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Abstract—Regularization regression learning scheme finds its
powerful applications in many areas, such as Computer science,
manufacturing engineering, economic decision making, etc. In
this paper, the indefinite kernel based coefficient dependent
regularization algorithm for block-wise streaming data is pro-
posed, and learning performance of this algorithm is studied
by bounding the learning error. Our learning scheme works
in an online and weighted average manner. The total error
is decomposed into weighted average of local variance error
and weighted average of local bias error. By the kernel decom-
pose and integral operator method, satisfied error bound and
learning rates are derived. Our error analysis shows that mild
growth of the sizes of data block and the underregularization
strategy can guarantee the convergence of the learning scheme.

Index Terms—learning theory, kernel regularization, stream-
ing data, learning rates, adaptive underregularization

I. INTRODUCTION

IN the digital age, the processing and application of mas-
sive information is particularly critical. Machine learning

[1] has shown outstanding advantages in data processing
and analysis. Classical machine learning mainly includes
regression learning [2]–[4], classification [5], [6], cluster
analysis and dimension reduction. In recent years, the com-
plexity, variability and fluidity of data sources have aroused
widespread concern and research on whether the usual learn-
ing methods can be applied to other different kind data.
Some researchers have studied the learning performance of
algorithms related to streaming data, such as distributed least
square regularized algorithms for streaming data [3] and big
data mining about streaming data [7], etc.

Kernel-based learning algorithms (also known as kernel
methods) for a single data set have been discussed and stud-
ied in detail [8], including Support Vector Machine (SVM)
[5], [6], Kernel-based Fisher Discriminant Analysis (KFD)
[9], Kernel Principal Component Analysis (KPCA) [10], etc.
For a large data set, adopting the divide-and-conquer method
[11]–[14], can also achieve pretty well learning effect.

Stream data is a dynamic data set, which can be received
instance-wise or block-wise. From the point of instance-wise,
online learning by gradient descent method has been widely
applied in learning systems. From the point of block-wise,
the divide-and-conquer approach is available, and distributed
kernel regularized learning systems have been explored [3].

The main purpose of this paper is to study the error bound
and the asymptotic convergence rate of coefficient dependent
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regularization systems with indefinite kernels for streaming
data. For this goal, we firstly recall coefficient and kernel
based regularization regression (CKRR) learning.

Let X be a compact metric space and Y = R, ρ be an
unknown Borel probability distribution on Z = X × Y . The
regression function is defined by

fρ(x) =

∫
Y

ydρ(y|x). (1)

where ρ(y|x) is the condition distribution of y for given x.
In fact, fρ(x) is the condition expectation of y when x, i.e.
fρ(x) = E(y|x). As we all know, regression learning is to
learn an approximation of fρ by the sample set

D = {(xi, yi)}Ni=1 ∈ Z
N

drawn independently and randomly according to ρ.
Let K : X × X −→ R be continuous and bounded real

function called kernel. The CKRR associated with kernel
K minimizes the regularized empirical loss

fD,λ = fαD ,

αD = arg min
α∈RN

1

|D|
∑

(x,y)∈D

(fα(x)− y)2 + λN
N∑
i=1

a2i .

Here the coefficient dependent function fα is defined by

fα =
N∑
i=1

aiK(·, xi),

and the hypothesis space in CKRR is

HK,x =
{
fα =

N∑
i=1

aiK(·, xi) : α = (a1, · · · , aN ) ∈ RN
}
.

The divide and conquer learning scheme divides a single
data set D = {(xi, yi)}Ni=1 ∈ ZN into m data subsets{
D(j)

}m
j=1

, and some basic learning algorithm is applied
to each subset to learn a local regression model, finally
the local models are averaged to generate the final learning
model [13]. The streaming data may be received block-wise
or instance-wise. Even an instance-wise data are often dealt
in a block-wise manner, for instance, in the dynamic pricing
problems and other economic and financial data analysis. Let
Ds = {(xs,i, ys,i)}nsi=1 ∈ Z

ns be the data block receiving at
time s with the size ns. The set of all available data until
time t is

D̃t
.
=

t⋃
s=1

Ds,

the size of D̃t is

|D̃t| =
t∑

s=1

|Ds| =
t∑

s=1

ns
.
= Nt.
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Our regression learning scheme for streaming data takes
the divide and conquer approach, and indefinite kernel based
CKRR as the base algorithm. The CKRR for local data subset
Ds at time s can be stated as

fs = fDs,λs = fαDs ,

αDs = arg min
α∈Rns

1

|Ds|
∑

(x,y)∈Ds

(fα(x)− y)2 + λns

ns∑
i=1

a2i .

(2)

The global estimator Ft is obtained by weighted average
of these local estimators {fs}ts=1,

Ft =
nt
Nt
ft +

Nt−1
Nt

Ft−1 =
t∑

s=1

ns
Nt
fs. (3)

II. ASSUMPTIONS AND MAIN RESULTS

For simplicity, we assume the uniform boundness of the
output data.

Assumption II.1. Assume that |y| ≤ M for some constant
M > 0 almost surely.

The above assumption indicates that the regression func-
tion fρ is bounded and fρ ∈ L2

ρX , where L2
ρX is the Hilbert

space of square integrable functions related to the marginal
distribution ρX . In addition, the variance of distribution ρ is
finite, i.e.

σ2 = E
[
(y − fρ(x))2

]
<∞

Our error analysis is accomplished mainly by the tech-
nique of integral operator. Hence we should recall the
structure theory of indefinite kernels, for more details see
references [4], [15].

Let LK be the integral operator corresponding to kernel
K, which is defined by

LK : L2
ρX −→ L2

ρX ; LKf =

∫
X

K(·, t)f(t)dρX(t).

LK is continuous and compact operator, but it may not be
self-adjoint and positive without the positive semidefinite
assumption of kernel K. Although K may not be a Mercer
kernel, it can induce two Mercer kernels defined as

K̃(x, t) =

∫
X

K(x, u)K(t, u)dρX(u),

K̂(x, t) =

∫
X

K(v, x)K(v, t)dρX(v).

It is easy to see that

LK̂ = L∗KLK , LK̃ = LKL
∗
K . (4)

Thus, LK̃ and LK̂ have the same positive eigenvalue se-
quence σ2

l , l ∈ N, and we can assume these eigenvalues are in
a non-increasing order. Let ϕl , l ∈ N be associated orthonor-
mal and continuous eigenfunctions of LK̃ and ψl , l ∈ N be
associated orthonormal and continuous eigenfunctions of LK̂
respectively. It is proved in [4] that

LK̃ =
∞∑
l=1

σ2
l ϕl ⊗ ϕl, LK̂ =

∞∑
l=1

σ2
l ψl ⊗ ψl,

LK =
∞∑
l=1

σlϕl ⊗ ψl.

Our second assumption called kernel condition is pro-
posed in [15], which ensures that K(x, ·) and K(·, t) can
belong to some reproduce kernel Hilbert space (RKHS).

Assumption II.2.

κ20 = sup
x∈X

∞∑
l=1

σlϕ
2
l (x) <∞, κ21 = sup

t∈X

∞∑
l=1

σlψ
2
l (t) <∞.

Denote κ = max{κ0, κ1}. By Assumption II.2, we have
two Mercer kernels

K0(x, t) =
∞∑
l=1

σlϕl(x)ϕl(t), K1(x, t) =
∞∑
l=1

σlψl(x)ψl(t)

The corresponding RKHS H0 and H1 are function spaces,

H0 =

{
f =

∞∑
l=1

clϕl :
∞∑
l=1

c2l
σl
<∞

}
;

H1 =

{
f =

∞∑
l=1

dlψl :
∞∑
l=1

d2l
σl

<∞

}
.

Let U be the partial isometry operator from L2
ρX to L2

ρX ,
satisfying that ψl = Uϕl, l ∈ N. Proposition II.1 proved in
[4] summarizes some properties of kernel K and integral
operator LK .

Proposition II.1. Under the Kernel Condition, we have

(i) LK = LK0
U∗ = U∗LK1

;
(ii) K(·, x) ∈H0 and K(x, ·) ∈H1 for any x ∈ X;
(iii) U is an isometry operator from H0 to H1 and

UK(·, x) = K1(·, x); U∗ is an isometry operator from
H1 to H0 and U∗K(x, ·) = K0(·, x);

(iv) LK is bounded from L2
ρX to H0 and from H1 to H0

with both operator norms bounded by κ2.

In order to deduce the error bound, the following
prior condition is needed to depict the approximation
ability of hypothesis space to the regression function fρ.

Assumption II.3. There holds fρ = LβK0
gρ for some gρ ∈

L2
ρX (X) and 0 < β ≤ 2.

Now we can state our main results on error analysis.

Theorem II.1. Under Assumption II.1, Assumption II.2 and
Assumption II.3, and suppose that for any s ∈ N, the sample
size at time s satisfies ns ≥ a0s

p with absolute constants
a0 > 0 and p > 0. When 0 < β ≤ 3

2 , by taking

λs = n
−min{ 2(1+p)

3(1+p)+2pβ
, 1
2}

s ,

there exists constant c1 independent of ns, λs or Ns such
that

E‖Ft − fρ‖2L2
ρX

≤ c1N
−min{ 2pβ

3(1+p)+2pβ
, pβ
2(1+p)}

t .

When 3
2 < β ≤ 2, by taking

λs = n
−min{ 2(1+p)

3(1+p)+2pβ
, 2
2β+1}

s ,
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there exists constant c2 independent of ns, λs or Ns such
that

E‖Ft − fρ‖2L2
ρX

≤ c2N
−min{ 2pβ

3(1+p)+2pβ
, 2pβ
(2β+1)(1+p)}

t .

Theorem II.2. Under Assumption II.1, Assumption II.2 and
Assumption II.3, and suppose that for any s ∈ N, the sample
size at time s satisfies a1sp ≤ ns ≤ a2sp for some absolute
constants 0 < a1 < a2 and p > 0. When 0 < β ≤ 3

2 , by
taking

λs = n
−min

{
1
2 ,

2(1+p)
(3+2β)p

}
s ,

there exists constant c3 independent of ns, λs or Ns such
that

E‖Ft − fρ‖2L2
ρX

≤ c3N
−min

{
βp

2(1+p)
, 2β
3+2β

}
t .

When 3
2 < β ≤ 2, by taking

λs = n
−min

{
2

1+2β ,
2(1+p)
(3+2β)p

}
s ,

there exists constant c4 independent of ns, λs or Ns such
that

E‖Ft − fρ‖2L2
ρX

≤ c4N
−min

{
2βp

(1+p)(1+2β)
, 2β
3+2β

}
t .

The proof of Theorem II.1 and Theorem II.2 will be given
in Section IV. From these derived learning rates, we notice
the following facts:

1) p is the parameter which reflects the growth rate of
the sizes of data block, the bigger p gives faster
convergence rate. Under the conditions of Theorem
II.1, our conclusion shows that when 0 < β ≤ 1

2 , let
p turn to infinity, the convergence rate grows upward
to β

2 ; when 1
2 < β ≤ 2, let p turn to infinity, the

convergence rate grows upward to 2β
3+2β .

2) It is well known that the rate O(N
− 2β

2β+1

t ) is minimax
optimal in a capacity independent sense, see references
[16], [17]. Under the conditions of Theorem II.2, when
3
2 < β ≤ 2 and p ≥ 1

2 + β, we have the following
suboptimal rate for streaming data regression learning,

E‖Ft − fρ‖2L2
ρX

≤ c4N
− 2β

3+2β

t .

The difference between 2β
2β+1 and 2β

2β+3 is mainly
caused by the more general kernels (without symmetric
and positive semi-definite) and the coefficient depen-
dent regularization.

3) Mild growth of the sizes of data block can guarantee
the convergence of BSD-AKRR. Also, our a1sp ≤
ns ≤ a2sp assumption can ensure that

λs = n−θs ∼ N
− θ
p+1

s ,

this underregularization strategy means that regulariza-
tion parameters are in fact selected according to the
total sample size of all data blocks available at the
time of processing an incoming block.

III. ERROR BOUND FOR LOCAL ESTIMATORS

From formula (3), the global estimator Ft is the weighted
average of local estimator functions fs , so we firstly consider
local input data set Ds(x) = {x : (x, y) ∈ Ds} and
associated sampling operators. Without causing confusion,
the associated sampling operator

SDs(x) : H0(H1) −→ Rns ,

are simplicity expressed as

S : H0(H1) −→ Rns ,

that is

Sf = (f(xs,1), f(xs,2), · · · , f(xs,ns))
>
.

Operators T and T∗ are from Rns to H0 and H1 respectively,
and for any c = (c1, · · · , cns) ∈ Rns ,

Tc =
1

ns

ns∑
i=1

ciK(·, xs,i), T∗c =
1

ns

ns∑
i=1

ciK(xs,i, ·).

The definition of sampling operator S and T, T∗ asserts that

TS =
1

ns

ns∑
i=1

K(·, xs,i)⊗K1(·, xs,i), (5)

T∗S =
1

ns

ns∑
i=1

K(xs,i, ·)⊗K0(·, xs,i). (6)

By Proposition II.1, LK is also an operator from H1 to H0,
and

LK = U∗LK1
= U∗E

(
K1(·, x)⊗K1(·, x)

)
= E

(
K(·, x)⊗K1(·, x)

)
;

similarly we have

L∗K = E
(
K(x, ·)⊗K0(·, x)

)
.

Combined these expressions with (5) and (6), the integral
operator LK can be approximated by the sampling operator
TS, and L∗K by T∗S. And then, sampling operator TST∗S
can approximate integral operator LK̃ by equation (4). The
following Lemma III.1 and III.2 are proven in [4]. In the
sequel, for i, j = 0, 1, ‖ · ‖ij indicates operator norm from
Hi to Hj .

Lemma III.1. LK is considered to be operator from H1 to
H0. Then there hold

E‖L∗K − T∗S‖201 ≤
κ4

ns
, E‖LK − TS‖210 ≤

κ4

ns
,

E‖L∗K − T∗S‖401 ≤
12κ8

n2s
, E‖LK − TS‖410 ≤

12κ8

n2s
.

Lemma III.2. We have

E‖TST∗S−LK̃‖
2
00 ≤

4κ8

ns
, E‖TST∗S−LK̃‖

4
00 ≤

192κ16

n2s
.

From formula (3), the global estimator Ft is the weighted
average of local estimator functions, so we firstly deduce the
error bound of the local estimator function fs in this section.
The following operator expression of fs is proposed in [18],

fs = T (λsI+ST∗ST )−1ST∗y = (λsI+TST∗S)−1TST∗y.
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By that TS ≈ LK , TST∗S ≈ LK̃ , and ET∗y = L∗Kfρ, we
introduce the noise free estimator fλs as follows

fλs
.
= (λsI + LK̃)−1LK̃fρ =⇒ λsfλs = LK̃(fρ − fλs).

Now we naturally have the decomposition of sample error,

fs − fλs = (λsI + TST∗S)−1(TS − LK)L∗K(fρ − fλs)
+ (λsI + TST∗S)−1TS∆s, (7)

where

∆s = T∗y − T∗Sfλs − L∗K(fρ − fλs)

=
1

ns

ns∑
i=1

(ys,i − fλs(xs,i))K(xs,i, ·)− L∗K(fρ − fλs).

Recall the variance of the output data, σ2 = E(y− fρ(x))2.
For simplicity, we assume that

0 ≤ λs ≤ 1, κ ≥ 1, and max{1, σ, ‖gρ‖L2
ρX
} ≤M.

The following two lemmas proved in [15] are preliminary
knowledge of our error analysis for local estimator.

Lemma III.3. Under Assumption II.2 and II.3, there holds

‖fλs − fρ‖2L2
ρX

≤ λβs ‖gρ‖2L2
ρX

,

‖L∗K(fλs − fρ)‖21 ≤ κ2λ
min{ 1

2+β, 2}
s ‖gρ‖2L2

ρX

.

Lemma III.4. Under Assumption II.2, there holds

‖(λsI + TST∗S)−1TS‖10 ≤
κ2

λs
,

‖T∗S(λsI + TST∗S)−1‖01 ≤
κ2

λs
,

‖(λsI + TST∗S)−1‖00 ≤
1

λs

(
1 +

κ2√
λs

)
,

‖T∗S(λsI + TST∗S)−1TS‖10 ≤ κ2λ
− 1

2
s .

Proof: We only give the proof of the last inequality.
Notice that (ST )∗ = ST∗, then

‖T∗S(λsI + TST∗S)−1TS‖10
=‖T∗ST (λsI + ST∗ST )−1S‖10
≤κ2‖ST (λsI + ST∗ST )−1‖ ≤ κ2λ−

1
2

s .

The conditional expectation of ∆s is denoted by

∆̃s =
1

ns

ns∑
i=1

(fρ(xs,i)−fλs(xs,i))K(xs,i, ·)−L∗K(fρ−fλs).

Lemma III.5. Under Assumption II.1, II.2 and II.3. There
hold that

E‖∆s‖21 ≤
κ2M2

ns

(
1 + λβs

)
,

E‖∆s‖41 ≤ 112κ12M4
(
n−3s λ

min{2β− 1
2 ,β}

s + n−2s

)
,

E‖∆̃s‖21 ≤
κ2λβs
ns
‖gρ‖2L2

ρX

.

Proof: The first inequality is proved in [14], and the
third inequality is proved in [3]. So we only prove the upper
bound of E‖∆s‖41.

Denote the random variable

η(z) = (y − fλs(x))K(x, ·),

and referring the proof of lemma 4 in [14], we obtain that

E
∥∥∆s

∥∥4
1

≤ 1

n3s
E
∥∥η(z)−Eη

∥∥4
1

+
3

n2s

(
E
∥∥η(z)−Eη

∥∥2
1

)2
. (8)

Introducing the random variable

ξ(x) = (fρ(x)− fλs(x))K(x, ·),

and by that

η(z)−Eη = (y − fρ(x))K(x, ·) + (ξ(x)−Eξ),

we have

E
∥∥η(z)−Eη

∥∥4
1

= E
[
‖ξ(x)−Eξ‖21 + (y − fρ(x))2〈K(x, ·), K(x, ·)〉H1

+ 2(y − fρ(x))〈K(x, ·), ξ(x)−Eξ〉H1

]2
.

By that |y − fρ(x)| ≤ 2M almost surely, and

〈K(x, ·), K(x, ·)〉H1 = K0(x, x) ≤ κ2,

The square term can be spread as

E
∥∥η(z)−Eη

∥∥4
1

≤E‖ξ(x)−Eξ‖41 + 4M2κ4σ2 + 24M2κ2E‖ξ(x)−Eξ‖21
+4κ
√

2ME|y − fρ(x)| 12 ‖ξ(x)−Eξ‖31
+16M2κ3E|y − fρ(x)|‖ξ(x)−Eξ‖1.

Now by Cauchy-Schwarz Inequality, and σ ≤M ,

E
∥∥η(z)−Eη

∥∥4
1
≤ E‖ξ(x)−Eξ‖41 + 4M4κ4

+ 24M2κ2E‖ξ(x)−Eξ‖21 + 4
√

2κM
(
E‖ξ(x)−Eξ‖41

) 3
4

+ 16M3κ3
(
E‖ξ(x)−Eξ‖21

) 1
2 . (9)

By Lemma III.3, we have that

E‖ξ(x)−Eξ‖21
≤ E‖ξ(x)‖21 ≤ κ2‖fρ − fλs‖2L2

ρX

≤ κ2λβs ‖gρ‖2L2
ρX

. (10)

To bound E
∥∥ξ(x) − Eξ

∥∥4
1
, we first derive the upper bound

of
∥∥ξ(x)−Eξ

∥∥2
1
,∥∥ξ(x)−Eξ

∥∥2
1
≤ 2(fρ(x)− fλs(x))2K0(x, x) + 2‖Eξ‖21
≤ 4κ2

(
M2 + κ2‖fλs‖20

)
+ 2‖L∗K(fρ − fλs)‖21

≤ 6κ2M2 + 4κ10M2λ
min{β− 1

2 , 0}
s

.
= b2.

The last inequality holds by Lemma III.3 and

‖fλs‖0 = ‖(λsI + LK̃)−1L
3+2β

4

K̃
gρ‖L2

ρX

≤ κ3λmin{ 2β−1
4 , 0}

s ‖gρ‖L2
ρX
.

By Chebyshev’s Inequality and (10), for any 0 ≤ t ≤ b,

F (t)
.
= Prob

{
‖ξ(x)−Eξ‖1 ≥ t

}
≤ E‖ξ(x)−Eξ‖21

t2
≤
κ2λβs ‖gρ‖2L2

ρX

t2
.
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Now we can deduce that

E
∥∥ξ(x)−Eξ

∥∥4
1

=

∫ b

0

−t4dF (t) = 4

∫ b

0

t3F (t)dt

≤ 2κ2M2λβs b
2 = 12κ4M4λβs + 8κ12M4λ

min{2β− 1
2 , β}

s

≤ 20κ12M4λ
min{2β− 1

2 , β}
s . (11)

Plugging (10) and (11) into (9), we can get

E
∥∥η(z)−Eη

∥∥4
1
≤ 100M4κ12

(
1 + λ

min{2β− 1
2 , β}

s

)
. (12)

By (10) and that

E〈(y − fρ(x))K(x, ·), ξ(x)−Eξ〉1 = 0,

there holds

E
∥∥η(z)−Eη

∥∥2
1

= E
∥∥(y − fρ(x))K(x, ·) + (ξ(x)−Eξ)

∥∥2
1

≤ κ2σ2 + κ2M2λβs ≤ 2κ2M2. (13)

Combing (12) and (13) with (8), the second inequality of
Lemma III.5 is proved.

The goal of this paper is to explore the approximation
ability of the global empirical function Ft to fρ. We recall
the error decomposition as follows from [3],

E‖Ft − fρ‖2L2
ρX

≤
t∑

s=1

n2s
N2
t

E‖fs −Efs‖2L2
ρX

+

t∑
s=1

ns
Nt
‖Efs − fρ‖2L2

ρX

. (14)

From the above inequality (14), we will concentrate on
the estimate of the local variance E‖fs − Efs‖2L2

ρX

and
the local bias‖Efs − fρ‖2L2

ρX

in Propositions III.1 and III.2
respectively. As we all know, for any f ∈ L2

ρX , there holds

E‖fs −Efs‖2L2
ρX

≤ E‖fs − f‖2L2
ρX

.

Taking f = fλs , the local variance can be bounded by the
approximation error, i.e.

E‖fs −Efs‖2L2
ρX

≤ E‖fs − fλs‖2L2
ρX

.

Proposition III.1. Under Assumption II.1, II.2 and II.3, there
holds

E‖fs − fλs‖2L2
ρX

≤ 72κ12M2
(
n
− 1

2
s λ

− 1
2

s + 1
)
λ
min{β−2,− 3

2}
s n−1s .

Proof: Notice that both fs and fλs are in H0. By the
error decompose (7),

E‖fs − fλs‖2L2
ρX

=E‖L
1
2

K0
(fs − fλs)‖20

≤2E‖L
1
2

K0
(λsI + TST∗S)−1TS∆s‖20

+ 2E‖L
1
2

K0
(λsI + TST∗S)−1(TS − LK)L∗K(fρ − fλs)‖20

.
=2E‖A1‖20 + 2E‖A2‖20 (15)

For any g ∈ H0, by ULK0 = L∗K and Cauchy-Schwarz
Inequality, there holds

‖L
1
2

K0
(λsI + TST∗S)−1g‖20

=
〈
(λsI + TST∗S)−1g, LK0(λsI + TST∗S)−1g

〉
H0

≤ ‖(λsI + TST∗S)−1g‖0‖L∗K(λsI + TST∗S)−1g‖1
≤ ‖T∗S(λsI + TST∗S)−1g‖1‖(λsI + TST∗S)−1g‖0

+ ‖L∗K − T∗S‖01‖(λsI + TST∗S)−1g‖20. (16)

Taking g = TS∆s, by Lemma III.4,

E‖A1‖20
≤ E‖L∗K − T∗S‖01‖(λsI + TST∗S)−1TS‖210‖∆s‖21
+ E‖T∗S(λsI + TST∗S)−1TS‖10‖∆s‖21
× ‖(λsI + TST∗S)−1TS‖10
≤ κ4λ−2s E‖L∗K − T∗S‖01‖∆s‖21 + κ4λ

− 3
2

s E‖∆s‖21.

We can continue our estimate by Lemma III.1, Lemma III.5,
and Cauchy-Schwarz Inequality,

E‖A1‖20 ≤ κ4λ−2s
(
E‖L∗K − T∗S‖201

) 1
2
(
E‖∆s‖41

) 1
2

+ κ4λ
− 3

2
s E‖∆s‖21

≤ 11κ12M2
[
λ
min{β− 9

4 ,
β
2−2}

s n−2s + λ−2s n
− 3

2
s

]
+ 2κ6M2λ

− 3
2

s n−1s

≤ 11κ12M2λ−2s n
− 3

2
s

[
λ
min{β− 1

4 ,
β
2 }

s n
− 1

2
s + 1

]
+ 2κ6M2λ

− 3
2

s n−1s .

Similarly,taking g = (TS−LK)L∗K(fρ−fλs), by Lemma
III.4, and Lemma III.1, Lemma III.5,

E‖A2‖20
≤4κ4λ−3s E‖L∗K − T∗S‖01‖TS − LK‖210‖L∗K(fρ − fλs)‖21

+ 2κ4λ
− 5

2
s E‖TS − LK‖210‖L∗K(fρ − fλs)‖21

≤‖L∗K(fρ − fλs)‖21 ×
[
2κ4λ

− 5
2

s E‖TS − LK‖210

+ 4κ4λ−3s

(
E‖L∗K − T∗S‖201

) 1
2
(
E‖TS − LK‖410

) 1
2
]

≤8
√

3κ12M2λ
min{β− 5

2 ,−1}
s n

− 3
2

s

+ 2κ10M2λ
min{β−2,− 1

2}
s n−1s .

Plugging the above two estimates into (15), and note that
0 < λs ≤ 1, thus

max
{
λ
min{β−2,− 1

2}
s , λ

− 3
2

s

}
≤ λmin{β−2,− 3

2}
s ;

max
{
λ
min{β− 5

2 ,−1}
s , λ−2s

}
≤ λmin{β− 5

2 ,−2}
s .

Then there holds

E‖fs − fλs‖2L2
ρX

≤ 22κ12M2λ−2s n
− 3

2
s

[
λ
min{β− 1

4 ,
β
2 }

s n
− 1

2
s + 1

]
+ 4κ6M2λ

− 3
2

s n−1s

+ 28κ12M2λ
min{β− 5

2 ,−1}
s n

− 3
2

s + 4κ10M2λ
min{β−2,− 1

2}
s n−1s

≤ 22κ12M2λ
min{β− 9

4 ,−2}
s n−2s

+ 50κ12M2λ
min{β− 5

2 ,−2}
s n

− 3
2

s + 8κ10M2λ
min{β−2,− 3

2}
s n−1s

≤ 72κ12M2
(
n
− 1

2
s λ

− 1
2

s + 1
)
n−1s λ

min{β−2,− 3
2}

s .
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Proposition III.2. Under Assumption II.1, II.2 and II.3, there
holds

‖Efs − fρ‖2L2
ρX

≤ 30κ12M2
[
λ
min{β−2,− 1

2}
s n−1s

(
n
− 1

2
s λ

− 1
2

s + 1
)

+ λβs

]
.

Proof: We only need to bound ‖Efs−fλs‖2L2
ρX

, because

‖Efs − fρ‖2L2
ρX

≤ 2‖Efs − fλs‖2L2
ρX

+ 2‖fλs − fρ‖2L2
ρX

.

By the decomposition of sample error in formula (7),

Efs − fλs = E(λsI + TST∗S)−1(TS − LK)L∗K(fρ − fλs)
+ E(λsI + TST∗S)−1TS∆̃s.

Hence

‖Efs − fλs‖2L2
ρX

≤ 2‖L
1
2

K0
E(λsI + TST∗S)−1TS∆̃s‖20

+ 2‖L
1
2

K0
E(λsI + TST∗S)−1(TS − LK)L∗K(fρ − fλs)‖20

.
= 2‖J1‖20 + 2‖J2‖20

By that U∗L∗K = LK0
, then

‖J1‖20 = 〈U∗L∗KE(λsI + TST∗S)−1TS∆̃s,

E(λsI + TST∗S)−1TS∆̃s〉H0

≤ ‖EL∗K(λsI + TST∗S)−1TS∆̃s‖1
× ‖E(λsI + TST∗S)−1TS∆̃s‖0

≤ ‖E(L∗K − T∗S)(λsI + TST∗S)−1TS∆̃s‖1
× ‖E(λsI + TST∗S)−1TS∆̃s‖0
+ ‖ET∗S(λsI + TST∗S)−1TS∆̃s‖1
× ‖E(λsI + TST∗S)−1TS∆̃s‖0

By Lemma III.4, Lemma III.5, and Jensen Inequality,

‖J1‖20 ≤κ4λ−2s
(
E‖L∗K − T∗S‖01‖∆̃s‖1

)
E‖∆̃s‖1

+ κ4λ
− 3

2
s

(
E‖∆̃s‖1

)2
≤κ4λ−2s

(
E‖L∗K − T∗S‖201

) 1
2E‖∆̃s‖21

+ κ4λ
− 3

2
s E‖∆̃s‖21

≤κ8M2
(
n
− 1

2
s λ

− 1
2

s + 1
)
λ
β− 3

2
s n−1s .

Refer to the estimation of E‖A2‖20 in the proof of Proposition
III.1, we have

‖J2‖20
≤E‖L

1
2

K0
(λsI + TST∗S)−1(TS − LK)L∗K(fρ − fλs)‖20

≤14κ12M2λ
min{β−2,− 1

2}
s n−1s

(
n
− 1

2
s λ

− 1
2

s + 1
)
.

Combing the above estimates with Lemma III.3, the proof
of Proposition III.2 is completed.

IV. LEARNING RATES OF CKRR WITH STREAMING DATA

In this section we prove our main conclusions proposed in
Section 2. To simplify the expression, we use f � g denote
f ≤ cg where c is a constant independent of ns and λs,
s ∈ N. Furthermore, we use f ∼ g denote f � g and g � f
simultaneously. Hence for all a > −1, there holds

t∑
s=1

sa ∼ ta+1, t ∈ N. (17)

By the error decomposition (14), and Proposition III.1,
Proposition III.2,

E‖Ft − fρ‖2L2
ρX

� 1

N2
t

t∑
s=1

nsλ
min{β−2,− 3

2}
s

(
n
− 1

2
s λ

− 1
2

s + 1
)

+
1

Nt

t∑
s=1

nsλ
β
s

+
1

Nt

t∑
s=1

λ
min{β−2,− 1

2}
s

(
n
− 1

2
s λ

− 1
2

s + 1
)
. (18)

Lemma IV.1. Under the condition ns ≥ a0sp for any s ∈ N,
there holds

t∑
s=1

nαs �


N

max{ 1+αp
1+p , 0}

t (logNt)
ϑ(αp) if α ≤ 1;

Nα
t if α ≥ 1.

Here

ϑ(t) =

{
1 if t = −1;

0 otherwise.

Proof: Under the condition ns ≥ a0s
p for any s ∈ N,

there holds

Nt =

t∑
s=1

ns �
t∑

s=1

sp � tp+1.

Hence, for any t ∈ N, there is

t � N
1
p+1

t . (19)

When 0 < α ≤ 1, by Hölder inequality, we can deduce

t∑
s=1

nαs ≤

(
t∑

s=1

(nαs )
1
α

)α
t1−α = t1−αNα

t � N
1+αp
1+p

t .

When α ≤ 0, we have

t∑
s=1

nαs �
t∑

s=1

spα � tmax{1+αp, 0} (log t)
ϑ(pα)

� Nmax{ 1+αp
1+p , 0}

t (logNt)
ϑ(pα)

.

For all α ≥ 1, it is obvious to see

t∑
s=1

nαs ≤
( t∑
s=1

ns

)α
= Nα

t .

The proof of Lemma IV.1 is completed.

Proof of Theorem II.1. By taking λs = n−θs with 0 <
θ ≤ 1, there is

n
− 1

2
s λ

− 1
2

s + 1 ≤ 2.
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Hence the formula (18) can be rewritten as

E‖Ft − fρ‖2L2
ρX

� 1

N2
t

t∑
s=1

n
1−θmin{β−2,− 3

2}
s +

1

Nt

t∑
s=1

n
−θmin{β−2,− 1

2}
s

+
1

Nt

t∑
s=1

n1−θβs

� 1

N2
t

t∑
s=1

n
1+θmax{2−β, 32}
s +

1

Nt

t∑
s=1

n
θmax{2−β, 12}
s

+
1

Nt

t∑
s=1

n1−θβs . (20)

When 0 < β ≤ 1
2 and 0 < θ < 1

2−β . By Lemma IV.1,

E‖Ft − fρ‖2L2
ρX

�N−1+θ(2−β)t +N
(−1+θ(2−β)) p

1+p

t +N
− θβp

1+p

t

�N (−1+θ(2−β)) p
1+p

t +N
− θβp

1+p

t .

Hence by choosing θ = 1
2 , we have

E‖Ft − fρ‖2L2
ρX

� N
− βp

2(1+p)

t .

When 1
2 < β ≤ 3

2 and 0 < θ < 2
3 . By Lemma IV.1,

E‖Ft − fρ‖2L2
ρX

� N−1+
3
2 θ

t +N
(−1+θ(2−β)) p

1+p

t +N
− θβp

1+p

t .

Hence by choosing

θ = min
{ 2(1 + p)

3(1 + p) + 2pβ
,

1

2

}
,

we have

E‖Ft − fρ‖2L2
ρX

� N
−min{ 2pβ

3(1+p)+2pβ
, pβ
2(1+p)}

t .

Note that when 0 < β ≤ 1
2 , there are

2(1 + p)

3(1 + p) + 2pβ
≥ 1

2
, and

2pβ

3(1 + p) + 2pβ
≥ pβ

2(1 + p)
.

Hence our first conclusion in Theorem II.1 is proved.

When 3
2 < β ≤ 2 and 0 < θ ≤ 1. By Lemma IV.1,

E‖Ft − fρ‖2L2
ρX

� N−1+
3
2 θ

t +N
(−1+ 1

2 θ)
p

1+p

t

+N
−min{ θβp1+p , 1}
t (logNt)

ϑ((1−θβ)p)

Hence by choosing

θ = min
{ 2(1 + p)

3(1 + p) + 2pβ
,

2

2β + 1

}
,

we have

E‖Ft − fρ‖2L2
ρX

� N
−min{ 2pβ

3(1+p)+2pβ
, 2pβ
(2β+1)(1+p)}

t .

The proof of Theorem II.1 is completed.

Proof of Theorem II.2. Under the condition a1sp ≤ ns ≤
a2s

p, s = 1, 2, · · · , t, we have Ns ∼ sp+1. Taking λs = n−θs

with 0 < θ ≤ 1, by Lemma IV.1 and (17), we can continue
our estimate from (20),

E‖Ft − fρ‖2L2
ρX

� 1

N2
t

t∑
s=1

sp+pθmax{2−β, 32} +
1

Nt

t∑
s=1

spθmax{2−β, 12}

+
1

Nt

t∑
s=1

n1−θβs

�N−2t t1+p+pθmax{2−β, 32} +N−1t t1+pθmax{2−β, 12}

+N
−1+max{1− pθβ

1+p ,0}
t (log t)ϑ(p(1−θβ))

�N−1+
pθ
1+p max{2−β, 32}

t +N
− p

1+p+
pθ
1+p max{2−β, 12}

t

+N
max{− pθβ

1+p ,−1}
t (logNt)

ϑ(p(1−θβ)).

When 0 < β ≤ 1
2 , we have

E‖Ft − fρ‖2L2
ρX

�N−1+
pθ
1+p (2−β)

t +N
− p

1+p+
pθ
1+p (2−β)

t +N
− pθβ

1+p

t

�N
−min

{
p

1+p (1−θ(2−β)),
pθβ
1+p

}
t .

By taking θ = 1
2 , there holds

E‖Ft − fρ‖2L2
ρX

� N
− βp

2(1+p)

t .

When 1
2 < β ≤ 3

2 , we have

E‖Ft − fρ‖2L2
ρX

�N
−1+ 3pθ

2(1+p)

t +N
− p

1+p+
pθ
1+p (2−β)

t

+N
max{− pθβ

1+p ,−1}
t (logNt)

ϑ(p(1−θβ))

�N
−min

{
1− 3pθ

2(1+p)
, p
1+p (1−θ(2−β)),

pθβ
1+p

}
t (logNt)

ϑ(p(1−θβ)).

By taking θ = min
{

1
2 ,

2(1+p)
(3+2β)p

}
, there holds

E‖Ft − fρ‖2L2
ρX

� N
− βp

1+p min
{

1
2 ,

2(1+p)
(3+2β)p

}
t .

When 3
2 < β ≤ 2, we have

E‖Ft − fρ‖2L2
ρX

�N
−1+ 3pθ

2(1+p)

t +N
− p

1+p+
pθ

2(1+p)

t

+N
max{− pθβ

1+p ,−1}
t (logNt)

ϑ(p(1−θβ))

�N
−min

{
1− 3pθ

2(1+p)
, p
1+p (1−

θ
2 ),

pθβ
1+p

}
t (logNt)

ϑ(p(1−θβ)).

By taking θ = min
{

2
1+2β ,

2(1+p)
(3+2β)p

}
, there holds

E‖Ft − fρ‖2L2
ρX

� N
− βp

1+p min
{

2
1+2β ,

2(1+p)
(3+2β)p

}
t .

Hence the desired conclusions in Theorem II.2 is proved.

REFERENCES

[1] T. M. Mitchell, Machine learning. McGraw-Hill New York, 1997.
[2] S. Smale and D. X. Zhou, “Online learning with markov sampling,”

Analysis and Applications, vol. 7, no. 1, pp. 87–113, 2009.
[3] X. Q. Zheng, H. W. Sun, and Q. Wu, “Regularized least square ker-

nel regression for streaming data,” Communications in Mathematical
Sciences, vol. 19, no. 6, pp. 1533–1548, 2021.

IAENG International Journal of Applied Mathematics, 53:3, IJAM_53_3_34

Volume 53, Issue 3: September 2023

 
______________________________________________________________________________________ 



[4] H. W. Sun and Q. Wu, “Indefinite kernel network with dependent
sampling,” Analysis and Applications, vol. 11, no. 5, pp. 880–646,
2013.

[5] T. Evgeniou, M. Pontil, and T. Poggio, “Regularization networks and
support vector machines,” Advances in Computational Mathematics,
vol. 13, no. 1, pp. 1–50, 2000.

[6] Q. Wu and D. X. Zhou, “Svm soft margin classifiers: Linear program-
ming versus quadratic programming,” Neural Computation, vol. 17,
no. 5, pp. 1160–1187, 2005.

[7] N. Jiang and L. Gruenwald, “Research issues in data stream association
rule mining,” Association for Computing Machinery Sigmod Record,
vol. 35, no. 1, pp. 14–19, 2006.

[8] T. Hofmann, B. Schölkopf, and A. J. Smola, “Kernel methods in
machine learning,” Annals of Statistics, vol. 36, no. 3, pp. 1171–1220,
2008.

[9] S. Mika, “Kernel fisher discriminants,” Proceedings Aistats, 2003.
[10] T. J. Chin and D. Suter, “Incremental kernel principal component anal-

ysis,” Institute of Electrical and Electronics Engineers Transactions on
Image Processing, vol. 16, no. 6, pp. 1662–1674, 2007.

[11] L. S. Bo, X. Chang, and Z. D. Xuan, “Distributed semi-supervised
learning with kernel ridge regression,” Journal of Machine Learning
Research, vol. 18, no. 1, pp. 1493–1514, 2017.

[12] S. B. Lin, X. Guo, and D. X. Zhou, “Distributed learning with
regularized least squares,” Journal of Machine Learning Research,
vol. 18, no. 1, pp. 3202–3232, 2017.

[13] Y. Zhang, J. Duchi, and M. Wainwright, “Divide and conquer kernel
ridge regression,” Journal of Machine Learning Research, vol. 30, pp.
592–617, 2013.

[14] M. J. Pang and H. W. Sun, “Distributed regression learning with
coefficient regularization,” Journal of Mathematical Analysis and
Applications, vol. 466, no. 1, pp. 676–689, 2018.

[15] Q. Wu, “Regularization networks with indefinite kernels,” Journal of
Approximation Theory, vol. 166, pp. 1–18, 2013.

[16] H. W. Sun and Q. Wu, “Optimal rates of distributed regression with
imperfect kernels,” Journal of Machine Learning Research, vol. 22,
pp. 171–1, 2021.

[17] T. Zhang, “Leave-one-out bounds for kernel methods,” Neural Com-
putation, vol. 15, no. 6, pp. 1397–1437, 2003.

[18] H. W. Sun and Q. Wu, “Least square regression with indefinite kernels
and coefficient regularization,” Applied and Computational Harmonic
Analysis, vol. 30, no. 1, pp. 96–109, 2011.

IAENG International Journal of Applied Mathematics, 53:3, IJAM_53_3_34

Volume 53, Issue 3: September 2023

 
______________________________________________________________________________________ 




