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Abstract—This paper aims to examine the notion of λ-
ideal statistical convergence and λ-ideal statistically Cauchy
sequence over non-Archimedean 2-normed spaces. Moreover,
we have also studied and proven some significant properties
for λ-ideal statistically Cauchy sequence in 2-normed spaces
to be λ-ideal statistically Cauchy with respect to ∥.∥∞. And
also we show that, λ-ideal statistical convergence in 2-normed
spaces is λ-ideal statistical pre-Cauchy in 2-normed spaces over
non-Archinedean field. Through this paper, K symbolizes a
complete, non-trivially valued, non-Archinedean field.

Index Terms—Ideal, statistical convergence, 2-normed spaces,
non-Archimedean field.

I. INTRODUCTION

THE notion of statistical convergence was first estab-
lished by Steinhaus[23] in 1951 but the expansion of

convergence of real sequences to statistical convergence was
given by Fast[7] and Schoenberg[22]. Statistical convergence
can find its applications in numerous fields of mathematics
like measure theory, approximation theory, trigonometric
series and summability theory. In the case of real sequences,
Fridy[8],[9] obtained the statistical analogue of the Cauchy
criterion for convergence. Over the year under different
names statistical convergence and the concept of summability
method has been examined in numerous fields of mathemat-
ics by many others see for instance[15], [24], [25].
A sequence x = {xk} is defined as statistically convergent
to ‘L’, if for every ε > 0,

lim
n→∞

1

n
|{k ≤ n;n ∈ N : |xk − L| ≥ ε}| = 0

stat− lim
k→∞

{xk} = L.

Furthermore, Mursaleen[19] established the study of λ-
statistical convergence as a generalization of the statistical
convergence and found its connection between statistical
convergence and summability theory.
Let λ = {λn} be a non-decreasing sequence of positive
integers tending to ∞. So that λn+1 ≤ λn + 1, λ1 = 1
where n ∈ N, where In = {n− λn + 1, n}.
More particularly, Connor[4] introduced an interesting con-
cept of statistical pre-Cauchy sequences, and it was proved
that statistical convergence is always statistically pre-Cauchy.
Also, under specific conditions, statistical pre-Cauchy is
statistically convergent of a sequence.
The theory of I-convergence was initiated by Kostyrko et
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al.[16]. Later on, Kostyrko et al.[17] gave some of the basic
properties of I-convergence and deals with I-limit points.
In recent years, I-statistical convergence by using ideals
was introduced by Das et al.[6]. We now define the basic
definitions and notions.
A non-empty subset I of the subset of R ⊂ N is an ideal in
R, if it satisfies the axioms listed below:

(i) A,B ∈ I, which implies A ∪B ∈ I,
(ii) A ∈ I, B ∈ R, B ⊂ A, which implies B ∈ I .

An ideal is said to be non-trivial if N /∈ I and I ̸= ϕ, and if
{x} ∈ I for each x ∈ N, then it is said to be an admissible
ideal.
A non-empty class F ⊂ X is said to be a filter in X , if it
satisfies the axioms listed below:

(i) Φ ∈ F ,
(ii) A,B ∈ F , which implies A ∩B ∈ F ,

(iii) A ∈ F , A ⊂ B which implies B ∈ F .
The study of 2-normed spaces was proposed by Gahler[10]

in the 1960s and it has been extended widely in various
fields by many researchers[3], [5], [11], [12], [14], [20],
[21]. Subsequently, Gurdal and Pehlivan[13] investigated
statistical convergence in 2-normed spaces, and proved some
significant properties of a real number sequence in 2-normed
spaces. Also, studied the concept of a statistically Cauchy
sequence in 2-normed spaces and obtained various results
related to it. Let X be a linear space with a dimension greater
than 1 and ∥., .∥ be a non-negative real valued function on
X ×X meets the axioms listed below:

(i) ∥x, y∥ = 0 if and only if x and y are not linearly
independent vectors,

(ii) ∥x, y∥ = ∥y, x∥ for all x, y in X ,
(iii) ∥αx, y∥ = |α|∥x, y∥ for all α is real,
(iv) ∥x+ y, w∥ ≤ ∥x,w∥+ ∥y, w∥ for all x, y, w ∈ X .

Therefore, (X, ∥., .∥) is defined as linear 2-normed spaces.

[2] Throughout this article, K denotes a non-Archimedean
field that is complete, non-trivially valued, and meets the
axioms listed below:

(i) |x| ≥ 0 and |x| = 0 iff x = 0.
(ii) |xy| = |x||y|.

(iii) |x+ y| ≤ max{|x|, |y|]} for all x, y ∈ K.

II. PRELIMINARIES

In this section we now propose the primary definitions of
this article.

Definition 2.1: [1], [18] Let X be a ‘d’ dimensional vector
space, where 2 ≤ d < ∞ over a non-Archimedean valuation
|.| with a valued fields K. A non-Archimedean 2-norm is
said to be a mapping from ∥., .∥ : X × X → [0,∞) if it
satisfies the axioms listed below:
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(i) ∥x, y∥ = 0 iff x and y are not linearly independent
vectors,

(ii) ∥x, y∥ = ∥y, x∥,
(iii) ∥αx, y∥ = |α|∥x, y∥ for all α ∈ K,
(iv) ∥x, y + w∥ ≤ max{∥x,w∥, ∥y, w∥}; for all x, y, w ∈

X .
Therefore (X, ∥., .∥) is defined as non-Archimedean 2-
normed spaces.

Definition 2.2: A sequence {xk} of X is λ-I statistically
convergent to ‘L’ in 2-normed spaces, if for every ϵ > 0
and for every non-zero w ∈ X ,

lim
n→∞

1

λn

∣∣∣{k ∈ In;n ∈ N : ∥xk − L, w∥ ≥ ε
}
∈ I

∣∣∣ = 0

we write,

I− statλ lim
k→∞

∥xk − L, w∥ = 0

where ‘L’ is the I-limit of the sequence {xk}.

Definition 2.3: A sequence {xk} of X is λ-I statistically
Cauchy in 2-normed spaces, if for any ϵ > 0, then there
exist n ∈ N, for every non-zero w ∈ X ,

lim
n→∞

1

λn

∣∣∣{k ∈ In;n ∈ N : ∥xk+1 − xk, w∥ ≥ ε
}
∈ I

∣∣∣ = 0.

III. EXAMPLE

Example 3.1: Let X = R2, is defined with 2-norm by
∥x, y∥

∥x, y∥ = max{∥x1y1, x2y2∥}

where, x = (x1, x2), y = (y1, y2).

Then ∥., .∥ is 2-norm on R2.

Example 3.2: Let x = {xk} and λ = {λn} defined as
non-Archimedean valuation to be 2-adic,

xk =


k − 1

k2 + 1
, if k is a perfect square,

0, otherwise.

The sequence are

{0, 0, 0, 1, 0, 0, 0, 0, 1
4
, 0, 0, 0, · · · }.

Then the sequence is λ-ideal statistically convergent to 0.
Therefore,

lim
n→∞

1

λn

∣∣∣{k ∈ In; k ≤ n : |xk − 0| ≥ ε
}
∈ I

∣∣∣ = 0.

Thus
I− statλ − lim

k→∞
|xk − L| = 0.

Example 3.3: Let x = {xk}, I is an admissible ideal and
λ = {λn} defined by

xk =

{
1, if k = 2n, n = 1, 2, · · · ,
0, if k ̸= 2n, otherwise.

Hence,

lim
n→∞

1

λn

∣∣∣{k ∈ In; k ≤ n :∥xk − 1, w∥ ≥ ε
}
∈ I

∣∣∣
≤ lim

n→∞

λn + 1

2λn
= 0.

and

lim
n→∞

1

λn

∣∣∣{k ∈ In; k ≤ n :∥xk − 0, w∥ ≥ ε
}
∈ I

∣∣∣
≤ lim

n→∞

λn + 1

2λn
= 0.

That is,

I− statλ − lim
k→∞

∥xk, w∥ = 1

and
I− statλ − lim

k→∞
∥xk, w∥ = 0.

Thus x = {xk} is λ-ideal statistically convergent to both 1
and 0.

IV. MAIN RESULT

This section shows the necessary and sufficient conditions
for a sequence to be λ-ideal statistically convergent and λ-
ideal statistically Cauchy over non-Archimedean 2-normed
spaces.

Theorem 4.1: Let {xk} be a sequence in 2-normed spaces
(X, ∥., .∥), if L and L′ ∈ X , for every w ∈ X ,

(i) I− statλ lim
k→∞

∥xk − L, w∥ = 0,

(ii) I− statλ lim
k→∞

∥xk − L′
, w∥ = 0.

Therefore L − L′
= 0.

Proof: Let L − L′
= 0 (i.e) L = L′

, there exist a non-
zero w ∈ X such that L = L′

and w is linearly independent.

So, w exists as dimension of X , where 2 ≤ d < ∞,
therefore for every ϵ > 0

lim
n→∞

1

λn
|{k ∈ In;n ∈ N : ∥xk−L, w∥ ≥ ε} ∈ I| = 0. (1)

lim
n→∞

1

λn
|{k ∈ In;n ∈ N : ∥xk − L

′
, w∥ ≥ ε} ∈ I| = 0.

(2)
Now,

lim
n→∞

1

λn
|{k ∈ In;n ∈ N : ∥L − L

′
, w∥ ≥ ε} ∈ I|

= lim
n→∞

1

λn
|{k ∈ In;n ∈ N :

∥L − xk + xk − L
′
, w∥ ≥ ε} ∈ I|

≤ max



lim
n→∞

1

λn
|{k ∈ In;n ∈ N :

∥xk − L, w∥ ≥ ε} ∈ I|,
lim
n→∞

1

λn
|{k ∈ In;n ∈ N :

∥xk − L′
, w∥ ≥ ε} ∈ I|


= 0. (Using (1) and (2))
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Thus, L − L′
= 0 (i.e) L = L′

.

Theorem 4.2: If I−statλ lim
k→∞

∥xk, w∥ = ∥x,w∥ and I−
statλ lim

k→∞
∥yk, w∥ = ∥y, w∥.

Then
(i) I− statλ lim

k→∞
∥xk + yk, w∥ = ∥x+ y, w∥,

(ii) I− statλ lim
k→∞

∥αxk, w∥ = ∥αx,w∥ for all α ∈ K.

Proof: (i) Let I − statλ lim
k→∞

∥xk, w∥ = ∥x,w∥ and
I−statλ lim

k→∞
∥yk, w∥ = ∥y, w∥ for every non-zero w ∈ X .

Then

A1(ϵ) = lim
n→∞

1

λn
|{k ∈ In;n ∈ N :

∥xk − x,w∥ ≥ ε} ∈ I| = 0,

A2(ϵ) = lim
n→∞

1

λn
|{k ∈ In;n ∈ N :

∥yk − y, w∥ ≥ ε} ∈ I| = 0,

for all w ∈ X . Let

A(ϵ) = lim
n→∞

1

λn
|{k ∈ In;n ∈ N :

∥(xk + yk)− (x+ y), w∥ ≥ ε} ∈ I|.

To show that,

A(ϵ) = lim
n→∞

1

λn
|{k ∈ In;n ∈ N :

∥(xk + yk)− (x+ y), w∥ ≥ ε} ∈ I| = 0,

it is sufficient to prove that A ⊂ A1 ∪ A2. Let A0 ∈ A.
Then

A0(ϵ) = lim
n→∞

1

λn
|{k ∈ In;n ∈ N :

∥(xk0
+ yk0

)− (x+ y), w∥ ≥ ε} ∈ I| = 0.
(3)

Assume that A0 ∈ A1 ∪A2. Then A0 ∈ A1 and A0 ∈ A2.

This implies,

lim
n→∞

1

λn
|{k ∈ In;n ∈ N :

∥(xk0 − x), w∥ ≥ ε} ∈ I| = 0.
(4)

lim
n→∞

1

λn
|{k ∈ In;n ∈ N :

∥(yk0
− y), w∥ ≥ ε} ∈ I| = 0.

(5)

We achieve,

lim
n→∞

1

λn
|{k ∈ In;n ∈ N :

∥(xk0 + yk0)− (x+ y), w∥ ≥ ε} ∈ I|

≤ max


lim
n→∞

1
λn

|{k ∈ In;n ∈ N :

∥(xk0 − x), w∥ ≥ ε} ∈ I|,
lim
n→∞

1
λn

|{k ∈ In;n ∈ N :

∥(yk0 − y), w∥ ≥ ε} ∈ I|


= 0. (Using (4) and (5))

Hence (3) is True. Therefore, A0 ∈ A1 ∪ A2 that is
A ⊂ A1 ∪A2.

(ii) I − statλ lim
n→∞

∥αxk, w∥ = ∥αx,w∥ for all α ∈ K,
and α ̸= 0.

Then

lim
n→∞

1

λn

∣∣∣{k ∈ In;n ∈ N :

∥(xk − x), w∥ ≥ ε

|α|

}
∈ I

∣∣∣. (6)

Now, we shall show that

I− statλ lim
k→∞

∥αxk, w∥ = ∥αx,w∥

for all α ∈ K.

This is to prove that,

I− statλ lim
k→∞

∥αxk − αx,w∥ = 0.

This implies,

lim
n→∞

1
λn

|{k ∈ In;n ∈ N : ∥αxk − αx,w∥ ≥ ε} ∈ I| = 0.

lim
n→∞

1
λn

|{k ∈ In;n ∈ N : ∥α(xk − x), w∥ ≥ ε} ∈ I|

= lim
n→∞

1

λn
|{k ∈ In;n ∈ N :

|α|∥(xk − x), w∥ ≥ ε} ∈ I|

= lim
n→∞

1

λn
|{k ∈ In;n ∈ N :

|α|∥(xk − x), w∥ ≥ ε} ∈ I|

= lim
n→∞

1

λn
|{k ∈ In;n ∈ N :

∥(xk − x), w∥ ≥ ε

|α|
} ∈ I|.

Now using (6)

I− statλ lim
k→∞

∥αxk − αx,w∥ = 0

for all α ∈ K.

We suppose X to give d, where 2 ≤ d < ∞.
Let, v = {v1, v2, · · · , vd} to be a basis for X .

We determine the norm ∥.∥∞ on X by ∥x∥∞ =
max{∥x, vi∥} for all i = 1, 2, · · · , d.

Theorem 4.3: A sequence {xk} ∈ X λ-I statistical con-
vergence to x ∈ X if and only if I − statλ lim

k→∞
∥xk −

x, vi∥ = 0 for every i = 1, 2, · · · , d.
Proof: Let {xk} ∈ X is λ-I statistically convergent to

x ∈ X .

By the definition of λ-I statistically convergent. We have,

I− statλ lim
k→∞

∥xk − x,w∥ = 0
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where w = {α1v1 + α2v2 + · · · + αdvd} for all
α1, α2, · · · , αd ∈ K.
Then

I− statλ lim
k→∞

∥xk − x, vi∥ = 0

for every i = 1, 2, · · · , d.

Assume that

I− statλ lim
k→∞

∥xk − x,w∥ = 0 (7)

for every i = 1, 2, · · · , d.
To show that

lim
n→∞

1

λn
|{k ∈ In;n ∈ N :

∥(xk − x), vi∥ ≥ ε} ∈ I| = 0.
(8)

Now, let us consider the 2-norm ∥(xk − x), w∥.

Also vi = {v1, v2, · · · , vd} is a basis of X ,

∥(xk − x), w∥ = ∥xk − x, α1v1 + α2v2 + · · ·+ αdvd∥.

Then we have,

∥(xk − x), w∥ ≤ max

 ∥(xk − x), α1v1∥,
∥(xk − x), α2v2∥, · · · ,
∥(xk − x), αdvd∥


≤ max{|αi|∥(xk − x), vi∥}.

By our assumption (8), we have

I− statλ lim
k→∞

∥xk − x,w∥ = 0.

Thus

lim
n→∞

1

λn
|{k ∈ In;n ∈ N :

∥(xk − x), vi∥ ≥ ε} ∈ I| = 0

I− statλ lim
k→∞

∥xk − x, vi∥ = 0

for every i = 1, 2, · · · , d.

Conversely, suppose that,

I− statλ lim
k→∞

∥xk − x, vi∥ = 0

for every i = 1, 2, · · · , d.

To show that

I− statλ lim
k→∞

∥xk − x,w∥ = 0

for all z ∈ X .

Consider,
∥(xk − x), w∥ = ∥xk − x, α1v1 + α2v2 + · · ·+ αdvd∥.

Then we have,

∥(xk − x), w∥ ≤ max

 ∥(xk − x), α1v1∥,
∥(xk − x), α2v2∥, · · · ,
∥(xk − x), αdvd∥


≤ max{|αi|∥(xk − x), vi∥}

which implies

lim
n→∞

1

λn
|{k ∈ In;n ∈ N : ∥(xk − x), w∥ ≥ ε} ∈ I|.

Therefore we have,

lim
n→∞

1

λn
|{k ∈ In;n ∈ N : ∥(xk − x), w∥ ≥ ε} ∈ I|

⊆ lim
n→∞

1

λn

∣∣∣{k ∈ In;n ∈ N :

{∥(xk − x), vi∥} ≥ ε

|α1|

}
∈ I

∣∣∣.
Hence the right-hand side be a member of ideal, thus the

left hand side.

Then
I− statλ lim

k→∞
∥xk − x,w∥ = 0

for all non-zero w ∈ X .

This completes the proof.

Theorem 4.4: Any λ-I statistically Cauchy sequence
{xk} in 2-normed spaces (X, ∥., .∥) is λ-I statistical con-
vergence iff any λ-I statistically Cauchy sequence is λ-I
statistical convergence with respect to ∥.∥∞.

Proof: Clearly λ-I statistical convergence in 2-norm is
equivalent to that in ∥.∥∞.

I − statλ lim
k→∞

∥xk − x,w∥ = 0, for all w ∈ X iff
I − statλ lim

k→∞
|xk − x|∞ = 0. It suffices to prove that

{xk} is λ-I statistically Cauchy sequence, with respect to
2-norm iff it is λ-I statistically Cauchy with respect to ∥.∥∞.

Let {xk} is λ-I statistical Cauchy sequence with respect
to 2-normed spaces. Then there exist n ∈ N. In such a way
that for all k,m ≥ N. Now we have,

lim
n→∞

1

λn

∣∣∣{k ∈ In;n ∈ N : ∥xk − xm, w∥ ≥ ε
}
∈ I

∣∣∣.
Consider, ∥xk − xm, w∥ ≥ ε.
Now, we have ∥xk − xm, vi∥ ≥ ε for all i = 1, 2, · · · , n.

Hence, max∥xk − xm, vi∥ ≥ ε for all i = 1, 2, · · · , n.

By definition, ∥xk − xm∥∞ ≥ ε.

Therefore, {xk} λ-I statistically Cauchy with respect to
∥.∥∞.

Theorem 4.5: Let X be an 2-normed spaces and for
{λn} ∈ ∆. If as inf λn

n > 0 as n ≥ ∞.
Then, stat(X) ⊂ statλ(X).

Proof: Assume that X is statistically convergent, then

lim
n→∞

1

n

∣∣∣{k ≤ n;n ∈ N : ∥xk − xm, w∥ ≥ ε
}
∈ I

∣∣∣ = 0.

Since, inf λn

n > 0 as n ≥ ∞
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lim
n→∞

1

n
|{k ≤ n;n ∈ N : ∥xk − xm, w∥ ≥ ε} ∈ I|

≥ 1

n
|{k ∈ In;n ∈ N :

∥xk − xm, w∥ ≥ ε} ∈ I|

≥ λn

n

1

λn
|{k ∈ In;n ∈ N :

∥xk − xm, w∥ ≥ ε} ∈ I|.
Consequently, {xk} → L stat(X) implies

{xk} → L statλ(X).

Thus, stat(X) ⊂ statλ(X).

Theorem 4.6: Let X be an 2-normed spaces and if
{λn} ∈ ∆ such that lim

n→∞
λn

n = 1. Then, stat(X) =

statλ(X).
Proof: Since, lim

n→∞
λn

n = 1, then for ε > 0,

1

n
|{k ≤ n;n ∈ N : ∥xk − xm, w∥ ≥ ε} ∈ I|

≤ max{ 1
n
|{k ≤ n− λn;n ∈ N :

∥xk − xm, w∥ ≥ ε} ∈ I|}.

1

n
|{k ∈ In;n ∈ N : ∥xk − xm, w∥ ≥ ε} ∈ I|

≤ max{n− λn

n

1

n
|{k ≤ n− λn;n ∈ N :

∥xk − xm, w∥ ≥ ε} ∈ I|}

≤ max{n− λn

n

λn

n

1

n
|{k ≤ n− λn;n ∈ N :

∥xk − xm, w∥ ≥ ε} ∈ I|}.
This is clear that if {xk} is λ-statistically

convergent, then {xk} is statistically convergent. That
is stat(X) ⊃ statλ(X).

Also, since lim
n→∞

λn

n = 1 implies that lim
n→∞

λn

n > 0, by
previous theorem we have stat(X) ⊂ statλ(X).

Thus, stat(X) = statλ(X).

In this section we have provided essential condition
for a sequence to be λ-ideal statistical pre-Cauchy over
non-Archimedean 2-normed spaces.

Definition 4.7: A sequence x = {xk} is λ-I statistical
pre-Cauchy sequence in 2-normed spaces, if for every ε > 0
and for w ∈ X ,

lim
n→∞

1

λn2

∣∣∣{k ∈ In;n ∈ N : ∥xk+1−xk, w∥ ≥ ε
}
∈ I

∣∣∣ = 0.

Theorem 4.8: An λ-I statistical convergence in 2-normed
spaces is λ-I statistical pre-cauchy.

Proof: Let {xk} be λ−I statistically convergent to ‘L’.
Let ε > 0 be given. Therfore

A = lim
n→∞

1

λn

∣∣∣{k ∈ In;n ∈ N :

∥xk − L, w∥ ≥ ε
}
∈ I

∣∣∣.

Then for n ∈ Ac where c stands for the complement.

lim
n→∞

1

λn

∣∣∣{k ∈ In;n ∈ N : ∥xk − L, w∥ ≥ ε
}
∈ I

∣∣∣.
lim
n→∞

1

λn

∣∣∣{k ∈ In;n ∈ N : ∥xk − L, w∥ < ε
}
∈ I

∣∣∣.
Writing

Bn = lim
n→∞

1

λn
|{k ∈ In;n ∈ N : ∥xk − L, w∥ < ε} ∈ I|

we observe that for k + 1, k ∈ Bn

∥xk+1−xk, w∥ ≤ max
{
∥xk+1−L, w∥, ∥xk−L, w∥

}
< ε.

Hence

Bn ×Bn ⊂ { lim
n→∞

1

λn
|{k ∈In;n ∈ N :

∥xk+1 − xk, w∥ < ε} ∈ I|}
which implies[ |Bn|

λn

]2
≤ lim

n→∞

1

λn2

{k ∈In;n ∈ N :

∥xk+1 − xk, w∥ < ε} ∈ I|}.
Hence for all n ∈ Ac,

lim
n→∞

1

λn2

{k ∈ In;n ∈ N :

∥xk+1 − xk, w∥ < ε} ∈ I|} ≥
[ |Bn|
λn

]2
∈ Ac.

Therefore for all n ∈ A,

lim
n→∞

1

λn2

{k ∈ In;n ∈ N :

∥xk+1 − xk, w∥ ≥ ε} ∈ I|} ∈ A.

V. CONCLUSION

In this article, we have extended the study of λ-ideal
statistical convergence in 2-normed spaces and λ-ideal sta-
tistically Cauchy sequences in 2-normed spaces over non-
Archimedean field and proved some inclusion relations re-
lated to it. Also, it has been given that λ-ideal statis-
tical convergence in 2-normed spaces is λ-ideal statisti-
cally pre-Cauchy sequences in 2-normed spaces over non-
Archimedean field.
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