
 

 
Abstract—In the realm of non-intrusive load monitoring 

(NILM), extant deep learning approaches suffer from 
limitations including inadequate data samples, inadequate 
model generalization capacity, and insufficient safeguards for 
data privacy. To overcome these issues, this paper puts forward 
a novel NILM approach that leverages DeepAR to build a load 
monitoring model and incorporates federated learning and local 
fine-tuning methods to develop a non-intrusive load monitoring 
framework. Utilizing decentralized training, the proposed 
methodology facilitates iterative updates to model parameters 
through server-side aggregation, thereby enabling the 
collaborative construction of a monitoring model whilst 
maintaining strict confidentiality of individual customer data. 
The results of experiments conducted on the REDD dataset 
demonstrate that the approach outlined in this paper can 
markedly enhance the accuracy of load identification for 
frequently utilized electrical appliances. 
 

Index Terms—Non-intrusive load monitoring, DeepAR, 
federated learning, local fine-tuning. 
 

I. INTRODUCTION 

 
Manuscript received February 6, 2023, revised June 26, 2023; 
Zhaorui Meng is a senior engineer in School of Computer and Information 

Engineering, Xiamen University of Technology, Xiamen, Fujian,361024, 
China (Corresponding author; Email: mengzhaorui@ xmut.edu.cn). 

Xiaozhu Xie is a lecturer in School of Computer and Information 
Engineering, Xiamen University of Technology, Xiamen, Fujian,361024, 
China (Email: xiaozhuxie@ xmut.edu.cn). 

Yanqi Xie is a lecturer in School of Computer and Information 
Engineering, Xiamen University of Technology, Xiamen, Fujian,361024, 
China (Email: yqxie@ xmut.edu.cn). 

 
.  
 

comprehending the load structure and consumption patterns 
of residential users, thereby enabling timely adjustments to 
the power supply plan. Additionally, this technology can 
assist users in understanding household electricity 
information, facilitating rational electricity consumption 
practices on the user side, and promoting overall energy 
conservation and emission reduction efforts. [2]. 

The current load monitoring means is to install an 
independent monitoring device on each load, and to realize 
the judgment of its running state through the independent 
monitoring of each load, which consumes a lot of manpower, 
material resources and financial resources. To solve the above 
problems, non-intrusive load monitoring method is proposed. 
NILM does not need to enter the inside of the end user's 
power system, but only needs to install monitoring equipment 
at the power entrance. By monitoring the total voltage and 
total current at the entrance and decomposing it, the running 
state of each electrical equipment of the end user can be 
obtained [3]. 

At the moment, the NILM research mainly focuses on the 
low frequency characteristics of electrical appliances with 
active power, because most of monitoring devices can only 
achieve low frequency sampling of power. In non-intrusive 
power decomposition problems, the most commonly used 
method is hidden Markov model. Makonin et al. [4] proposed 
a load disaggregation algorithm integrated a super-state 
hidden Markov model and a Viterbi algorithm variant. The 
algorithm performed extremely well for multi-state load. 
Bonfigli et al. [5] proposed a NILM algorithm using Additive 
Factorial Hidden Markov Models framework. Experimental 
results show that the monitoring effect of this method is better 
than that of other four comparison methods. Wu et al. [6] 
presented a Time-Efficient Factorial Hidden Semi-Markov 
Model to improve the computing efficiency of NILM in real- 
world scenario. For the past few years, deep learning is 
gradually applied to NILM field. Kaselimi et al. [7] 
introduced a deep Long Short-Term Memory (LSTM) neural 
networks for energy disaggregation. Nolasco et al. [8] 
proposed a CNN-based framework for multi-label 
classification in NILM signals. Kong et al. [9] presented a 
deep convolutional neural networks-based approach to 
estimate the energy consumption for common multi- 
functional home appliances. 

Although deep learning has been widely applied in NILM 
field, the following problems still exist in practical 
application. First of all, deep learning has high requirements 
on the amount of training data, which may not be met by the 
electricity consumption data of a single household in practical 
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Electric energy consumption constitutes a significant

portion of energy usage in both societal production and daily
life. Therefore, the implementation of power energy
conservation measures represents a crucial component of
efforts aimed at reducing energy consumption and associated
emissions. As advancements in science and technology
continue to be made, and living standards improve, the
quantity and diversity of household appliances have grown.
Consequently, the proportion of residential electricity
consumption within total electricity consumption has also
increased. [1]. According to research, the implementation of
electricity consumption feedback mechanisms will likely
enhance the potential for energy conservation on the
residential load side. The use of household load identification
technology can substantially aid power supply companies in  
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application. Secondly, the generalization ability of the model 
only aiming at single family training is poor, and it is difficult 
to obtain good monitoring effect on the data of other families. 
Finally, there are privacy concerns such as data breaches if 
data from other households are obtained in order to train 
better generalized models. In response to these problems, 
federated learning [10] comes into being, which can utilize 
multiple computing nodes for efficient machine learning 
without compromising user data in a legal and compliant 
manner. Federated learning can reduce data traffic while 
protecting data privacy. Currently, federated learning has 
been used by researchers in some scenarios that need to 
consider data privacy and reduce communication overhead. 
Feng et al. [11] proposed a human mobility prediction 
framework via federated learning. Wang et al. [12] designed 
a federated learning framework in order to provide a better 
learning parameter exchange method for mobile edge 
computing. Hu et al. [13] presented a federated learning 
method for urban environment sensing. Pfohl et al. [14] 
proposed a federated learning framework for electronic health 
records. Yan et al. [15] proposed a federal learning 
application scheme in the field of financial credit risk 
management. All the above federated learning applications 
have achieved good results, which proves that the federated 
learning method is practical and feasible. 

In view of the above problems of insufficient data required 
for the construction of load monitoring model, poor model 
generalization ability and privacy involved in data sharing, 
this paper proposes a non-intrusive load monitoring method 
based on DeepAR model and federated learning, which 
implements collaborative training of the model under the 
premise of protecting the privacy of each customer’s data. 
Moreover, the monitoring accuracy and generalization ability 
of non-intrusive load monitoring model are improved 
effectively. 

II. FEDERATED LEARNING-BASED NON-
INTRUSIVE LOAD MONITORING MODEL 

2.1 Method overview 
The non-intrusive load monitoring model based on 

federated learning can not only protect the privacy of each 
customer's data, but also use the load data resources owned 
by each customer to train the load monitoring model 
cooperatively, effectively improving the prediction accuracy 
and multi-scenario generalization ability of the model. 

 
Fig. 1. The overall system architecture of the method in 

this paper 

The overall system architecture of this method is shown 
in Fig. 1. In terms of structure, the whole method consists of 
server, communication network, local load monitoring client 
and corresponding load monitoring data.  Among them, the 
load monitoring model built based on DeepAR model is 
deployed on the server and each load monitoring client. 

The overall process mainly includes five steps: load 
monitoring model delivery, local training of each client, 
upload of each client model, model aggregation and local 
fine-tuning of each client. The specific steps are shown in 
Algorithm 1. 
Algorithm 1. Non-intrusive load monitoring based on 

federated learning and local fine-tuning 
Input: Number of iterations T, various clients involved in load 

monitoring L 
Output: A non-intrusive load monitoring model trained by the 

method presented in this paper 
Step 1. Preprocess each customer's electricity data, including 

missing value, outlier value and data normalization 
Step 2. Set the communication address between the server 

and each local server 
Step 3. Enable communication service 
Step 4. The server initializes a global DeepAR model and 

obtains the initial model weight parameters W 
Step 5.  Set up all local clients 𝑙  𝑘 1,2, … ,𝑛 , 𝑙 ∈ 𝐿 to 

participate in training 
Step 6. for t =1, 2, …, T, do: 
Step 7.   for 𝑙 ∈ 𝐿 do: 
Step 8.     𝑙  downloads W from server 
Step 9. 𝑙  train DeepAR model 𝑊  with local electricity 

data 
Step 10. 𝑙  uploads 𝑊  to server  
Step 11. end for 
Step 12. The central server aggregates local models from 

different customers to update the global shared 
model 

Step 13. Repeat the above steps until the model accuracy 
reaches the required standard or iterates to the 
specified number of times T 

Step 14. Based on the global model, local fine-tuning is 
performed to generate the final load monitoring 
model of each client 

. 2.2. DeepAR 
DeepAR is a time series prediction method based on deep 

learning proposed by Salinas et al. [16], whose goal is to 
simulate          conditional          probability         distribution 
𝑃 𝑍 , : |𝑍 , : , 𝑥 , : .The future series 𝑍 , :  is modeled 
according to the past time series𝑍 , :  and covariable 𝑥 , : , 
where 𝑡  is the time division point, 𝑍 ,  represents the value 
of time series i at time t. 

DeepAR is an autoregressive RNN time series model, 
which is a cyclic neural network (using LSTM or GRU units) 
with hidden states. DeepAR learns periodic representations 
and is based on covariates across time series. When obtaining 
highly complex, group-dependent representations, only a 
small amount of data processing needs to be carried out 
manually. 

The conditional probability distribution used by the 
DeepAR model can be written in the following likelihood 
form: 
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𝑄 𝑍 , : |𝑍 , : , 𝑥 , :

∏ 𝑄 𝑍 , |𝑍 , : , 𝑥 , : =∏ 𝑙 𝑍 , |𝜃 ℎ , ,Θ       (1) 

where ℎ , ℎ ℎ , , 𝑧 , , 𝑥 , ,Θ    is   the   output   of   an 
autoregressive recurrent network composed of multi-layer 
RNNs. 

As shown in Fig. 2, DeepAR input the hidden layer 
ℎ ,  and  𝑧 ,    at   the   previous   time   and   the   known 
information 𝑥 ,  at the current time, and the hidden layer ℎ ,  
at this time can be obtained. Then, ℎ ,  is converted into the 
parameter of the given distribution through neural network 
𝜃(∙).   After   the   distribution   is   determined, likelihood  
𝑙 𝑍 , |𝜃 ℎ , ,Θ  can   be   calculated   and   the   predicted 
probability distribution can be finally obtained. 

 
Fig. 2. Diagram of DeepAR network 

 
2.3 Federated aggregation 

In federated learning, the central server receives the results 
from multiple clients, aggregates them, and then sends the 
aggregated results to each client, the process is called federated 
aggregation. Because FedAvg federated aggregation algorithm 
has higher communication efficiency, the method in this paper 
adopts FedAvg federated aggregation algorithm, and the 
specific steps are shown in Algorithm 2. 
Algorithm 2. Federated Averaging Algorithm 
Input: T is the maximum number of iterations, η is the learning 

rate, k is the client number,𝑛  is the amount of data of 
the k client and 𝑁 ∑ 𝑛  

Step 1. Initialize an DeepAR model 𝑊  
Step 2. While r < T do 
Step 3. Select subset 
Step 4. for client k in K do  
Step 5. k receives model 𝑤  
Step 6. k computes average gradient 𝑔 with SGD 
Step 7. k updates local model 𝑤 ← 𝑤 𝜂𝑔  
Step 8. k sends updated model to server 
Step 9. End for 
Step 10. Server computes new global model 𝑤 ←
∑ 𝑤  

Step 11. End while 
2.4. Local fine-tuning 

The global model generated by federated learning has better 
generalization ability, and local fine-tuning based on the global 
model can improve the prediction ability of the model on 
specific clients. In addition, local fine-tuning only needs fewer 
iterations to get better prediction results. 

III. EXPERIMENTS 

3.1. Experimental environment 

In this paper, multiple computers are used to simulate each 
customer participating in federated learning, and then verify the 
improvement of prediction accuracy and generalization ability 
of the proposed method. Six computers were used to simulate 
six customers. All computers were equipped with Intel Xeon 
platinum 8124 CPU, RTX 3080 GPU, and 128 GB memory. A 
computer with the same configuration serves as the server side. 
The devices can communicate point to point. 

In this paper, REDD dataset [17] is selected for the 
experiment. This dataset contains the electricity consumption 
data of 6 American households, and the low-frequency power 
data of this dataset is used for load monitoring. The model uses 
the first 70% of each household's electricity consumption data 
for training, the next 20% as the verification set, and the last 
10% as the test dataset. 

In this paper, four typical household electrical equipment 
including dish washer, refrigerator, washing machine and lights 
are selected for testing. 

The activation thresholds of each electrical appliance are 
shown in Table 1. 

3.2. Evaluation metrics 
In order to comprehensively evaluate model performance, 

precision (PRE) and mean average absolute error (MAE) are 
selected as evaluation metrics in this paper. Specific formulas 
are as follows: 

𝑃𝑅𝐸                                    （2） 

where TP is the number of sequences in which both the model 
prediction result and the actual load are running states, and 
FP is the number of sequences in which the model prediction 
result is not in the running state but the actual load is in the 
running state. 

 𝑅𝑀𝑆𝐸 ∑ 𝑦 𝑦             （3） 

where N is total sample input number. 𝑦  is the real power of 
electric appliance at time t, and 𝑦 is the model decomposition 
power. 
3.3. Experimental results 

Table 2-Table 7 shows the comparison of PRE and RMSE 
of experimental results of each model from household 1 to 
household 6. Based on the presented tables, it is evident that 
the proposed algorithm in this paper yields the minimum 
RMSE and the maximum PRE in various electrical appliance 
experiments when the frequency of use is relatively high, 
denoted by RMSE values greater than 1. This indicates that 
combining federated learning and local fine-tuning leads to 
the most effective load monitoring outcome. When the RMSE 
value is less than 1, comparing the values of PRE and RMSE 

Table 1.  The activation threshold of each appliance. 
Appliance Activation threshold(W) 

Dish washer 10 

Refrigerator 50 

Washing machine 20 

Lights 10 
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becomes challenging. This is due to the relatively low 
frequency of appliance use, as well as the low decomposition 
power of each appliance. Consequently, obtaining 0 values 
for TP and TR becomes more likely. The presented tables 

further reveal that the accuracy of the federated learning 
algorithm may not surpass that of DeepAR and DeepAR 
(Centralized) if local fine-tuning is not employed.  The latter 
approach involves training the model on aggregated data 

Table 2. Comparison of Precision and RMSE of different appliances in each model in household 1. Bold indicates the smallest RMSE or  
the largest PRE. 

Model Dish washer Refrigerator Washing machine Lights 
 PRE RMSE PRE RMSE PRE RMSE PRE RMSE 

DeepAR 0.9774 15.13    0.9957 26.17 0.4119 83.89 0.9998 0.9706 

DeepAR(Centralized) 0.9860 15.05 0.9960 26.02 0.4573 81.56 0.9998 1.1034 

Federated learning 0.9866 16.1 0.9960 28.05 0.428 94.62 0.9998 1.2018 

Federated learning+ 
local fine-tuning 

0.9867 14.95 0.9971 25.97 0.7165 80.57 0.9998 1.56 

Table 3. Comparison of Precision and RMSE of different appliances in each model in household 2. Bold indicates the smallest RMSE or 
 the largest PRE. 

Model Dish washer Refrigerator Washing machine Lights 
 PRE RMSE PRE RMSE PRE RMSE PRE RMSE 

DeepAR 0.9785 23.74    0.9976 22.86 0 0.3550 0.9922 1.3819 

DeepAR(Centralized) 0.9815 16.03 0.9973 22.25 0 0.3543 0.9928 1.3723 

Federated learning 0.9865 16.75 0.9972 22.36 0 0.4452 0.9927 1.4204 

Federated learning+ 
local fine-tuning 

0.9875 12.85 0.9977 21.41 0 0.3830 0.9991 1.3673 

 

Table 4. Comparison of Precision and RMSE of different appliances in each model in household 3. Bold indicates the smallest RMSE or 
 the largest PRE. N/A indicates not available. 

Model Dish washer Refrigerator Washing machine Lights 
 PRE RMSE PRE RMSE PRE RMSE PRE RMSE 

DeepAR N/A 0.3861    0.9939 17.52 0.9807 263.05 N/A 0.2765 

DeepAR(Centralized) N/A 0.4215 0.9940 17.45 0.9813 267.03 N/A 0.3213 

Federated learning N/A 0.7705 0.9940 17.52 0.9656 391.8 N/A 0.4714 

Federated learning+ 
local fine-tuning 

N/A 0.3904 0.9942 17.35 0.9839 261.52 N/A 0.2647 

Table 5. Comparison of Precision and RMSE of different appliances in each model in household 4. Bold indicates the smallest RMSE or  
the largest PRE. N/A indicates not available. 

Model Dish washer Refrigerator Washing machine Lights 
 PRE RMSE PRE RMSE PRE RMSE PRE RMSE 

DeepAR 0 0.4831      N/A N/A 0 0.5860 0.9989 2.7696 

DeepAR(Centralized) 0 0.4634 N/A N/A 0 0.5532 0.9989 2.6423 

Federated learning 0 0.5108 N/A N/A 0 0.4496 0.9989 2.6603 

Federated learning+ 
local fine-tuning 

0 0.4245 N/A N/A 0 0.8033 0.9989 2.6020 

Table 6. Comparison of Precision and RMSE of different appliances in each model in household 5. Bold indicates the smallest RMSE or 
the largest PRE. N/A indicates not available. 

Model Dish washer Refrigerator Washing machine Lights 
 PRE RMSE PRE RMSE PRE RMSE PRE RMSE 

DeepAR N/A  0.5116   0.9955 8.199 N/A 0.0487 N/A 0.0010 

DeepAR(Centralized) N/A 0.5234 0.9958 8.032 N/A 0.0975 N/A 0.0382 

Federated learning N/A 0.6366 0.9954 8.058 N/A 0.1353 N/A 0.0432 

Federated learning+ 
local fine-tuning 

N/A 0.5197 0.9965 7.84 N/A 0.1152 N/A 0.0026 
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from all households. Interestingly, in the majority of 
experiments conducted, the differences in the RMSE and 
PRE values among these three algorithms are minimal. 

IV. CONCLUSION 

This paper introduces a novel non-intrusive load 
monitoring approach, which leverages federated learning 
and local fine-tuning techniques. This method enables data 
isolation and facilitates the collaborative construction of a 
universal monitoring model across multiple data nodes 
whilst guaranteeing user privacy protection. By optimizing 
the global model through local fine-tuning, the accuracy of 
load monitoring is significantly enhanced. Additionally, 
this study establishes a basis for future research to optimize 
the federated learning algorithm, with the objective of 
further enhancing the accuracy of NILM while maintaining 
robust data security measures. 
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