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Research on Traffic Flow Prediction based on
Chaotic Time Series

Xiaobo Yang and Lianggui Liu

Abstract—In order to dramatically improve the precision of
traffic flow estimates, this study proposes a prediction
technique based on chaotic time series. Here is a breakdown of
the exact research process. First, the chaos principle of traffic
flow and two indexes—delay time and dimension
selection—that affect system reconstruction are looked at. Then,
in order to obtain the maximum amount of time that can be
forecasted, the chaotic traffic flow is predicted using an
improved local approach and the Lyapunov index. Finally, a
comparison is made between the traffic flow predictions made
using the traditional local technique and the modified local
method. According to the outcomes of the predictions, chaotic
time series can be utilized to forecast traffic flow, and the
prediction error is lower than that of both the widely used
neural network prediction method and the least squares
support vector machine prediction method, proving the
effectiveness of the method proposed in this study.

Index Terms—Chaos principle, Traffic flow prediction, Time
series, Improved local area method

I. INTRODUCTION

HE traffic system is flexible, erratic, and dynamic. The

routine operation of the traffic system is disrupted
simultaneously by a number of unpredictable variables,
leading to chaos. Stochastic techniques were once utilized in
traffic flow forecasting. Relevant scholars suggested that the
traffic system is a complicated system that is mostly made up
of chaotic variables with nonlinear dynamic changes as the
field's research progressed [1]. Chaos theory can be used to
examine the nonlinear system's time series change law [2].
By directly predicting the traffic flow change law from the
traffic flow sequence, this theory can help to eliminate the
interference of human variables and boost forecast accuracy.
Greenberg's model was used by Zhang Zhiyong et al. [3] to
examine chaotic traffic flow, and system simulation was
employed to identify the chaotic features of the flow. Attoor
et al. [4] used nonlinear time series to examine traffic flow
data and came to the conclusion that the data was chaotic. By
fusing chaos and fractal theory, Tang Ming and colleagues [5]
examined short-term traffic flow and made local predictions
about it. By reconstructing the phase space of the data, XUE
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et al. [6] use chaos theory to enhance the polynomial and
create a prediction model to estimate the traffic flow over a
short period of time. Forecasts can only be made in a single
step using the prediction model. These chaos theory-based
prediction algorithms have some drawbacks, including
restrictive assumptions, subpar real-time prediction, a slow
algorithm convergence speed, etc. However, they can assist
with some forecasting issues with traffic flow. In this paper, a
method for forecasting traffic flow based on chaotic time
series is suggested to overcome the inadequacies in existing
methods, enhance prediction accuracy, and lower processing
costs.

II. CHAOS THEORY AND TRAFFIC FLOW DELAY
RECONSTRUCTION

In addition to the environment and objective conditions, a
number of human factors affect how traffic travels through
cities. The root reason of the traffic flow issue is these
ambiguous variables. Travelers use a variety of forms of
transportation, and changes in traffic flow adhere to
established regulations. In other words, the rule will be
followed early on in the traffic flow, but there will be
significant chaos later. As a result, the internal operations of
the traffic system are the main cause causing the chaos in the
flow of traffic.

The theory underlying the forecasting of chaotic time
series was established by Safonov et al.'s [7] concept that the
chaotic state will progressively transform into a regular state
by delayed reconstruction of variables. This theory attempted
to create a regular moving track out of the chaotic
phenomenon of the traffic system. It is feasible to rebuild the
initial characteristics of the traffic system in a chaotic
condition thanks to the relevant state point indicators, which
have a direct impact on the system characteristics. Delay
duration and dimension selection are the two factors that this
study focuses on most since they affect system
reconstruction.

The choice of the delay time affects the reconstruction of a
chaotic system significantly since it affects both the
complexity and volume of information. In order to select the
ideal delay time, this paper improves the conventional
auto-correlation approach [8].

When the auto-correlation curve reaches its initial value of
(e-1)/e, the optimum delay time can be calculated for the
known time series {*: i = 1,2,--,m} The corresponding
auto-correlation function is as follows.

R(t) = %Z?zl XiXivt (1)

In Formula (1), x; denotes the value of the series at the ith
instant, and R(t) is the auto-correlation function.

High-dimensional values cannot be recovered; in general,
this function can only deduce a linear connection between
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sequences. To solve this problem, the initial auto-correlation
function can be improved, and the improved auto-correlation
function is as follows.

n m—1
C(t) = %Z Z G, = B)(x; — ) = R(E) — (m — 1D(®)?
i=1 j=1
2

C(t) stands for the auto-correlation function of occurrence
delay time, and the improved auto-correlation function in
Formula (2) may extract high-dimensional values of time
series. X is the time series' average value.

In a perfect world, the dimension selection just requires the
minimal value that is greater than the correlation dimension.
When selecting a dimension, it is important to adhere to the
minimum dimension concept of system dynamics behavior
because of the noise and data sequence length limits in the
actual traffic environment. The vector field approach [13],
Cao's method [11], Singular value decomposition method
[12], Cao's method [11], Pseudo-nearest neighbor method [9],
and correlation index method [10] are a few methods for
determining the ideal dimension. This work extends Cao's
technique, which has low sample size requirements and is
more appropriate for nonlinear systems, to obtain the optimal
dimension of traffic flow. Figure 1 shows how the algorithm
works.
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Fig. 1. Flow chart of the optimal dimensional algorithm

Figure 1 demonstrates how to compute the Euclidean
distance of traffic samples, the average value of all Euclidean

distances, the dimension change and delay time, and finally
the ideal dimension value to rebuild phase space.

During the traffic flow measurement procedure, the time
series data will be mixed with some noise due to the
limitations of the external environment, measuring
methodologies, and other considerations. If these noisy data
can't be removed right away, it will have an impact on the
measurement results itself. Therefore, it is essential to
distinguish between accessible signals and noisy signals.
There are already a number of qualitative and quantitative
methods for recognizing chaos, including the Poincare
section approach [14] and the auto-correlation function
method [8]. The Lyapunov index [16] and alternative data
technique [15] are techniques for quantitatively diagnosing
chaos. Since the quantitative approach can more accurately
describe the change process of traffic flow, this work will
improve the Lyapunov index method to quantitatively detect
chaotic traffic flow. Figure 2 shows the flow of the algorithm.

L
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calcuate initial distance dj
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The maximum Lyapunov
exponent is obtained by
least square method

Fig. 2. Flow chart of quantitative identification of chaotic traffic

As seen in Figure 2, initialization of the time series data
comes first, then calculations of the delay time and
best-embedded dimension, reconstruction of the phase space
to ascertain the change distance between adjacent nodes, and
the least square method to ascertain the maximum Lyapunov
exponent for quantitative chaos identification.
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III. CHAOTIC TIME SERIES PREDICTION ALGORITHM

The use of chaos theory to predict traffic flow is a
nonlinear analysis technique. It first examines the function
relation of the traffic flow time series through the trajectory
of state points, then forecasts the future trend of state points
to forecast the expected value of traffic flow at the trajectory
points.

To decrease the effects of noise interference, the local
approach is frequently employed to forecast chaotic traffic
flow [17]. The classic local method has the advantage of
being simple to use, but it also has limitations like high
standards for data quality, inadequate noise reduction, and
imprecise prediction. In this study, the conventional local
method for predicting short-term traffic flow is enhanced to
solve its shortcomings.

Assume that the center point's neighbor is Yui(i=1,2,...,n)
and that 4; represents ¥m's Euclidean distance. The weight
of the neighboring point Ymi, presuming that dmin is the
smallest value, is as follows.

- exp(di—dpin)
oY exp(di—dp) 3)
Then the linear fitting of the local method is as follows.
Ym(i+1) =ae+ meiJ I = 1,2, e, n (4)

Where a and b are the fitting coefficients, e is the
dimension vector, and Yy+1) is the predicted value as a result
of Y, development.

The selection of appropriate nearby places directly affects
the forecast's accuracy when a local approach is used to
predict traffic flow. The Euclidean distance between the state
point and the prediction center point is frequently first

calculated after the threshold value has been set at a low value.

When the estimated Euclidean distance is below the
threshold value, the state point is considered to be close by.
This strategy is improved in this work since adding fake
neighbors, which lowers prediction accuracy, is
straightforward. This means that while determining a point's
weight Y., both the correlation with the projected center
point and the Euclidean distance between a point and that
center point should be taken into account. The correlation

coefficient can be calculated using this formula.
_ Cov (Y, Yini)

St = D) (5)

Where Cov(Ym,Ymi) represents the covariance coefficient
between the adjacent point and the predicted center point, and
and represent the respective variances between the adjacent
point and the predicted center point. is the correlation
coefficient between the adjacent point and the predicted
center point, and the weight Ymi of the adjacent point may be
adjusted as necessary.

W =axb xSy, 6)

The estimated weight ; of the nearby point Y, is then
linearly fitted using the local approach of formula (4) to
produce the predicted value.

Chaos theory typically relies a lot on the starting point. The
trajectory index will diverge rapidly with small changes in
the initial condition of the traffic flow, which will reduce
prediction precision. As a result, it is impossible to separate
the trajectory evolution inside the traffic flow system from
the precision of the traffic flow prediction.

When analyzing the trajectory index's divergence
statistically, the Lyapunov exponent can be utilized to
express the trajectory's divergence or aggregation ratio. If the

value is more than zero, the local trajectory is unstable and
the nearby state points are gradually separating. If the value is
less than zero, the neighboring state points are still
accumulating. Because the maximum exponent A max of the
Lyapunov equation can quantitatively represent the
divergence degree of the adjacent trajectory and the
divergence degree is related to the maximum predictable time,
the maximum exponent max of the traffic flow can be used to
calculate the maximum predictable time.

The Lyapunov maximum index can be wused to
quantitatively characterize the divergence between close state
points. Since chaos obeys deterministic law, traffic flow may
be predicted within a critical time, and the critical time #nax,
denoted by the symbol, is the longest period that can be
predicted. The link between #max and the greatest Lyapunov
exponent A nax, is expressed as follows.

1
Amax D

Equation (7) shows that the maximum predictable time #max
and the maximum exponent M o have an inverse
relationship. As max increases, the maximum anticipated
time fmax falls, which lowers prediction accuracy.

tmax =

IV. COMPARATIVE EXPERIMENTS

To assess the method proposed in this research, traffic flow
data on the north-south bridge of Hangzhou is collected by
the detecting coil once every 10 minutes. To forecast the
traffic flow for October 2021, the daily traffic flow data from
September 2021 are used as the known data.

Using the known time series traffic flow, the optimal
system reconstruction dimension and delay time were
calculated. The results of utilizing the auto-correlation
technique to calculate the delay time are shown in Figure 3.

4.5 T T T T

Self-relevant quantity

Delay time(s)
Fig. 3. Use autocorrelation to calculate the delay time

Figure 3 shows that it takes 6s following the
self-correlation function curve's first minimum point to
reconstruct the traffic flow system in a chaotic situation.

Figure 4 shows the outcomes of applying Cao's method to
identify the ideal traffic flow dimension.
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Fig. 4. Using the Cao method to calculate the optimal dimension
of traffic flow

Figure 4 shows how, as size grows, the El curve
progressively approaches saturation. As E1 changes the least
when dimension m is 9, it may be concluded that 9 is the best
dimension for traffic flow. The E2 curve is used to
distinguish between chaotic and random signals. The
simulation results show that the E2 curve is chaotic because it
fluctuates around 1 as opposed to being a fixed constant.

The ideal dimension and delay time can be used to
calculate the maximum Lyapunov index of traffic flow, as

shown in Figure 5.
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Fig. 5. Lyapunov exponential curve of maximum traffic flow

Figure 5 shows this relationship: where K is the total
number of time evolution steps, and Y is the average
logarithmic distance between all state points. Figure 5 depicts
the approximate shape of the Lyapunov exponential curve as
a straight line for k values in the range [0,55], the intersection
of the straight line and curve line as the ideal value of k, and
the least squares method computation of the slope of the
straight line. Because the slope is 0.0078, the maximum
Lyapunov exponential A nax of the traffic flow may be
determined. The forecast error will rise until it exceeds the
maximum predicted time of two hours. After evolution,
formula (4) can be used to calculate the expected value

Ym(i+1) of the state point, and after multiple iterations, the
traffic flow prediction outcomes for each subsequent period

can be found. The results of the new local method and the
previous local approach, both employed to anticipate traffic
flow, are compared in Figure 6.
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Fig. 6. Comparison of traffic flow prediction errors
between traditional local method and improved local method

According to the results of the predictions in Figure 6, the
old method's average absolute error for estimating traffic
flow is 1.59%; there are five state points with absolute
percentage errors that are greater than 9% and twelve with
absolute percentage errors that are less than 5%. The
enhanced local technique results in an average absolute error
of 0.63 percent when predicting traffic flow; there are no
absolute percentage errors larger than 9% and 18 absolute
percentage mistakes under 5%. It proves that the improved
local technique put forth in this paper has higher prediction
accuracy.

To further support the value of the improved local
approach, the optimal dimension threshold can be selected,
with the threshold range being [10,15]. Both the simple
Euclidean distance approach and the improved Euclidean
distance method are used to anticipate the traffic flow. The
MAPE (Mean Absolute Percentage Error) results are shown
in Figure 7.
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Fig. 7. Comparison of traffic flow prediction errors of different
dimension values
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Prediction error(%)

Figure 7 demonstrates the effectiveness of the improved
local method by showing that whereas the average absolute
percentage error of the simple Euclidean distance technique
is 5.35%, that of the improved Euclidean distance method is
4.21% and the overall error is decreased by 1.14%.

The results are shown in Figure 8 after three different
methodologies are used to estimate and compare the traffic
flow.
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Fig. 8. Comparison of three different methods for
traffic flow prediction

Figure 8 demonstrates how the fact that the method
proposed in this paper has a smaller prediction error than both
the commonly used neural network prediction method and
the least squares support vector machine prediction method
further supports its utility.

V. CONCLUSION

In this work, which suggests a prediction method based on
chaotic time series to forecast traffic flow, the following
results are attained by developing a chaotic model to foresee
traffic circumstances.

1) To restore the original characteristics of the traffic
system in a chaotic state, delay time and dimension
selection — two essential indices — are explored. The
increased Lyapunov exponent approach is a quantitative
technique for detecting chaotic traffic flow.

2) To evaluate the effectiveness of the chaotic time series
prediction system reported in this research, monthly
traffic flow data were collected by detecting coil. To
predict the traffic flow, the modified local approach and
the traditional local technique were both used, and
comparisons were done. The prediction results show that
the average absolute error and absolute percentage error
of the improved local technique are lower than those of
the conventional local method, proving the value of the
proposed methodology.
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