the average return
of the assets. The probability that the loss exceeds VaR is α,
which can be expressed as

VaRα (L) = VaRα

(
1

n

n∑
i=1

Li

)
= VaRα

(
L̄i
)
, (16)

where L is a random variable that represents the total
loss with continuous FL. In the case of multiple assets,
copulas can be used as dependence functions to characterise
independence and perfect dependence in a straightforward
way [10]. According to Sklar’s theorem (1959) [11], if F
is an n-dimensional cumulative distribution function with
continuous margins F1, F2, F3, ..., Fn, a unique copula, C,
exists such that

F (l1, l2, l3, ..., ln)

= C (F1 (l1) , F2 (l2) , F3 (l3) , ..., Fn (ln)) ,
(17)

where F (l1, l2, l3, ..., ln) is the joint cumulative density func-
tion. After determining the best marginal distributions, mul-
tivariate t-Student and Clayton copulas are used to describe
the dependence structure. The cumulative density function of
the multivariate t-Student and Clayton copulas can be written
as follows:

Ctv,ρ (u1t, u2t, ..., unt)

= tv,ρ
(
t−1
v (u1t) , t

−1
v (u2t) , ..., t

−1
v (unt)

)
,

(18)

CClayton (u1t, u2t, u3t, ..., unt)

=
(
u−θ1t , u

−θ
2t , u

−θ
3t , ..., u

−θ
nt − n+ 1

)− 1
θ ,

(19)

where v is the degrees of freedom, ρ is the correlation matrix,
tv,ρ is the standardised multivariate t-Student distribution,
t−1
v is the inverse of the t-Student cumulative density func-

tion, and θ ≥ 0 is a parameter of the Clayton copula. The
parameters of each copula are obtained from its cumulative
density function. The tail dependence of each copula model
is computed to measure the co-movements and assess the
strength of the dependence on extreme negative or positive
returns. The formulas for the tail dependence of each copula
model are listed in Table I.

To select an appropriate copula function for dependence
modelling, the LLF, Akaike information criterion (AIC),
and Bayesian information criterion (BIC) are used for data
processing. After modelling the marginal distribution and
dependence structure separately, a large number of M ’s are
generated by Monte Carlo simulation based on the best-
fit GARCH-copula model. Because the independent uniform

TABLE I: Tail Dependence of Copula Models

Copula t-student Clayton
Lower Tail

2tv+1

(
−
√

(v+1)(1−ρ)
1+ρ

)
2−

1
θDependence, λl

Upper Tail
2tv+1

(
−
√

(v+1)(1−ρ)
1+ρ

)
0Dependence, λu

random variables, which are X = (X1, X2, ..., Xn) , Xi ∼
U [0, 1], are simulated, the numbers are transformed into the
standardised residuals:

R =
(
F−1
1 (X1) , F−1

2 (X2) , ..., F−1
i (Xn)

)
, (20)

where F−1
i , i = 1, 2, ..., n, is the inverse of the distribution

that represents the simulated returns of each corresponding
margin. The returns of each margin are computed using
standardised residuals and the conditional mean and variance
terms observed in the original data at time t.

III. RESULTS AND DISCUSSION

The currency exchange rates of the United States dollar
(USD), United Kingdom pound sterling (GBP), European
Union euro (EUR), Japanese yen (JPY), and Singapore dollar
(SGD) relative to the Malaysian ringgit (MYR) are used
to demonstrate the application of VaR and CVaR with the
copula. The data were obtained from Bank Negara Malaysia
[12] for the sample period October 2017 to October 2020.
For each currency exchange rate, 732 observations were
obtained from the original data by using the daily logarithmic
return rt = lnPt − lnPt−1, where Pt is the middle price of
the exchange rate at time t. Daily logarithmic returns and
histograms of daily logarithmic returns of the five selected
currency exchange rates are illustrated in Figures 1 and 2,
respectively. The figures show that all of the returns exhibit
a pronounced heteroscedasticity effect, which means that
the currency exchange rates changed dramatically in both
directions during our sample period.

Table II summarises descriptive statistics for each return
series. The results in the table show that, in general, all of
the returns are typically skewed, with heavy tails, and are
not normally distributed. These characteristics occur because
all of the returns have nonzero skewness with a kurtosis
coefficient greater than three and have a large Jarque–Bera
coefficient that is far from zero. The augmented Dickey–
Fuller test results show that there is no unit root and follows
a stationary stochastic process but heteroscedasticity . The
normal quantile-quantile (QQ) plot for each return series is
presented in Figure 3.

Figure 3 clearly shows that all of the returns have fat tails,
which indicates the strong influence of extreme observations
on the expected future risk. To prove the aforesaid perfor-
mance statistically, the Ljung–Box test was performed to
check whether autocorrelations are present in the time series.
The results of the test are shown in Table III.
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Fig. 1: Daily Logarithmic Returns of Five Selected Currency
Exchange Rates of the Malaysian Ringgit

Fig. 2: Histogram of Daily Logarithmic Returns of Five
Selected Currency Exchange Rates of the Malaysian Ringgit
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TABLE II: Descriptive Statistics of Daily Logarithmic Returns of Five Selected Currency Exchange Rates of the Malaysian
Ringgit

Statistics USD/MYR GBP/MYR EUR/MYR JPY/MYR SGD/MYR
Mean 2.349 ×10−5 7.882 ×10−5 2.896 ×10−5 -6.671 ×10−5 3.148 ×10−5

Maximum 0.0233 0.0409 0.0177 0.0223 0.0118
Minimum -0.0220 -0.0287 -0.0220 -0.0372 -0.0227
Standard deviation 0.0029 0.0054 0.0040 0.0051 0.0023
Skewness 0.1328 0.3205 -0.0795 -1.1089 -0.9459
Kurtosis 13.4320 8.2909 6.3660 10.3266 17.1957
Jarque-Bera 3321.4000* 866.3300* 346.3400* 1787.2000* 6255.4000*

*Rejection of the null hypothesis at the 5% significance level.

Fig. 3: Normal Q-Q Plot of Daily Logarithmic Returns of
Five Selected Currency Exchange Rates of the Malaysian
Ringgit

TABLE III: The Ljung–Box Test

Return Series χ2 p-value
USD/MYR 18.6390* 0.00008964
GBP/MYR 15.3400* 0.03188
EUR/MYR 62.2460* 0.01775
JPY/MYR 8.5278* 0.03627
SGD/MYR 5.3061* 0.02125

Notes: χ2 is the chi-square distribution.
*Rejection of the null hypothesis at the 5% significance level.

The results of the Ljung–Box test in Table III show that
all of the returns series have autocorrelations at the 95%
confidence level. This can improve the accuracy of all return
estimations, which can help investors estimate the future
price in recent days and develop investment strategies with
less risk.

Moreover, because all of the returns are not independently
and identically distributed and exhibit a heteroscedasticity
effect, the marginal distribution is determined using an
innovative approach that combines the AR(1)-GARCH(1,1)
and AR(1)-GJR-GARCH(1,1) models with the normal and t-
Student distributions. The parameters estimated by the LLF
are shown in Table IV.

Table IV shows that the AR(1)-GJR-GARCH(1,1) model
with the t-Student distribution is ideal for estimation in
marginal distribution modelling because most of the LLF
coefficients are larger than those of other models, except
for a special case (SGD/MYR). Therefore, we chose the
AR(1)-GJR-GARCH(1,1) model and tested for the existence
of an ARCH effect. The Ljung–Box test on the standardised
residual model, which is used to check whether the model
exhibits lack of fit, and the ARCH Lagrange Multiplier,
which is used to detect the ARCH effect, are presented in
Tables V and VI, respectively. These tables show that the
AR(1)-GJR-GARCH(1,1) model with the t-Student distribu-
tion exhibits neither lack of fit nor the ARCH effect up to
lag 7 in the residuals. Thus, we can conclude that the AR(1)-
GJR(1,1) model with the t-Student distribution describes the
heteroscedasticity in each marginal return sufficiently well.

Further, the t-Student and Clayton copulas are used to de-
scribe the dependence structure. The results of the estimated
parameters are summarised in Table VII. According to Table
VII we can see that the lower and upper tail dependences for
the t-Student copula are positive and equal, which indicates
that there is no difference in the dependence between any of
the returns during bull and bear periods.

IAENG International Journal of Applied Mathematics, 53:3, IJAM_53_3_16

Volume 53, Issue 3: September 2023

 
______________________________________________________________________________________ 



TABLE IV: Parameter Estimation of AR(1)-GARCH(1,1) and AR(1)-GJR-GARCH(1,1) Models with Normal and t-Student
Distributions

Currency Parameter AR(1)-GARCH(1,1) AR(1)-GJR-GARCH(1,1)
Normal t-Student Normal t-Student

USD/MYR

α 0.13984 0.14095 0.16789 0.16540
β 0.80996 0.82221 0.79670 0.80768
γ -0.04269 -0.03765

LLF 3355.1 3365.6 3355.7 3366.0

GBP/MYR

α 0.09605 0.07738 0.10498 0.04348
β 0.79923 0.80239 0.79133 0.81977
γ -0.01415 0.06033

LLF 2807.9 2825.3 2808.0 2826.1

EUR/MYR

α 0.05467 0.04020 0.00000 0.00115
β 0.91035 0.93784 0.91942 0.93898
γ 0.08315 0.06726

LLF 3034.3 3048.3 3040.0 3052.0

JPY/MYR

α 0.14097 0.14234 0.08151 0.11760
β 0.69633 0.68829 0.74967 0.69128
γ 0.06541 0.03965

LLF 2886.4 2922.4 2887.2 2922.5

SGD/MYR

α 0.07181 0.08929 0.09216
β 0.89869 0.90285 0.90518
γ -0.05100 -0.05633

LLF 3506.0 3479.2 3479.2

Notes: α and β are the parameters of the volatility and the variance during the previous period, respectively. γ is the GJR’s threshold
value.

TABLE V: The Ljung–Box Test on the Standardised Resid-
ual Model

Series χ2 p-value
USD/MYR 2.3170 0.1280
GBP/MYR 0.0247 0.8750
EUR/MYR 0.0014 0.9699
JPY/MYR 0.8027 0.3703
SGD/MYR 0.2518 0.6158

Notes: χ2 is the chi-square distribution.
*Rejection of the null hypothesis at the 5% significance level.

TABLE VI: Autoregressive Conditional Heteroscedasticity
Lagrange Multiplier Test

Series Lag p-value
3 0.4597

USD/MYR 5 0.7308
7 0.5991
3 0.2678

GBP/MYR 5 0.4394
7 0.1337
3 0.1819

EUR/MYR 5 0.3490
7 0.1883
3 0.8090

JPY/MYR 5 0.8547
7 0.9426
3 0.3746

SGD/MYR 5 0.5488
7 0.7496

*Rejection of the null hypothesis at the 5% significance level.

The lower and upper tail dependences for the Clayton
copula are positive and different, which indicates that the
dependence structure during a recession is stronger than that

TABLE VII: Parameter Estimation for Copula Families and
Model Selection Statistics

Copula t-Student Clayton
ρ 0.3748
θ 0.4714
v 4.3466
λu 0.1759 0.0000
λl 0.1759 0.2298
LLF 459.1138 305.6843
AIC -914.2275 -609.3686
BIC -905.0360 -604.7728

during a boom. The results in Table VII show that the t-
Student copula performs better than the Clayton copula as it
has the largest LLF coefficient and the lowest AIC and BIC
values. Therefore, it is the best-fit copula to describe the de-
pendence structure. After modelling the marginal distribution
and the dependence structure separately, VaR and CVaR are
estimated based on the best-fit GJR-GARCH-copula model.
The results for the portfolio risk under an equal-weighted
portfolio and optimal investment proportion with minimum
risk are shown in Tables VIII and IX, respectively.

The results in Table VIII show that the VaRs obtained
by analysis with 90%, 95%, and 99% confidence levels are
0.003274, 0.004216, and 0.008207, respectively. Therefore,
we expect that our worst daily loss will not exceed 0.003274,
0.004216, and 0.008207 with 90%, 95%, and 99% confidence
levels, respectively. Because the CVaR’s obtained by analysis
with 90%, 95%, and 99% confidence levels are 0.004920,
0.006111, and 0.009225, respectively, the averages of the
losses that exceed the VaR threshold are 0.004920, 0.006111,
and 0.009225, respectively. The best currency exchange
portfolio is at the 90% confidence level because it has the
lowest risk associated with obtaining a profit. As CVaR
is always greater than VaR, the conclusion is that CVaR
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TABLE VIII: Portfolio Risk under Equal-Weighted Portfolio

Copula Confidence VaR Corresponding Weights
Levels CVaR W1 W2 W3 W4 W5

t-student
90% 0.003274 0.004920 0.2 0.2 0.2 0.2 0.2
95% 0.004216 0.006111 0.2 0.2 0.2 0.2 0.2
99% 0.008207 0.009225 0.2 0.2 0.2 0.2 0.2

Notes: W1, W2, W3, W4, and W5 are the weights of USD, GBP, EUR, JPY, and SGD, respectively.

TABLE IX: Optimal Investment Proportion of Portfolio with Minimum Risk

Copula Confidence VaR Corresponding Weights
Levels CVaR W1 W2 W3 W4 W5

t-student
90% 0.0026 0.0043 0.3051 0.0068 -0.0538 -0.1112 0.8531
95% 0.0034 0.0055 0.2986 -0.0002 -0.0544 -0.0945 -0.8506
99% 0.0058 0.0096 0.2921 -0.0073 -0.0550 -0.0778 0.8480

Notes: W1, W2, W3, W4, and W5 are the weights of USD, GBP, EUR, JPY, and SGD, respectively.

performs better than VaR. Table IX presents the optimal
portfolio weights under the minimum portfolio risk, VaR,
and CVaR across various confidence levels by using the t-
Student copula. The table shows that the best investment
tends to focus on investment in the SGD, because it has the
largest optimal weight. As the confidence levels increase,
the SGD weight decreases, whereas the weights of the other
currencies increase, showing that investors are willing to take
more risks to achieve a higher expected return.

IV. CONCLUSION

The copula-VaR and copula-CVaR approaches were intro-
duced and applied to measure currency exchange portfolio
risks. The copula was applied to capture the dependence
structure between currency exchanges in a portfolio. We
found that the GJR-GARCH model with the t-Student dis-
tribution and the t-Student copula model are the best fits for
describing the marginal distribution and dependence structure
in currency exchange portfolios, respectively. We also found
that copula-CVaR is always greater than copula-VaR for
equal-weighted currency exchange portfolios because the
former performs better than the latter. In addition, the optimal
portfolio weights are similar across different confidence
levels when minimising the portfolio risk. The best invest-
ment tends to focus on investment in the SGD. At higher
confidence levels, the weights of the SGD decrease, whereas
the weights of the other currencies increase. This behaviour
can help currency exchange investors better manage currency
exchange risks. Having said that, we also found that our solu-
tions can be further improved in how VaR is used to estimate
currency exchange portfolio risks. Therefore, a backtesting
method needs to be applied to determine the accuracy of the
VaR model. The GJR-GARCH-Extreme Value Theory model
and dynamic copulas could be considered in future studies
for the backtesting.
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