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Abstract—The objective of this paper is to investigate the
concept of λ-statistical convergence, λ-statistically Cauchy se-
quences, and ideal statistically pre-Cauchy sequences in non-
Archimedean paranormed spaces. Here, λ = (λn) is a non-
decreasing sequence that tends to ∞, with the properties
λn+1 ≤ λn + 1 and λ1 = 1. The study includes proving sig-
nificant properties of λ-statistical convergence in paranormed
spaces and establishing criteria for λ-statistical convergence
and λ-statistically Cauchy sequences. The implications of these
concepts are discussed in the framework of non-Archimedean
fields. Paranormed spaces are considered to have more general
properties than normed spaces. The paper also introduces the
concept of ideal statistically pre-Cauchy sequences and proves
that ideal statistical convergence implies ideal statistical pre-
Cauchy behavior in paranormed spaces over non-Archimedean
fields. “The field K is assumed to be complete, non-trivially
valued, and non-Archimedean field throughout the article.”

Index Terms—Non-Archimedean fields, λ - statistically con-
vergent, ideal statistically pre-Cauchy sequence, paranormed
spaces.

I. INTRODUCTION

STATISTICAL convergence was first proposed by
Steinhaus[8] in 1951, and further developed by Fridy[10]

who established the concepts of statistical limit point and sta-
tistical cluster point of a number sequence. Since then,several
authors[2], [4], [16] have made generalizations of this notion,
among others. Statistical convergence has found applications
in various areas of mathematics, including trigonometric
series, number theory, and summability theory.

Maddox[9] studied statistical convergence in locally con-
vex Hausdorff topological spaces, while Kolk extended the
concept to Banach spaces. Cakalli[6] expanded statistical
convergence to topological Hausdorff groups, and more
recently, statistical convergence has been investigated in para-
normed spaces. Mursaleen et al.[13], [14], [15] generalized
the idea of statistical convergence for sequences.

The concept of statistical convergence was also indepen-
dently introduced by Fast[7], Buck, and Schoenberg for
real and complex sequences, and further investigated by
Salat[17], Connor[11], Fridy[10], and many others. Alotaibi
et al.[1] developed the concept of statistical convergence in
a paranormed space. The study of statistical convergence
in paranormed spaces involves investigating the behavior of
sequences or series of elements in paranormed spaces with
respect to statistical convergence. The notion of statistical
convergence has also been extended to non-Archimedean
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fields by Srinivasan, Suja[12] and more recently, to non-
Archimedean Kothe sequence spaces by Eunice Jemima
and Srinivasan. Non-Archimedean Analysis is the study of
analysis over non-Archimedean fields.

Connor et al.[11] introduced the concept of statistically
pre-Cauchy sequences as a generalization of Cauchy se-
quences. Connor showed that statistically convergent se-
quences are always statistically pre-Cauchy, and under cer-
tain conditions, statistical pre-Cauchy condition implies sta-
tistical convergence. However, Connor, Fridy, and Klin gave
an example showing that statistically pre-Cauchy sequences
are not necessarily statistically convergent. Das et.al[3] de-
veloped statistically pre Cauchy sequences into ideal statis-
tically pre-Cauchy sequences.

An ideal statistically pre-Cauchy sequence refers to a
statistically pre-Cauchy sequence that satisfies certain ideal
conditions. The study of ideal statistically pre-Cauchy se-
quences has applications in various fields, providing insights
and tools for analyzing and modeling complex systems. The
notion of ideal convergence is a generalization of statistical
convergence, initially examined by Kostyrko, Salat, and
Wilezynski. Recently, Savas et al. studied the ideal statistical
convergence of sequences and obtained some results related
to this concept.

In this paper, we will review various notations and defini-
tions that will be utilized throughout the paper to study the
concepts of statistical convergence, statistically pre-Cauchy
sequences, ideal statistically pre-Cauchy sequences, and ideal
convergence.

“[5]Throughout this article, K denotes a non-Archimedean
field that is complete, non-trivially valued, and meets the
axioms listed below:

(i) |x| ≥ 0 and |x| = 0 iff x = 0.
(ii) |xy| = |x||y|.

(iii) |x+ y| ≤ max{|x|, |y|} for all x, y ∈ K.”

II. PRELIMINARIES

Definition 2.1: “If X is a non-trivial linear space over K, then
by a paranorm on X , we are referring to a map g : X → R
satisfying the following conditions:

(i) g(0) = 0.
(ii) g(x) = g(−x) on x, for all x ∈ X

(iii) g(x+ y) ≤ max{g(x), g(y)}, for all x, y ∈ X
(iv) for λ, λ0 ∈ K,x, x0 ∈ X and λ → λ0 , g(x−x0) → 0

imply g(λx− λ0x0) → 0.
The space X with a paranorm g is called a paranormed
space.”

Definition 2.2: A sequence x = {xj} is stated to be
statistically convergent to ℓ in (X, g) if for each ϵ > 0,

lim
n→∞

1

n
|{j ∈ n : g(xj − ℓ) ≥ ϵ}| = 0.
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This is denoted by stat(g)− limx = ℓ.

Example 2.3: “Let x = ℓ
(

1
j

)
= {x = {xj} :

∑
j |xj |1/j <

∞} with the paranorm,” g (x) =
∑

j |xj |1/j .

Define a sequence x = (xj) by

{xj} =

{
j, if j = n2, n ∈ N;
0, otherwise.

we see that, g (xj) =

{
(j)

1/j , if j = n2, n ∈ N;
0, otherwise.

and hence, lim
j

g (xj) =

{
1, if j = n2, n ∈ N;
0, otherwise.

Thus, stat(g)− lim x = 0.

Definition 2.4: A sequence {xj} is known as statistically
Cauchy sequence, if there exists an n ∈ N such that
lim
n

1
n |{j ≤ n : g(xj+1 − xj) ≥ ϵ}| = 0. for every ϵ > 0.

Definition 2.5: “Let λ = (λn) be a non-decreasing sequence
of positive numbers that approaches ∞, satisfying λn+1 ≤
λn + 1, λ1 = 0. Let In = [n − λn + 1, n]. A sequence
x = {xj} is considered to be λ-statistically convergent to ℓ
if for each” ϵ > 0,

lim
n→∞

1

λn
|{j ∈ In : |xj − ℓ| ≥ ϵ}| = 0.

Example 2.6:
Define the sequence x = {xj} by

{xj} =

{
j, n− [

√
λn] + 1 ≤ j ≤ n,

0, otherwise

Then

lim
n→∞

1

λn
|{k ∈ In : |xj − 0| ≥ ϵ}| = lim

n→∞

[
√
λn]

λn
= 0.

Example 2.7: “Define the sequence x = {xj} by

{xj} =

{
1, n−

√
λn + 1 ≤ j ≤ n,

0, otherwise
.

Then”

lim
n→∞

1

λn
|{k ∈ In : |xj − 1| ≥ ϵ}| = lim

n→∞

√
λn

λn
= 0.

III. λ - STATISTICALLY CONVERGENT

In this section, we prove few basic theorems which com-
prise the mains results of this paper. These theorems parallel
the corresponding theorems in real analysis.

Definition 3.1: Let where In = [n− λn + 1, n]. A sequence
x = {xj} is known to be λ-statistically convergent to ℓ in
(X, g) if for each ϵ > 0,

lim
n→∞

1

λn
|{j ∈ In : g(xj − ℓ) ≥ ϵ}| = 0.

This is denoted by statλ(g)− limx = ℓ.

Example 3.2: “Let x = ℓ
(

1
j

)
= {x = (xj) :

∑
j |xj |1/j <

∞} with the paranorm, g (x) =
∑

j |xj |1/j .

Define a sequence x = (xj) by”

xj =

{
j, if n− [λn] + 1 ≤ j ≤ n, n ∈ N
0, otherwise.

we see that,

g (xj) =

{
(j)

1/j , if n− [λn] + 1 ≤ j ≤ n, n ∈ N
0, otherwise.

and hence,

lim
j

g (xj) =

{
1, if n− [λn] + 1 ≤ j ≤ n, n ∈ N
0, otherwise.

Thus, statλ(g)− lim x = 0.

Definition 3.3: “A sequence x = {xj} is said to be λ-
statistically Cauchy sequence in (X, g) if for every ϵ > 0,
there exist a number In such that”

lim
n→∞

1

λn
|{m ∈ In : g(xj+1 − xj) ≥ ϵ}| = 0.

Theorem 3.4: “If a sequence x = {xj} is λ-statistically
convergent in (X, g) then statλ(g)-limit is unique.”

Proof: Let

A1(ϵ) = lim
n→∞

1

λn
|{j ∈ In : g(xj − ℓ1) ≥ ϵ}| = 0, (1)

and

A2(ϵ) = lim
n→∞

1

λn
|{j ∈ In : g(xj − ℓ2) ≥ ϵ}| = 0. (2)

Then by a conjunction of (1) and (2), we have

lim
n→∞

1

λn
|{j ∈ In : g(ℓ1 − ℓ2) ≥ ϵ}|

= lim
n→∞

1

λn
|{j ∈ In : g(ℓ1 − xj + xj − ℓ2) ≥ ϵ}|

= max

{
lim
n→∞

1

λn
|{j ∈ In : g(xj − ℓ1) ≥ ϵ}|,

lim
n→∞

1

λn
|{j ∈ In : g(xj − ℓ2) ≥ ϵ}|

}
= 0.

Hence ℓ1 = ℓ2.

Theorem 3.5: If statλ(g) − limxj = ℓ1 and statλ(g) −
lim yj = ℓ2, then for any α ∈ k,

statλ(g)−lim(xj±yj) = ℓ1±ℓ2, statλ(g)−limαxj = αℓ1.

Proof: Let

A1(ϵ) = lim
n→∞

1

λn
|{j ∈ In : g(xj − ℓ1) ≥ ϵ}| = 0 (3)

and

A2(ϵ) = lim
n→∞

1

λn
|{j ∈ In : g(yj − ℓ2) ≥ ϵ}| = 0. (4)
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Then from (3) and (4), we deduce

lim
n→∞

1

λn
|{j ∈ In : g((xj + yj)− (ℓ1 + ℓ2)) ≥ ϵ}|

= lim
n→∞

1

λn
|{j ∈ In : g(xj − ℓ1 − yj − ℓ2) ≥ ϵ}|

≤ max

{
lim
n→∞

1

λn
|{j ∈ In : g(xj − ℓ1) ≥ ϵ}| ,

lim
n→∞

1

λn
|{j ∈ In : g(yj − ℓ2) ≥ ϵ}|

}
= 0.

Similarly, we have

lim
n→∞

1

λn
|{j ∈ In : g((xj − yj)− (ℓ1 − ℓ2)) ≥ ϵ}| = 0.

Hence, we have Statλ(g)- lim(xj ± yj) = ℓ1 ± ℓ2.
We then show that

Statλ(g)- limαxj = αℓ1.

From (3) and (4), we deduce that

lim
n→∞

1

λn
|{j ∈ In : g((αxj − αℓ1)) ≥ ϵ}|

= lim
n→∞

1

λn
|{j ∈ In : g(α(xj − ℓ1) ≥ ϵ}|

lim
n→∞

1

λn
|α{j ∈ In : g(xj − ℓ1) ≥ ϵ}|

= |α| · 0 = 0.

Therefore,
statλ(g)− limα · xj = αℓ1.

Theorem 3.6: Let (X, g) be a complete paranormed space. If
a sequence x = {xj} in (X, g) is λ-Statistically convergent
then it is λ-statistically Cauchy sequence.

Proof: Assume that a sequence x = {xj} in (X, g) is
λ-statistically convergent. That is, statλ(g) − limxj = l1.
Let

lim
n→∞

1

λn
|{j ∈ In : g(xj − ℓ1) ≥ ϵ}| = 0

and

lim
n

1

λn
|{j + 1 ∈ In : g(xj+1 − ℓ1) ≥ ϵ}| = 0.

By these two equalities,

lim
n→∞

1

λn
|{j + 1, j ∈ In : g(xj+1 − xj) ≥ ϵ}|

= lim
n→∞

1

λn
|{j + 1, j ∈ In : g(xj+1 − ℓ1 − xj + ℓ1) ≥ ϵ}|

= lim
n→∞

1

λn
|{j + 1, j ∈ In : g((xj+1 − ℓ1) + (ℓ1 − xj) ≥ ϵ}|

≤ max

{
lim
n→∞

1

λn
|{j + 1 ∈ In : g(xj+1 − ℓ1) ≥ ϵ}| ,

lim
n→∞

1

λn
|{j ∈ In : g(xj − ℓ1) ≥ ϵ}|

}
= 0.

Hence the sequence x = {xj} is λ-statistically a Cauchy
sequence.

Theorem 3.7: “If g − limx = l and statλ(g) − lim yj = 0
then Statλ(g)− lim(x+ y) = g − limx.”

Proof: Suppose that g − limx = ℓ.
Then g(xj − ℓ) = 0 as j → ∞. Also, statλ(g)− lim yj = 0.
That is,

lim
n→∞

1

n
|{j ∈ In : g(yj − 0) ≥ ϵ}| = 0.

Let statλ(g)− lim(x+ y) = ℓ′.

By definition,
statλ(g) = lim(x+ y)

= lim
n→∞

1
λn

|{j ∈ In : g((xj+yj)−ℓ′) ≥ ϵ}| = 0

Hence

lim
j→∞

g(xj − ℓ′) + lim
n→∞

1

λn
|{j ∈ In : g((yj − 0) ≥ ϵ}| = 0.

Hence we have

max

{
lim
j→∞

g(xj − ℓ′), lim
n→∞

1

λn
|{j ∈ In : g(yj − 0) ≥ ϵ}|

}
= 0.

Therefore,

max

{
lim
j→∞

g(xj − ℓ′), 0

}
= 0.

Hence g − limx = ℓ′.
But, g − limx = ℓ. Therefore, ℓ = ℓ′. In another word,

Statλ(g)− lim(x+ y) = g − limx.

Theorem 3.8: A sequence x = {xj} is λ statistically
convergent if and only if

lim
n→∞

1

n
|{j ≤ n, j′ ≤ n : | xj − xj′(r)| ≥ ϵ}| = 0,

where (xj′(r)) is a subsequence of {xj} such that
lim
j→∞

xj′(r) = ℓ.

Proof: Let the sequence {xj} be λ-statistically conver-
gent. We show that the condition

lim
n→∞

1

λn
|{j, j′ ∈ In : g(xj − xj′(r) ≥ ϵ}| = 0

is satisfied. By the definition of λ-statistical convergence, we
have

lim
n

1

λn
|{j ∈ In : g(xj − ℓ) ≥ ϵ}| = 0.

Then

lim
n→∞

1

λn
|{j, j′ ∈ In : g(xj − xj′(r) + ℓ− ℓ) ≥ ϵ}|

= lim
n→∞

1

λn
|{j, j′ ∈ In : g(xj − ℓ) + g(ℓ− xj′(r)) ≥ ϵ}|

= max

{
lim
n→∞

1

λn
|{j ∈ In : g(xj − ℓ) ≥ ϵ}| ,

lim
n→∞

1

λn
|{j′ ∈ In : g(xj′(r) − ℓ) ≥ ϵ}|

}
= max

{
0, lim

n→∞

1

λn
|{j′ ∈ In : g(xj′(r) − ℓ) ≥ ϵ}|

}
By the assumption, lim

j→∞
xj′(r) = ℓ. Hence the sequence is

statistically convergent. Hence

lim
n→∞

1

λn
|{j′ ∈ In : g(xj′(r) − ℓ)}| = 0.
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This implies that

lim
n→∞

1

λn
|{j, j′ ∈ In : g(xj − xj′(r)) ≥ ϵ}| = 0.

Conversly, suppose that

lim
n→∞

1

λn
|{j, j′ ∈ In : g(xj − xj′(r)) ≥ ϵ}| = 0.

We show that the sequence {xj} is statistically convergent.
We have

lim
n→∞

1

λn
|{j ∈ In : g(xj − ℓ) ≥ ϵ}|

= lim
n→∞

1

λn
|{j, j′ ∈ In : g(xj − xj′(r) + xj′(r) − ℓ) ≥ ϵ}|

≤ max

{
lim
n→∞

1

λn
|{j, j′ ∈ In : g(xj − xj′(r)) ≥ ϵ}| ,

lim
n→∞

1

λn
|{j′ ∈ In : g(xj′(r) − ℓ) ≥ ϵ}|

}
≤ max

{
0, lim

n→∞

1

λn
|{j′ ∈ In : g(xj′(r) − ℓ) ≥ ϵ}|

}
= 0.

We have shown that the sequence (xj) is λ-statistically
convergent.

Theorem 3.9: Let X be a paranormed space and let
λ = (λn) ∈ δ. Then stat(x) ⊂ statλ(x) if and only if
lim inf λn

n > 0

Proof: Suppose that x is statistically convergent, then
lim
n→∞

1
n |j ∈ n : g(xj − ℓ) ≥ ϵ| = 0.

Since inf λn

n > 0 as n → ∞,

1

n
|{j ≤ n : g(xj − ℓ) ≥ ϵ}| ≥ 1

n
|{j ∈ In : g(xj − ℓ) ≥ ϵ}|

≥ λn

n

1

λn
|{j ∈ In : g(xj − ℓ) ≥ ϵ}|

It follows that,
xj → ℓ(stat(x)) =⇒ xj → ℓ(statλ(x))
Thus, stat(x) ⊂ statλ(x))

Theorem 3.10: Let x be a paranormed space and if λn ∈ δ
such that limλn

n = 1, then stat(x) = statλ(x)

Proof: Since limλn

n = 1, then for ϵ > 0,

1

n
|{j ≤ n : g(xj − ℓ) ≥ ϵ}|

≤ max

{
1

n
|{j ≤ n− λn : g(xj − ℓ) ≥ ϵ}|,

1

n
|{j ∈ In : g(xj − ℓ) ≥ ϵ}|

}
≤ max

{
n− λn

n
,
1

n
|{j ∈ In : g(xj − ℓ) ≥ ϵ}|

}
≤ max

{
(n− λn)

n
,
λn

n

1

λn

|{j ∈ In : g(xj − ℓ) ≥ ϵ}|
}
.

This implies that if (xj) is λ statistically convergent, then
{xj} is statistically convergent.

i.e., stat(X) ⊃ statλ(X).

Also, since limn
λn

n = 1, implies that inf (λn)
n > 0, by

previous theorem we have stat(X) ⊂ statλ(X).
Thus, stat(X) = statλ(X).

IV. IDEAL STATISTICALLY PRE-CAUCHY SEQUENCES

“ The concept of ideal statistically pre-Cauchy sequences
provides a generalization of the usual convergence of se-
quences. In this section, we define the ideal statistically pre-
Cauchy sequences and give some inclution relations over
non-Archimedean paranormed space.”

In non-Archimedean analysis, the concept of ideal sta-
tistically pre-Cauchy sequences relates to the convergence
behavior of sequences in a non-Archimedean field with
respect to a chosen ideal. This notion extends the idea of
statistical convergence to pre-Cauchy sequences.
Definition 4.1: A sequence {xj} is said to be I - convergent
to a number ℓ if for every ϵ > 0
{j ∈ N : g(xj − ℓ) ≥ ϵ} ∈ I.
Symbollicaly, it is denoted as I− limxj = ℓ

Definition 4.2: A sequence {xj} is known as I - statistically
convergent sequence, whenever I is an admissible ideal and
that for any ϵ > 0 the set,
{n ∈ N : 1

n | {j ≤ n : g(xj−ℓ) ≥ ϵ}| → 0 as n → ∞} ∈ I.
Symbollicaly, it is denoted as I− st− limm→∞ xj = ℓ

Definition 4.3: A sequence {xj} is known as I - statistically
cauchy sequence, whenever I is an admissible ideal and
that for any ϵ > 0 the set,
{n ∈ N : 1

n | {j ≤ n : g(xj+1 − xj) ≥ ϵ}| → 0 as
n → ∞} ∈ I.

Definition 4.4: A sequence {xj} is said to be I - statistically
pre-cauchy sequence if for any ϵ > 0
{n ∈ N : 1

n2 | {j ≤ n : g(xj+1 − xj)| ≥ ϵ}| → 0 as
n → ∞} ∈ I.

Theorem 4.5: “If x = {xj} is an I-statistically convergent
sequence then it is I statistically pre-cauchy.”

Proof: Let {xj} be I statistically convergent to ℓ
Therefore, {n ∈ N : 1

n | {m ≤ n : g(xj − ℓ) ≥ ϵ}| → 0 as
n → ∞} ∈ I.

Let us consider,
A = {n ∈ N : 1

n | {m ≤ n : g(xj − ℓ) ≥ ϵ}| → 0 as
n → ∞ }
Ac = {n ∈ N : 1

n | {m ≤ n : g(xj − ℓ) ≥ ϵ}| → 1 as
n → ∞ }
Where c stands for complement.

Let us define, Bn = {j ≤ n : g(xj − ℓ) < ϵ}.
Now consider,
g(xj+1 − xj) = g(xj+1 − xj − ℓ+ ℓ)

⇒g(xj+1 − xj) ≤ max{g(xj+1 − ℓ), g(xj − ℓ)}

we observe that for j ∈ Bn,
g(xj+1 − xj) ≤ max{g(xj+1 − ℓ) < ϵ, g(xj − ℓ) < ϵ} < ϵ
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Hence, BnXBn ⊂ {j ≤ n : g(xj+1 − xj) < ϵ}

⇒
[
|Bn|
n

]2
≤ 1

n2 |{j ≤ n : g(xj+1 − xj) < ϵ}|

⇒ 1
n2 |{j ≤ n : g(xj+1 − xj) < ϵ}| ≥ [ |Bn|

n ]2 → 12

⇒ 1
n2 |{j ≤ n : g(xj+1 − xj) < ϵ}| → 12 − 12 → 0

⇒ 1
n2 |{j ≤ n : g(xj+1 − xj) < ϵ}| → 0 ⊆ A

⇒ { 1
n2 |{j ≤ n : g(xj+1−xj) ≥ ϵ}| → 0 as n → ∞} ∈ I

Hence Proved.

Theorem 4.6: “Let x = (xj) be a bounded
sequence. Then x is I - statistically pre-cauchy iff
limn

1
n2

∑
j≤n

g(xj+1 − xj) = 0.”

Proof: First suppose that,
limn

1
n2

∑
j≤n

g(xj+1 − xj) = 0.

lim
n

1

n2

∑
j≤n

g(xj+1 − xj)

=
1

n2

∑
j≤n

g(xj+1−xj)≤ϵ

g(xj+1 − xj)

+
1

n2

∑
j≤n

g(xj+1−xj)≥ϵ

g(xj+1 − xj)

≥ 1

n2

∑
j≤n

g(xj+1−xj)≥ϵ

g(xj+1 − xj)

≥ 1

n2
|{j ≤ n : g(xj+1 − xj) ≥ ϵ}|

≥ 0.

Since limn
1
n2

∑
j≤n

g(xj+1 − xj) = 0, the set

{n ∈ N : 1
n | {j ≤ n : g(xj+1 − ℓ) ≥ ϵ}| → 0 as

n → ∞} ∈ I.

“Conversly, Suppose that x is I - statistically pre-cauchy,
then since x is bounded sequence, there exist a B > 0 such
that |xj | ≤ B for all k ∈ N”

lim
n

1

n2

∑
j≤n

g(xj+1 − xj)

=
1

n2

∑
j≤n

g(xj+1−xj)≤ϵ

g(xj+1 − xj)+

1

n2

∑
j≤n

g(xj+1−xj)≥ϵ

g(xj+1 − xj)

≤ ϵ+B(
1

n2
|{j ≤ n : g(xj+1 − xj) ≥ ϵ}|)

Since x is I - pre cauchy, there is an N such that
ϵ+B( 1

n2 |{j ≤ n : g(xj+1 − xj) ≥ ϵ}|) is less that ϵ for all
j ∈ N.
Hence limn

1
n2

∑
j≤n

g(xj+1 − xj) = 0.

Corollary 4.7: A sequence x = {xj} is I - convergent ⇔ I
- lim

n

1
n2

∑
g(xj+1 − xj) = 0

Proof: Let, A1 = {j ∈ N : g(xj+1 − xj) < ϵ} ∈ I
Ac

1 = {j ∈ N : g(xj+1 − xj) ≥ ϵ} ∈ I

Then, {j ∈ N : g(xj+1 − xj) ≥ ϵ} ⊂ A1

⋃
AC

1 ∈ I.

Hence, I - lim
n

1
n2

∑
g(xj+1 − xj) = 0.

The desired result can be obtained by directly applying
Theorem 4.5.

Corollary 4.8: A sequence x = {xj} is I - convergent to ℓ
⇔ I− lim

n

1
n

∑
g(xj − ℓ) = 0.

V. CONCLUSION

Known results have been extended from Archimedean
fields to non-Archimedean fields. We have investigated the
concept of λ-statistical convergence and derived basic prop-
erties of λ-statistical convergence in paranormed spaces
over non-Archimedean fields. Furthermore, the relationship
between ideal statistical convergence and ideal statistical pre-
Cauchy property has been discussed in this study.
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