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Abstract—In this paper, we first study two nonlinear dynamic
equations on time scales. By means of the theory of dynamic
equations on time scales and the properties of the shift operators
δ± as well as the Schauder’s fixed point theorem, some existence
theorems of almost periodic solution in shifts δ± and pseudo (v-
pseudo) almost periodic solution in shifts δ± of the equations
are established. Secondly, based on the obtained results, we
bring two ecosystems under investigation on some specific time
scales to obtain more general results.

Index Terms—Almost periodicity; Pseudo almost periodicity;
Nonlinear dynamic equation; Delay; Time scale.

I. INTRODUCTION

IN this paper, we study the following nonlinear dynamic
equations on time scales

y∆(x) = D(y(x))y(x) + ξ(x, y(x), y(δ−(τ, x))), x ∈ T,
(1)

and

y∆(x) = D(x, y(x))y(x) + ξ(x, y(x), y(δ−(τ, x))), x ∈ T,
(2)

where T is a time scale; Dn×n and ξn×1 are continuous
functions. The equations (1) and (2) can be used to describe
many phenomena in physics, ecology and other fields under
different time scales.

It is well known that periodic dynamic systems in nature
may exhibit almost periodicity and pseudo almost periodicity
due to the influence of external or human factors; see,
for example [1-11]. In recent years, by means of the shift
operators δ±, the concepts and properties of periodic and
almost (pseudo almost) periodic function in shifts δ± on
time scales have been defined and studied in [12-15] and
[16-18], respectively. The theory of periodic and almost
(pseudo almost) periodic dynamic equations in shifts δ± on
time scales have been rapidly developed and applied. The
existence and uniqueness theorems of almost (pseudo almost)
periodic solution in shifts δ± of the linear dynamic equation
on time scales

y∆(x) = D(x)y(x) + ξ(x), x ∈ T, (3)

has been studied in [16,17,18]. However, there is no result on
the existence of almost periodic and pseudo almost periodic
solutions for equations (1) and (2).
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On the basis of the above works, to further construct the
theory of almost periodicity and pseudo almost periodicity
on time scales, the main work of this paper is to explore the
existence theorems of almost periodic solution in shifts δ±
and pseudo (v-pseudo) almost periodic solution in shifts δ±
of (1) and (2).

Furthermore, we applying the obtained results to study
two ecosystems, i.e. a Schoener’s competition system and
a delayed dynamic equation, the corresponding examples on
some specific time scales are given to illustrate the usefulness
of our main results.

II. PRELIMINARIES

The theory of time scales and its applications on dynamic
equations, see [19].

Lemma 1. ([19]) If α ∈ R, then

(1) e0(x, z) ≡ 1, eα(x, x) ≡ 1;

(2) eα(σ(x), z) = (1 + µ(x)α(x))eα(x, z);

(3) eα(x, z) =
1

eα(z, x)
= e⊖α(z, x);

(4) eα(x, z)eα(z, r) = eα(x, r);

(5) (e⊖α(x, z))
∆ = (⊖α)(x)e⊖α(x, z);

(6)

(
1

eα(·, z)

)∆

= − α(x)

eσα(·, z)
.

A comprehensive review on periodicity and almost (pseu-
do almost) periodicity in shifts δ± on time scales, see [12-
18].

Consider the linear equation

y∆(x) = D(φ(x))y(x), x ∈ T, (4)

where φ(x) is a bounded continuous function.

Definition 1. ([20, 21]) Suppose that Ψ(x) is the fundamen-
tal solution matrix of (4), if there exist a projection P and
positive constants β and α such that

|Ψ(x)PΨ−1(σ(z))| ≤ βe⊖α(x, σ(z)),

z, x ∈ T, x ≥ σ(z),

|Ψ(x)(I − P )Ψ−1(σ(z))| ≤ βe⊖α(σ(z), x),

z, x ∈ T, x ≤ σ(z),

then (4) satisfies exponential dichotomy on T, | · | is the
Euclidean norm.

In the following sections, suppose that B is a Banach
space, BC(T,B) is a set of all B-valued bounded continuous
functions.
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III. EXISTENCE RESULTS OF SOLUTIONS

We first consider the existence of almost periodic solutions
in shifts δ± of (1).

Define the sets:

APS(T,B) = {ψ : T → B, ψ is almost

periodic in shifts δ±};
APS∆(T,B) = {ψ : T → B, ψ is ∆−almost

periodic in shifts δ±}.

Theorem 1. Suppose that µ(x) is bounded on T, (4) satis-
fies exponential dichotomy, and D(y) ∈ APS(Rn,Rn×n),
ξ ∈ APS∆(T,Rn), then (1) exists a solution y(x) ∈
APS(T,Rn).

Proof: Let S = {g(x)|g(x) ∈ APS(T,Rn) and g(x) is
continuous}, then (S, ∥ · ∥) is a Banach space with the norm
∥g(x)∥ = sup

x∈T
|g(x)|. Since

sup
(x,y1,y2)∈T×R2n

|ξ(x, y1, y2)| < +∞,

then one can choose a constant M0 > 0 such that

1

M0
sup

(x,y1,y2)∈T×R2n

|ξ(x, y1, y2)| <
1

βα1
,

where α1 = 1
inf(⊖α) +

1
α .

Take S0 ⊆ S, S0 is a closed convex subset of S, and

S0 = {φ(x)|φ(x) ∈ S, ∥φ∥ ≤M0}.

For any φ(x) ∈ S0, consider the inhomogenous linear
equation

y∆(x) = D(φ(x))y(x) + ξ(x, φ(x), φ(δ−(τ, x))). (5)

Since φ(x) ∈ S0, then φ(x) is bounded, and then the corre-
sponding homogeneous equation of (5) satisfies exponential
dichotomy, that is, (4) satisfies exponential dichotomy.

Moreover, φ(x) ∈ APS(T,Rn), then by the Definition
2.2 in [17], for arbitrarily ε > 0, there exists at least a p ∈
[x, δ

l(ε)
+ (x)]([δ

l(ε)
− (x), x]), such that

|φ(δp±(x))− φ(x)| < ε, ∀x ∈ T.

Let x′ = δτ−(x), since x ∈ T, then x′ ∈ T, and

|φ(δp±(δτ−(x)))− φ(δτ−(x))| = |φ(δp±(x′))− φ(x′)| < ε,

that is, φ(δ−(τ, x)) ∈ APS(T,Rn).
By the theorems in [16,17], (5) exists exactly one solution

yφ(x) ∈ APS(T,Rn), and

yφ(x)

=

∫ x

−∞
Ψφ(x)PΨ

−1
φ (σ(z))ξ(z, φ(z), φ(δ−(τ, z)))∆z

−
∫ +∞

x

Ψφ(x)(I − P )Ψ−1
φ (σ(z))

×ξ(z, φ(z), φ(δ−(τ, z)))∆z, (6)

then

∥yφ(x)∥

=

∥∥∥∥ ∫ x

−∞
Ψφ(x)PΨ

−1
φ (σ(z))ξ(z, φ(z), φ(δ−(τ, z)))∆z

−
∫ +∞

x

Ψφ(x)(I − P )Ψ−1
φ (σ(z))

×ξ(z, φ(z), φ(δ−(τ, z)))∆z
∥∥∥∥

≤
(∫ x

−∞
βe⊖α(x, σ(z))∆s+

∫ +∞

x

βe⊖α(σ(z), x)∆z

)
× sup

x∈T
|ξ(x, φ(x), φ(δ−(τ, x)))|

≤ βα1 sup
x∈T

|ξ(x, φ(x), φ(δ−(τ, x)))|

≤ M0,

that is, yφ(x) ∈ S0.
Define

Φ : S0 → S0,Φφ = yφ. (7)

Next we show that Φ is a compact continuous mapping.
We first prove that Φ is a compact mapping. Consider

the sequence {φn(x)} ⊆ S0, then |Φφn(x)| ≤ M0. By (7),
Φφn(x) = yφn(x), n = 1, 2, · · · , and

y∆φn
(x) = D(φn(x))yφn(x) + ξ(x, φn(x), φn(δ−(τ, x))),

(8)
then

|y∆φn
(x)| ≤

(
M +

1

βα1

)
M0, (9)

where M = sup
|φn(x)|≤M0

|D(φn(x))|.

It follows from (9) that {y∆φn
(x)} is uniformly bounded,

then {yφn(x)} is uniformly bounded and equicontinuous.
By the Arzela-Ascoli theorem, there exists a subsequence
{yφnk

(x)} of {yφn(x)} such that {yφnk
(x)} converges

uniformly on any compact set of T. Since {yφnk
(x)} =

{Φφnk
(x)}, then {Φφnk

(x)} converges uniformly on T, that
is, Φ is a compact mapping.

Now we prove that Φ is a continuous mapping. For
{φn(x)} ⊆ S0, we only need to prove that when {φn(x)}
converges uniformly to φ(x), there is Φ{φn(x)} converges
uniformly to Φφ(x).

It is known from (8) that when {φn(x)} converges uni-
formly to φ(x) on T, {yφn(x)} that is Φ{φn(x)} converges
uniformly to the solution yφ of the equation (5) on T, and
yφ ∈ APS(T,Rn). On the other hand, (4) satisfies expo-
nential dichotomy, that is, the corresponding homogeneous
of the equation (5) satisfies exponential dichotomy, then (5)
exists a unique solution yφ ∈ APS(T,Rn). By (7), then
Φφn → Φφ. Thus, Φ is a continuous mapping.

By using the Schauder’s fixed point theorem, Φ has a fixed
point, there exists φ ∈ S0 such that Φφ = φ, that is, (1) has
an almost periodic solution in shifts δ±. This completes the
proof.

Next, we consider the existence of pseudo almost periodic
solutions in shifts δ± of (1).

Define the set

PAPS(T,B) = {ψ : T → B, ψ is pseudo almost

periodic in shifts δ±};
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PAPS0(T,B) = {ψ(x) ∈ BC(T,B) :

lim
d→+∞

1

(δd+(x0)− δd−(x0))

∫ δd+(x0)

δd−(x0)

|ψ(x)|∆x = 0}.

Theorem 2. Suppose that µ(x) is bounded on T, (4) satisfies
exponential dichotomy, D(y) ∈ APS(Rn,Rn×n), ξ = ξ1 +
ξ2, and ξ1 ∈ APS∆(T,Rn), ξ2 ∈ PAPS0(T,Rn), then (1)
exists a solution y(x) ∈ PAPS(T,Rn).

Proof: Under the conditions of Theorem 2, similarly to
the proof of Theorem 3.1 in [18], (5) has a unique solution
yφ(x) ∈ PAPS(T,Rn) as (6); then similarly to the proof
of Theorem 1, (1) exists a solution y(x) ∈ PAPS(T,Rn).
This completes the proof.

Let U is a set of functions (weight) v : T → (0,+∞), and

u(d, v) =

∫ δd+(x0)

δd−(x0)

v(x)∆x,

U∞ = {v ∈ U : lim
d→+∞

u(d, v) = +∞},

UB = {v ∈ U∞ : v is bounded and inf
x∈T

v(x) > 0},

then UB ⊂ U∞ ⊂ U.
For v ∈ U∞, set

PAPS(T,B, v) = {ψ : T → B, ψ is v−pseudo almost

periodic in shifts δ±};

PAPS0(T,B, v) = {ψ(x) ∈ BC(T,B) :

lim
d→+∞

1

u(d, v)

∫ δd+(x0)

δd−(x0)

|ψ(x)|v(x)∆x = 0}.

Theorem 3. Suppose that µ(x) is bounded on T, (4) satisfies
exponential dichotomy, D(y) ∈ APS(Rn,Rn×n), ξ = ξ1 +
ξ2, and ξ1 ∈ APS∆(T,Rn), ξ2 ∈ PAPS0(T,Rn, v), then
(1) exists a solution y(x) ∈ PAPS(T,Rn, v).

Remark 1. Theorem 3 can be proved in a similar way as
the proof of Theorem 2.

Remark 2. If the linear equation

y∆(x) = D(x, φ(x))y(x), x ∈ T, (10)

satisfies exponential dichotomy, φ(x) is a bounded contin-
uous function. Then the conclusions of Theorems 1, 2 and
3 also hold for equation (2). In fact, it is only necessary
to replace D(φ(x)) with D(x, φ(x)) and repeat the above
proofs processes.

IV. APPLICATIONS

In this section, denote ζu = sup
x∈[x0,+∞)T

|ζ(x)|, and ζl =

inf
x∈[x0,+∞)T

|ζ(x)|, R+ = (0,+∞).

Example 1. Consider the Schoener’s competition system

y∆1 (x) = r1(x)
exp{y1(δ−(τ1,x))}+b1(x)

−a11(x) exp{y1(x)}
−a12(x) exp{y2(x)} − c1(x),

y∆2 (x) = r2(x)
exp{y2(δ−(τ2,x))}+b2(x)

−a21(x) exp{y1(x)}
−a22(x) exp{y2(x)} − c2(x),

(11)

with the initial conditions

y1(x0) = y10, y2(x0) = y20, y10 > 0, y20 > 0, x0 ∈ T.

Suppose that the coefficients of (11) are positive ∆-almost
periodic functions in shifts δ±, and

(H1)
ru1 −al

11−al
12−cl1

(1+bl1)a
l
11

> 1, ru2 −al
21−al

22−cl2
(1+bl2)a

l
22

> 1;

(H2)
rl1

(eM1+bu1 )a
u
11

− au
12e

M2+cu1
au
11

> 1,
rl2

(eM2+bu2 )a
u
22

− au
21e

M1+cu2
au
22

> 1.

Applying the inequalities in [22,23], similarly to the proofs
of Theorem 9 and Lemma 10, one can obtain the following
lemmas.

Lemma 2. Suppose that (H1) and (H2) hold, then (11) is
permanent, and

m1 ≤ lim inf
t→+∞

y1(x) ≤ lim sup
t→+∞

y1(x) ≤M1, (12)

m2 ≤ lim inf
t→+∞

y2(x) ≤ lim sup
t→+∞

y2(x) ≤M2, (13)

where

M1 =
ru1 − al11 − al12 − cl1

(1 + bl1)a
l
11

− 1,

M2 =
ru2 − al21 − al22 − cl2

(1 + bl2)a
l
22

− 1,

m1 = ln

(
rl1

(eM1 + bu1 )a
u
11

− au12e
M2 + cu1
au11

)
,

m2 = ln

(
rl2

(eM2 + bu2 )a
u
22

− au21e
M1 + cu2
au22

)
.

Let S(T) is the set of all solutions of (11).

Lemma 3. S(T) ̸= ∅.

Remark 3. Lemma 3 implies that S(T) is a positive invari-
ant set of (11).

Theorem 4. Suppose that (H1) and (H2) hold, and

−al11 + au21 ≤ −α < 0, (14)
al12 − au22 ≤ −α < 0, (15)

where α > 0 is a constant, then (11) exists a positive solution
(y1, y2) ∈ APS(T,R2+).

Proof: From (11), we can get

y∆1 (x) =
r1(x)

exp{y1(δ−(τ1, x))}+ b1(x)

−a11(x)
exp{y1(x)}
y1(x)

y1(x)

−a12(x)
exp{y2(x)}
y2(x)

y2(x)− c1(x),

y∆2 (x) =
r2(x)

exp{y2(δ−(τ2, x))}+ b2(x)

−a21(x)
exp{y1(x)}
y1(x)

y1(x)

−a22(x)
exp{y2(x)}
y2(x)

y2(x)− c2(x),
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that is (
y1(x)
y2(x)

)∆

=

(
−a11(x) exp{y1(x)}

y1(x)
−a12(x) exp{y2(x)}

y2(x)

−a21(x) exp{y1(x)}
y1(x)

−a22(x) exp{y2(x)}
y2(x)

)

×
(
y1(x)
y2(x)

)
+

(
r1(x)

exp{y1(δ−(τ1,x))}+b1(x)
− c1(x)

r2(x)
exp{y2(δ−(τ2,x))}+b2(x)

− c2(x)

)
. (16)

From (14) and (15),(
y1(x)
y2(x)

)∆

=

(
−a11(x) exp{y1(x)}

y1(x)
−a12(x) exp{y2(x)}

y2(x)

−a21(x) exp{y1(x)}
y1(x)

−a22(x) exp{y2(x)}
y2(x)

)

×
(
y1(x)
y2(x)

)
satisfies exponential dichotomy. According to Theorem 1,
(16) exists a positive solution (y1, y2) ∈ APS(T,R2+), that
is, (11) exists a positive solution (y1, y2) ∈ APS(T,R2+).
This completes the proof.

Now, we give a numerical example. Let

T =
∪
ℓ∈Z

[2ℓ, 2ℓ+ 1],

then

µ(x) =

{
0, x ∈

∪
ℓ∈Z[2ℓ, 2ℓ+ 1),

1, x ∈
∪

ℓ∈Z{2ℓ+ 1}.

Take x0 = 0, δz−(x) = x− z, τ1 = τ2 = 2, and

r1(x) = 1.8− 0.1 cos(
√
2x),

r2(x) = 1 + 0.1 sin(
√
3x),

b1(x) = 5 + 0.2 cos(x), b2(x) = 6 + 0.1 sin(x),

c1(x) = 0.001, c2(x) = 0.005,

a11(x) = 0.2 + 0.01 cos(x),

a12(x) = 0.003− 0.001 sin(x),

a21(x) = 0.004− 0.001 sin(x),

a22(x) = 0.1 + 0.01 sin(x).

By a direct computation, (H1) and (H2) hold, and

M1 = 0.3308,M2 = 0.4171,m1 = 0.1836,m2 = 0.0929,

and

−al11 + au21 = −0.185 < 0,

al12 − au22 = −0.986 < 0.

Furthermore, it follows from (16) that,

f(x) =

(
r1(x)

exp{y1(δ−(τ1,x))}+b1(x)
− c1(x)

r2(x)
exp{y2(δ−(τ2,x))}+b2(x)

− c2(x)

)
,

then f(x) ∈ APS∆(T,R2+), and |f(x)| < +∞.
According to Theorem 1, (11) exists a positive solution

(y1, y2) ∈ APS(T,R2+). Dynamic simulations of (11), see
Figure 1.
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Fig. 1. Numerical solutions of (11) (Example 1) with the initial
values (y1(0), y2(0)) = {(0.2, 0.2), (0.3, 0.3), (0.5, 0.5)}.

Example 2. Consider the following delayed dynamic equa-
tion

y∆(x)

= −a(y(x))y(x) + b(x)

∫ +∞

x0

k(z)η(y(δz−(x)))∆z

+c(x), x0, x ∈ T. (17)

Suppose that a(y) ∈ APS(R,R+), b(x) ∈ APS∆(T,R+),
c(x) = c1(x) + c2(x), and c1(x) ∈ APS∆(T,R+), c2(x) ∈
PAPS0(T,R+), and

(H3) al > 0, and 1− µ(x)au > 0, ∀x ∈ [x0,+∞)T;
(H4) η ∈ C(R, [0,+∞));
(H5) δ

∆ζ

+ (·, ζ) is bounded, and 0 < δ
∆ζ

+ (·, ζ) ≤ r, where
r > 0 is a constant.

Lemma 4.
∫ +∞
x0

k(z)η(ϕ(δz−(x)))∆z ∈ PAPS(T,R+).

Proof: Let ϕ(x) ∈ PAPS(T,R+), and

η(ϕ(x)) = η1(x) + η2(x),
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where η1(x) ∈ APS(T,R+), η2(x) ∈ PAPS0(T,R+), then

|η1(δp±(x))− η1(x)| <
ε

1 +
∫ +∞
x0

|k(z)|∆z
,∀x ∈ T,

lim
d→+∞

1

(δd+(x0)− δd−(x0))

∫ δd+(x0)

δd−(x0)

|η2(x)|∆x = 0.

It follows that,∣∣∣∣ ∫ +∞

x0

k(z)η1(δ
p
±(δ

z
−(x)))∆z

−
∫ +∞

x0

k(z)η1(δ
z
−(x))∆z

∣∣∣∣
≤

∫ +∞

x0

|k(z)||η1(δp±(δz−(x)))− η1(δ
z
−(x))|∆z

<

∫ +∞

x0

|k(z)|∆z ε

1 +
∫ +∞
x0

|k(z)|∆z
< ε,

and

lim
d→+∞

1

(δd+(x0)− δd−(x0))∫ δd+(x0)

δd−(x0)

∣∣∣∣ ∫ +∞

x0

k(z)η2(δ
z
−(x))∆z

∣∣∣∣∆x
≤ lim

d→+∞

1

(δd+(x0)− δd−(x0))∫ δd+(x0)

δd−(x0)

∫ +∞

x0

|k(z)||η2(δz−(x))|∆z∆x

= lim
d→+∞

1

(δd+(x0)− δd−(x0))∫ +∞

x0

|k(z)|
∫ δd+(x0)

δd−(x0)

|η2(δz−(x))|∆x∆z

= lim
d→+∞

1

(δd+(x0)− δd−(x0))∫ +∞

x0

|k(z)|
∫ δd−z

+ (x0)

δd+z
− (x0)

|η2(ζ)|δ
∆ζ

+ (z, ζ)∆ζ∆z

≤ lim
d→+∞

r

(δd+(x0)− δd−(x0))∫ +∞

x0

|k(z)|
∫ δd+z

+ (x0)

δd+z
− (x0)

|η2(ζ)|∆ζ∆z

= 0,

that is, ∫ +∞

x0

k(z)η1(δ
z
−(x))∆z ∈ APS(T,R+),∫ +∞

x0

k(z)η2(δ
z
−(x))∆z ∈ PAPS0(T,R+),

and then,∫ +∞

x0

k(z)η(ϕ(δz−(x)))∆z ∈ PAPS(T,R+).

This completes the proof.
According to Theorem 2, we can obtain the following

theorem.

Theorem 5. Suppose that (H3)−(H5) hold, then (17) exists
a positive solution y ∈ PAPS(T,R+).

Now, we give a numerical example. Let T = R, then
µ(x) = 0. Take x0 = 0, δz−(x) = x− z, and

a(y) =
1

2
− 1

4
cos(y),

b(x) =
1

3
+

1

6
sin(x),

c(x) = (2 + cos(x)) +
1

2 + x2
,

k(z) = e−z, η(θ) =
1

10
(|θ + 1| − |θ − 1|).

According to Theorem 5, (17) exists a positive solution y ∈
PAPS(T,R+). Dynamic simulations of (17), see Figure 2.
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Fig. 2. Numerical solutions of (17) (Example 2) with the initial
values y(0) = {1, 2, 3}.

V. CONCLUSION

This paper not only provides a new technique for studying
the existence of solutions of dynamic equations on time
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scales, but also gives the existence theorems of almost
periodic and pseudo almost periodic solutions in shifts δ±
of two kinds of nonlinear dynamic equations.

The study of ecosystem defined on specific time scale (see
Example 1) shows that the results of this paper have practical
significance in improving the theory of almost periodic and
pseudo almost periodic on time scales, which provides a
theoretical basis for the study of nonlinear dynamic equations
on more general time scales, especially the time scales are
not closed under addition.
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