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Abstract—By a well known result of G. Gundersen, if the
complex differential equation f ′′ + A(z)f ′ + B(z)f = 0 with
the coefficients satisfying ρ(A) < ρ(B), where ρ(∗) denotes
the growth order of an entire function ∗, then the nontrivial
solutions of this equation are of infinite order. Moreover, there
exist examples which show that if ρ(A) = ρ(B), then this
equation can have a finite order solution. In this paper we
discuss the remained case, if ρ(A) > ρ(B) whether the solutions
have infinite order. In fact, we prove that if ρ(A) > ρ(B) > 0
and A(z) satisfies three conditions respectively, then every
nontrivial solution of this equation has infinite growth order.
The three conditions are (1) A(z) is a nontrivial solution of
w′′ + P (z)w = 0, where P (z) is a polynomial; (2) A(z) is an
entire function of exponential growth; (3) A(z) is a completely
regular growth entire function.

Index Terms—entire function, infinite order, regular growth,
complex differential equation.

I. INTRODUCTION

N evanlinna theory is an important tool of value distribu-
tion in complex analysis, and it is later used in complex

differential equations to study the growth of solutions and
the distribution of zeros. In fact, it’s the value distribution of
solutions to complex differential equations. In this respect,
the important literature we cite are [9], [16]. In this paper,
we will follow the basic notations and theorems in these
literature. Below we first give the definitions of the growth
order ρ(f) and the lower order µ(f) of entire function f ,
they are the important concepts in this paper.

ρ(f) = lim sup
r→+∞

log+ T (r, f)

log r

= lim sup
r→+∞

log+ log+M(r, f)

log r
,

µ(f) = lim inf
r→+∞

log+ T (r, f)

log r

= lim inf
r→+∞

log+ log+M(r, f)

log r
,

where T (r, f) is the characteristic function and M(r, f) is
the maximum modulus of entire function f in a circle |z| <
r. Moreover,

log+ x = max{log x, 0}.

The research on the order of the solutions of complex
differential equations is always a classic content in the field
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of complex differential equation. The main purpose of this
paper is to study the growth of the solutions of second order
linear differential equations

f ′′ +A(z)f ′ +B(z)f = 0, (1)

where the coefficients A(z) and B(z) are entire functions.
Because the coefficient functions of this equation are entire,
we know that that the solutions to it are also entire functions.
In particular, if B(z) is a transcendental entire function, and
f1, f2 are two independent solutions to this equation, then at
least one of these two solutions is of infinite order, see [7].
In this case, there really exists a solution with finite order.
For example, f(z) = ez is a finite order (with ρ(ez) = 1)
solution of differential equation

f ′′ + e−zf ′ − (e−z + 1)f = 0.

Then, the researchers think about the conditions under
which each of its nontrivial solutions can be guaranteed to
be infinite order. Actually, it’s a constraint on the coefficient
functions. The question becomes what conditions should the
coefficients A(z), B(z) satisfy to ensure that every nontrivial
solution of equation (1) is of infinite order? Many scholars
have made research results in this aspect (for example, see
[7], [9], [17]) and the main theorems related to this paper
are listed below.

Theorem I.1. If A(z) and B(z) are nonconstant entire
functions, and one of the following additional conditions is
satisfied:

1) ρ(A) < ρ(B), see [4];
2) A(z) is a polynomial and B(z) is transcendental, see

[4];
3) ρ(B) < ρ(A) ≤ 1

2 , see [6],
then every nontrivial solution f of equation (1) has infinite
growth order.

Although research in this area has yielded many results,
several open questions remain unanswered [5], [12]. In this
article we continue to discuss the unresolved case of this
classic problem. That is, under the condition ρ(A) > ρ(B),
what other conditions must A(z) and B(z) satisfy so that the
nontrivial solutions to this equation are of infinite order. In
addition, we limit the growth order of coefficients function
satisfying

max{ρ(A), ρ(B)} <∞

when considering problems in this paper, otherwise, the
question becomes meaningless.

In the recent literature, a new idea has been introduced to
the study of this problem. That is, suppose that the coefficient
function A(z) is a nontrivial solution to the following second
order differential equation,

w′′ + P (z)w = 0, (2)
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where

P (z) = anz
n + an−1z

n−1 + · · ·+ a0, an 6= 0,

another coefficient function B(z) satisfies additional condi-
tions such that the growth order of every nontrivial solution
of equation (1) is infinite. The results associated with this
method are listed below.

Theorem I.2. Suppose that A(z) is a nontrivial solution of
(2), and B(z) is a transcendental entire function satisfying
any one of the following additional hypotheses:

1) ρ(B) < 1/2, see [15];
2) µ(B) < 1/2 and ρ(A) 6= ρ(B), see [11];
3) µ(B) < 1

2 + 1
2(n+1) and ρ(A) 6= ρ(B), see [14];

then every nontrivial solution f of equation (1) has infinite
order.

Our first conclusion is related to the above theorem,
we still assume that the function coefficient A(z) satisfies
equation (2), and add another condition 0 < ρ(B) < ρ(A),
then the conclusion of the above theorem I.2 still holds.

Theorem I.3. Let A(z) be a nontrivial solution of (2). If
B(z) is an entire function with 0 < ρ(B) < ρ(A), then
every nontrivial solution of (1) is of infinite order.

Remark 1. Since A(z) satisfies the equation (2), its growth
order is ρ(A) = n+2

2 , n = 0, 1, 2, · · · , see [7]. So it’s
possible that the growth order of B(z) in this theorem
is greater than 1/2, which is obviously an extension of
Theorem I.2.

Remark 2. For the case of ρ(B) < ρ(A) and ρ(A) > 1
2 ,

Gundersen [4] gave an example as following, which shows
that there exists a nontrivial solution of (1) with finite order.
Let Q be any nonconstant polynomial and B 6≡ 0 be any en-
tire function with ρ(B) < deg(Q), let f be any antiderivative
of eQ that satisfies λ(f) = deg(Q), where λ(f) denote the
exponent of convergence of the zero-sequence of f , and set

A = −Q′ −Bfe−Q.

Then ρ(B) < ρ(A) = deg(Q), and

f ′′ +A(z)f ′ +B(z)f = 0.

We will show that this example does not satisfy the condition
of Theorem I.3. In fact A(z) in this example is not a solution
of (2). Set g(z) = eQ, then f =

∫
g(z)dz is a solution of

this equation. By calculation, we have

A′′ = −Q′′′ −B′′fg−1 − 2B′(1−Q′fg−1)

−B[−Q′ + fg−1((Q′)2 −Q′′)].

If A(z) satisfies equation (2), substituting A and A′′ into (2)
we have

fg−1{B′′ − 2Q′B′ + [(Q′)2 −Q′′ + P ]B}
+(2B′ −Q′B +Q′′′ + PQ′) = 0.

Since ρ(fg−1) > ρ(B), by [16, Theorem 1.50] we have

B′′ − 2Q′B′ + [(Q′)2 −Q′′ + P ]B = 0,

2B′ −Q′B +Q′′′ + PQ′ = 0.

By the second equality above and Wiman-Valiron theory [9,
Chapter 3], we have ρ(B) = deg(Q), which contradicts

ρ(B) < ρ(A) = deg(Q).

This example also shows that the condition on A(z) in
Theorem I.3 can not be removed.

Remark 3. Clearly, A(z) = e−z is a solution of (2) for
P (z) = −1, and the equation

f ′′ +A(z)f ′ − (e−z + 1)f = 0

has a solution f = ez . This shows that ρ(A) can not be
equal to ρ(B) in Theorem I.3.

Remark 4. Frei [1] proved that

f ′′ + e−zf ′ − n2f = 0

has a nontrivial solution of finite order, where n is a positive
integer. This example shows that ρ(B) > 0 in Theorem I.3
is sharp.

Notice that the exponential function ep(z), where

p(z) = αnz
n + · · ·+ +α0

is a polynomial of degree n ≥ 1. For this function, we divide
the complex plane into 2n equal open sectors by the rays

arg z = −argαn
n

+ (2j − 1)
π

2n
,

j = 0, 1, 2 · · · , 2n− 1.

In each of these sectors, ep(z) either blows up exponentially
or decays exponentially to zero. Moreover, these two cases
occur in turn for any two adjacent sectors. Inspired by this
property, the authors of [8] introduced a more general class
of transcendental entire function, called function class A.

Definition I.4. Suppose that A(z) is a transcendental entire
function, its order ρ(A) is equal to µ(A) and both are finite.
Moreover, δA(θ) is a real-valued function, which is defined
on [0, 2π) and continuous outside an exceptional set F of
finitely many points. Further, let c, d be positive constants.
Then for any given θ ∈ [0, 2π) \ F , there are a constant τ ,
and positive constants R = R(θ) and M = M(θ) such that
when |z| = r > R,

(A1) |A(reiθ)| ≥ exp{cδA(θ)rd} if δA(θ) > 0,

(A2) |A(reiθ)| ≤Mrτ if δA(θ) < 0,

where τ < 2(ρ(A) − 1). Especially, for any θ ∈ [0, 2π) \
F with δA(θ) > 0, there exists l = l(θ) > 0 such that
sup{R(θ̃), θ̃ ∈ (θ − l, θ + l)} <∞. The class A consists of
those functions A(z) that satisfy these above properties.

Since A(z) is transcendental, the first growth case (A1)
in the above definition must happen. Obviously, exponential
function ep(z) belongs to this function class A, and it also
contains exponential polynomials. For example,

A(z) = ak(z)ekp(z) + · · ·+ ase
sp(z)
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is a polynomial of ep(z) with polynomial coefficients, where
s < k are positive integers. Moreover, Mittag-Leffler func-
tion [2, p.83]

Eα(z) =
∞∑
n=0

zn

Γ(α−1n+ 1)
, 0 < α <∞

has the growth property (A1) in the sector

| arg z| ≤ π

2α

and property (A2) in sector

arg z ∈ (−π, π] \
(
− π

2α
,
π

2α

)
for α > 1/2.

Let’s assume that the coefficient function A(z) belongs to
the above function class A, we have a result as follow.

Theorem I.5. Let A(z) belong to function class A. If B(z)
is an entire function with 0 < ρ(B) < ρ(A), then every
nontrivial solution of (1) is of infinite order.

Finally, we give the concept of completely regular growth.
If the function ρ(r) is positive, and when r is sufficiently
large, ρ(r) is differentiable with respect to r. Moreover, it
satisfies

lim
r→∞

ρ(r) = ρ ∈ (0,∞), lim
r→∞

ρ′(r)r log r = 0,

then we call ρ(r) is a proximate order, see [2, Section 2,
Chapter 2]. In particular, for an entire functions A(z) whose
growth order satisfies 0 < ρ(A) < ∞, it always has a
proximate order. For an entire function A(z) with growth
order ρ(A), its indicator h(θ) for proximate order ρ(r) is
defined as

h(θ) = lim sup
r→∞

log |A(reiθ)|
rρ(r)

, (3)

where ρ(r) → ρ as r → ∞. If there exist disks D(ak, sk)
satisfying ∑

|ak|≤r

sk = o(r) (4)

such that

log |A(reiθ)| = h(θ)rρ(r) + o(rρ(r)), (5)

where
reiθ 6∈

⋃
k

D(ak, sk)

as r →∞, uniformly in θ, then A(z) is said to be completely
regular growth (in the sense of Levin and Pfluger) [10, p.139-
140]. In particular, if the set I = {θ ∈ [0, 2π) : h(θ) = 0} is
of zero Lebesgue linear measure, then A(z) either blows up
or decays exponentially in the sectors which are contained
in the complex plane excepted some rays. We introduce the
property of completely regular growth to the coefficients of
equation (1), and give the third main conclusion as follow.

Theorem I.6. Let A(z) be a completely regular growth entire
function with the set I = {θ ∈ [0, 2π) : h(θ) = 0} of zero
Lebesgue linear measure. If B(z) is an entire function with
0 < ρ(B) < ρ(A), then every nontrivial solution of (1) is of
infinite order.

Below we will only give a detailed proof of theorem
1.3, other theorems can be proved in the same way, just
by replacing the property of the coefficient A(z) with the
corresponding property in the theorem.

II. PROOF OF THEOREM I.3

In order to prove Theorem I.3, we need an auxiliary
theorem, which describes some properties of solutions to the
equation (2). Before we state this theorem, let’s give you
some notation. Let α < β satisfy β − α < 2π and r > 0.
Denote

S(α, β) = {z : α < arg z < β},

S(α, β, r) = {z : α < arg z < β, |z| < r}

and S(α, β, r) denotes the closure of S(α, β, r). Let A(z)
be an entire function with growth order ρ(A) ∈ (0,∞). If
for any θ ∈ (α, β), the formula

lim
r→∞

log log |A(reiθ)|
log r

= ρ(A)

holds, we say that A(z) blows up exponentially in S(α, β).
On the contrary, if for any θ ∈ (α, β), the formula

lim
r→∞

log log |A(reiθ)|−1

log r
= ρ(A)

holds, we say that A(z) decays to zero exponentially in
S(α, β). The following lemma plays a crucial role in the
proof of the theorem I.3, which comes from the literature [7,
Chapter 7.4]. The proof of this lemma used a method called
asymptotic integration.

Lemma II.1. Supopose that A is a nontrivial solution of
second order complex differential equation w′′+P (z)w = 0,
where

P (z) = anz
n + · · ·+ a0, an 6= 0

is a polynomial. Set

θj =
2jπ − arg(an)

n+ 2

and
Sj = S(θj , θj+1),

where
j = 0, 1, 2, · · · , n+ 1

and
θn+2 = θ0 + 2π.

Then A has the following properties.
1) In each sector Sj , A either blows up or decays to zero

exponentially.
2) If, for some j, A decays to zero in Sj , then it must blow

up in Sj−1 and Sj+1. However, it is possible for A to
blow up in many adjacent sectors.

3) If A decays to zero in Sj , then A has at most finitely
many zeros in any closed sub-sector within

Sj−1 ∪ Sj ∪ Sj+1.

4) If A blows up in Sj−1 and Sj , then for each ε > 0, A
has infinitely many zeros in each sector

S(θj − ε, θj + ε),
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and furthermore, as r →∞,

n(S(θj−ε, θj+ε, r), 0, A) = (1+o(1))
2
√
|an|

π(n+ 2)
r

n+2
2 ,

where
n(S(θj − ε, θj + ε, r), 0, A)

is the number of zeros of A in the region

S(θj − ε, θj + ε, r).

The following result which was proved by Gundersen [4,
Theorem 3] shows the asymptotic properties of finite order
solutions of equation (1).

Lemma II.2. Let A(z) and B(z)(6≡ 0) be two entire
functions such that for real constants α, β, θ1, θ2, where
α > 0, β > 0 and θ1 < θ2,

|A(z)| ≥ exp{(1 + o(1))α|z|β}

and
|B(z)| ≤ exp{o(1)|z|β}

as z →∞ in

S(θ1, θ2) = {z : θ1 ≤ arg z ≤ θ2}.

Let ε > 0 be a given small constant, and let

S(θ1 + ε, θ2 − ε) = {z : θ1 + ε ≤ arg z ≤ θ2 − ε}.

If f is a nontrivial solution of (1) with ρ(f) <∞, then the
following conclusions hold.

1) There exists a constant b(6= 0) such that f(z)→ b as
z →∞ in S(θ1 + ε, θ2 − ε). Furthermore,

|f(z)− b| ≤ exp{−(1 + o(1))α|z|β}

as z →∞ in S(θ1 + ε, θ2 − ε).

2) For each integer k ≥ 1,

|f (k)(z)| ≤ exp{−(1 + o(1))α|z|β}

as z →∞ in S(θ1 + ε, θ2 − ε).

In order to describe the following lemma of the estimation
of modulus of the logarithmic derivative of transcendental
meromorphic functions, we first give two concepts of the
Lebesgue linear measure and the logarithmic measure of
a measurable set. The Lebesgue linear measure of a set
E ⊂ [0,∞) is denoted by m(E) =

∫
E
dt, and the

logarithmic measure of a set E ⊂ [1,∞) is denoted by
ml(E) =

∫
E
dt
t . The following lemma related to logarithmic

derivatives, which is very important in the proof of our
theorem, comes from G. Gundersen’s article [3].

Lemma II.3. [3] Let f be a transcendental meromorphic
function of finite order ρ(f). Let ε > 0 be a given real
constant, and let k and j be two integers such that k > j ≥ 0.
Then there exists a set E ⊂ (1,∞) with ml(E) < ∞, such
that for all z satisfying |z| 6∈ (E ∪ [0, 1]), we have∣∣∣∣f (k)(z)f (j)(z)

∣∣∣∣ ≤ |z|(k−j)(ρ(f)−1+ε). (6)

Lemma II.4. [13, Corollary 2.3.6] If g(z) is an entire
function with 0 < ρ(g) < ∞, then there exists an angular
domain S(θ1, θ2) with θ2 − θ1 ≥ π

ρ(g) such that

lim sup
r→∞

log log |g(reiθ)|
log r

= ρ(g) (7)

for any θ ∈ (θ1, θ2).

Proof of Theorem I.3: Suppose that there is a nontrivial
solution f of (1) with finite order. Applying Lemma II.4 to
entire coefficient B(z), then there exists a sector SB(θ1, θ2)
with

θ2 − θ1 ≥
π

ρ(B)

such that

lim sup
r→∞

log log |B(reiθ)|
log r

= ρ(B) (8)

for any θ ∈ SB . From Lemma II.1, we denote the union of
sectors where A blows up by S+

A and the union of sectors
where A decays by S−A . We split into two cases for the proof.

Case 1. Assume that

SB ∩ S−A 6= ∅.

For any
z = reiθ ∈ SB ∩ S−A ,

we have

lim
r→∞

log log |A(reiθ)|−1

log r
=
n+ 2

2
. (9)

By Lemma II.3, there exists a set E ⊂ (1,∞) with finite
logarithmic measure such that for all z satisfying

|z| = r 6∈ E ∪ [0, 1],∣∣∣∣f (k)(z)f(z)

∣∣∣∣ ≤ |z|2ρ(f), k = 1, 2. (10)

Then for
z = reiθ ∈ SB ∩ S−A

satisfying r 6∈ E ∪ [0, 1] with r →∞, we have

|B(z)| ≤
∣∣∣∣f ′′(z)f(z)

∣∣∣∣+ |A(z)|
∣∣∣∣f ′(z)f(z)

∣∣∣∣
≤ (1 + o(1))r2ρ(f), (11)

which contradicts (8) since ρ(B) > 0.

Case 2. Assume that

SB ∩ S−A = ∅,

then
SB ∩ S+

A 6= ∅.

By Lemma II.1, for any z = reiθ ∈ SB ∩ S+
A , we have

lim
r→∞

log log |A(reiθ)|
log r

= ρ(A) =
n+ 2

2
. (12)

Since ρ(B) > 0, for any given small positive ε < ρ(B)
4 , we

can take positive number β close to ρ(A) such that

ρ(B)− ε > ρ(A) + ε− (β − ε),
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that is ρ(B) > ρ(A)− β + 3ε and

ρ(A)− ε > β > ρ(B) + ε,

we have

|A(z)| ≥ exp{|z|ρ(A)−ε}
≥ exp{(1 + o(1))α|z|β}, (13)

|B(z)| ≤ exp{|z|ρ(B)+ε}
≤ exp{o(1)|z|β} (14)

as z → ∞ in SB ∩ S+
A . Then by Lemma II.2, there exists

constant b 6= 0 such that

|f(z)− b| ≤ exp{−(1 + o(1))α|z|β} (15)

and

|f (k)(z)| ≤ exp{−(1 + o(1))α|z|β}, k = 1, 2, 3 · · · (16)

as z →∞ in a smaller sector which is contained in SB∩S+
A ,

denoted by S̃.
By (8) we can take a sequence {rn} tending to infinite

such that

lim
rn→∞

log log |B(rne
iθ)|

log rn
= ρ(B) (17)

for any θ ∈ SB . Then for any given ε > 0 and sufficiently
larger rn, we have

|B(rne
iθ)| ≥ exp{rρ(B)−ε

n } (18)

for any θ ∈ SB . By equation (1) we have

|Bf | ≤ |f ′′|+ |Af ′|. (19)

Substituting (15), (16) and (18) into (19), we obtain

(|b| − o(1)) exp{rρ(B)−ε
n }

≤ o(1) +
exp{rρ(A)+ε

n }
exp{(1 + o(1))αrβn}

≤ o(1) + exp{rρ(A)−β+2ε
n } (20)

for rneiθ ∈ S̃ as rn → ∞, which contradicts with the
chosen β. Thus, the conclusion follows.

REFERENCES
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