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Abstract—This article addresses challenges associated with
anisotropic functionally graded media that are governed by
the transient diffusion-convection equation. The authors seek
to obtain numerical solutions for these problems by utilizing
a combination of Laplace transform and boundary element
method. To achieve this, a boundary integral equation is derived
and a standard boundary element method is used to obtain
numerical solutions, which are then inversely transformed using
the Stehfest formula to obtain solutions in the time variable.
The problems studied include those involving compressible or
incompressible flow and media with quadratic, exponential, and
trigonometric gradients. The findings suggest that the approach
used to transform the variable coefficients equation into the
constant coefficients equation is valid and the mixed Laplace
transform and boundary element method is a simple and
effective means of obtaining numerical solutions. The accuracy
of the numerical solutions is also confirmed, and the impact
of material anisotropy and inhomogeneity on the solutions
is highlighted, suggesting that accounting for these factors is
crucial for experimental studies. Additionally, the symmetry of
solutions for symmetric problems is also verified for further
validation of the numerical solutions.

Index Terms—diffusion convection equation, anisotropic,
transient, variable coefficients, boundary element method

I. INTRODUCTION

The diffusion convection (DC) equation has multiple ap-
plications in various fields, such as biology, ecology, en-
gineering, and medicine. Several studies have been carried
out to find its numerical solution. Some of these studies,
(for example [1]–[4]) considered the DC equation with
constant coefficients for homogeneous media. Whereas, [5]–
[10] focused on the DCR equation with variable velocity
for inhomogeneous media. Some other studies on problems
of inhomogeneous anisotropic media for several types of
governing equations had been done (see for examples, [11]–
[14].

This paper is intended to extend the recently published
works [15]–[18] on the steady DC equation to the transient
DC equation for anisotropic functionally graded materials of
the form

∂

∂xi

[
dij (x)

∂c (x, t)

∂xj

]
− ∂

∂xi
[vi (x) c (x, t)]

= ψ (x)
∂c (x, t)

∂t
i, j = 1, 2 (1)

Equation (1) provides a wider class of problems since
it applies for anisotropic and inhomogeneous media but
nonetheless covers the case of isotropic diffusion taking place

Manuscript received March 4, 2023; revised June 26, 2023.
This work was supported in part by Hasanuddin University and Ministry

of Education, Culture, Research, and Technology of Indonesia.
M. I. Azis is a professor at the Department of Mathematics, Hasanuddin

University, Makassar 90245, Indonesia (phone: 62-811-466-230; e-mail:
ivan@unhas.ac.id).

when d11 = d22, d12 = 0 and also the case of homogeneous
media which occurs when the coefficients dij (x), vi (x) and
ψ (x) are constant. The class of inhomogeneity that will be
covered in (1) is different to those considered in [5]–[10].

Within the Cartesian frame Ox1x2 we will consider
initial boundary value problems governed by (1) where
x = (x1, x2). The coefficient [dij ] is a symmetric matrix
with positive determinant. In (1) the summation convention
holds for repeated indices so that explicitly equation (1) takes
the form

∂

∂x1

(
d11

∂c

∂x1

)
+

∂

∂x1

(
d12

∂c

∂x2

)
+

∂

∂x2

(
d12

∂c

∂x1

)
+

∂

∂x2

(
d22

∂c

∂x2

)
− ∂

∂x1
(v1c)−

∂

∂x2
(v2c) = ψ

∂c

∂t

In recent times, functionally graded materials (FGMs)
have gained significant attention, and many studies have
been conducted on their applications for various purposes, as
documented by Zhou et al. [19], Zhou et al. [20]. Typically,
FGMs are described as inhomogeneous materials whose spe-
cific characteristics, such as thermal conductivity, hardness,
toughness, ductility, corrosion resistance, etc., change in a
continuous manner over space. The coefficients dij , vi, ψ in
(1) vary continuously and represent specific characteristics
of the medium of interest, thus making equation (1) relevant
for FGMs.

II. THE INITIAL BOUNDARY VALUE PROBLEM

By knowing the coefficients dij (x) , vi (x) , ψ (x) we will
seek solutions c (x, t) and its derivatives which are valid for
time interval t ≥ 0 and in a region Ω in R2 with boundary
∂Ω which consists of a finite number of piecewise smooth
curves. On the boundary ∂Ω1 the dependent variable c (x, t)
is given, and

P (x, t) = dij (x)
∂c (x, t)

∂xi
nj (2)

is specified on ∂Ω2 where ∂Ω = ∂Ω1∪∂Ω2 and n =(n1, n2)
represents the outward pointing normal to ∂Ω. The initial
condition is

c (x, 0) = 0 (3)

III. THE BOUNDARY INTEGRAL EQUATION

To solve the variable coefficient equation (1), the first
step is to convert it into a constant coefficient equation, and
then apply a Laplace transform. By doing so, a boundary
integral equation can be formulated with the transformed
constant coefficient equation, using the Laplace transform
dummy variable s and the position vector x. The boundary
integral equation is then solved through the application of the
standard boundary element method (BEM). Afterward, the
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solution c and its derivatives can be obtained for all (x, t) in
the domain using an inverse Laplace transform. The Stehfest
formula is used to implement the numerical calculation of
the inverse Laplace transform.

We restrict the coefficients dij , vi, ψ to be of the form

dij (x) = d̂ij g(x) (4)
vi (x) = v̂i g(x) (5)

ψ (x) = ψ̂ g(x) (6)

where g(x) is a differentiable function and d̂ij , v̂i, ψ̂ are
constants. Substitution of (4)-(6) into (1) gives

d̂ij
∂

∂xi

(
g
∂c

∂xj

)
− v̂i

∂ (gc)

∂xi
= ψ̂g

∂c

∂t
(7)

Assume
c (x, t) = g−1/2 (x)σ (x, t) (8)

therefore use of (4) and (8) in (2) gives

P (x, t) = −Pg (x)σ (x, t) + g1/2 (x)Pσ (x, t) (9)

where

Pg (x) = d̂ij
∂g1/2 (x)

∂xj
ni Pσ (x, t) = d̂ij

∂σ (x, t)

∂xj
ni

Moreover, equation (7) can be written as

d̂ij
∂

∂xi

[
g
∂
(
g−1/2σ

)
∂xj

]
− v̂i

∂
(
g1/2σ

)
∂xi

= ψ̂g
∂
(
g−1/2σ

)
∂t

d̂ij
∂

∂xi

[
g

(
g−1/2 ∂σ

∂xj
+ σ

∂g−1/2

∂xj

)]
−v̂i

(
g1/2

∂σ

∂xi
+ σ

∂g1/2

∂xi

)
= ψ̂g

(
g−1/2 ∂σ

∂t

)

d̂ij
∂

∂xi

(
g1/2

∂σ

∂xj
+ gσ

∂g−1/2

∂xj

)
−v̂i

(
g1/2

∂σ

∂xi
+ σ

∂g1/2

∂xi

)
= ψ̂g1/2

∂σ

∂t

Use of the identity

∂g−1/2

∂xi
= −g−1 ∂g

1/2

∂xi

implies

d̂ij
∂

∂xi

(
g1/2

∂σ

∂xj
− σ

∂g1/2

∂xj

)
−v̂i

(
g1/2

∂σ

∂xi
+ σ

∂g1/2

∂xi

)
= ψ̂g1/2

∂σ

∂t

Rearranging and neglecting some zero terms gives

g1/2
(
d̂ij

∂2σ

∂xi∂xj
− v̂i

∂σ

∂xi

)
−σ
(
d̂ij

∂2g1/2

∂xi∂xj
+ v̂i

∂g1/2

∂xi

)
= ψ̂g1/2

∂σ

∂t

So that if g satisfies

d̂ij
∂2g1/2

∂xi∂xj
+ v̂i

∂g1/2

∂xi
− λg1/2 = 0 (10)

where λ is a constant, then the transformation (8) brings the
variable coefficients equation (1) into a constant coefficients
equation

d̂ij
∂2σ

∂xi∂xj
− v̂i

∂σ

∂xi
− λσ = ψ̂

∂σ

∂t
(11)

Taking the Laplace transform of (8), (9), (11) and applying
the initial condition (3) we obtain

σ∗ (x, s) = g1/2 (x) c∗ (x, s) (12)

Pσ∗ (x, s) = [P ∗ (x, s) + Pg (x)σ
∗ (x, s)] g−1/2 (x) (13)

d̂ij
∂2σ∗

∂xi∂xj
− v̂i

∂σ∗

∂xi
−
(
λ+ sψ̂

)
σ∗ = 0 (14)

By using Gauss divergence theorem, equation (14) can be
transformed into a boundary integral equation

η (ξ) σ∗ (ξ, s) =

∫
∂Ω

{Pσ∗ (x, s) Φ (x, ξ)

− [P (x) Φ (x, ξ) + Γ (x, ξ)]σ∗ (x, s)} dS (x) (15)

where
Pv (x) = v̂ini (x)

For 2-D problems the fundamental solutions Φ(x, ξ) and
Γ(x, ξ) for are given as

Φ(x, ξ) =
ρi

2πD
exp

(
− v̇. Ṙ

2D

)
K0

(
µ̇Ṙ
)

Γ(x, ξ) = d̂ij
∂Φ (x, ξ)

∂xj
ni

where

µ̇ =

√
(v̇/2D)

2
+
[(
λ+ sψ̂

)
/D
]

D =
[
d̂11 + 2d̂12ρr + d̂22

(
ρ2r + ρ2i

)]
/2

Ṙ = ẋ− ξ̇

ẋ = (x1 + ρrx2, ρix2)

ξ̇ = (ξ1 + ρrξ2, ρiξ2)

v̇ = (v̂1 + ρrv̂2, ρiv̂2)

Ṙ =

√
(x1 + ρrx2 − ξ1 − ρrξ2)

2
+ (ρix2 − ρiξ2)

2

v̇ =

√
(v̂1 + ρrv̂2)

2
+ (ρiv̂2)

2

where ρr and ρi are respectively the real and the positive
imaginary parts of the complex root ρ of the quadratic
equation

d̂11 + 2d̂12ρ+ d̂22ρ
2 = 0

and K0 is the modified Bessel function. Use of (12) and (13)
in (15) yields

η (ξ) g1/2 (ξ) c∗ (ξ, s)

=

∫
∂Ω

{[
g−1/2 (x) Φ (x, ξ)

]
P ∗ (x, s)

+
[(
Pg (x)− Pv (x) g

1/2 (x)
)
Φ (x, ξ)

−g1/2 (x) Γ (x, ξ)
]
c∗ (x, s)

}
dS (x) (16)

Equation (16) provides a boundary domain integral equation
for determining the numerical solutions of c∗ and its deriva-
tives ∂c∗/∂x1 and ∂c∗/∂x2 at all points of Ω. The derivative
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solutions ∂c∗/∂ξ1 and ∂c∗/∂ξ2 can be determined using the
following equations

∂c∗ (ξ, s)

∂ξ1
=

∫
∂Ω

{[
g−1/2 (x)

∂Φ (x, ξ)

∂ξ1

]
P ∗ (x, s)

+

[(
Pg (x)− Pv (x) g

1/2 (x)
) ∂Φ (x, ξ)

∂ξ1

−g1/2 (x) ∂Γ (x, ξ)

∂ξ1

]
c∗ (x, s)

}
dS (x)

−c∗ (ξ, s) ∂g
1/2 (ξ)

∂ξ1
∂c∗ (ξ, s)

∂ξ2
=

∫
∂Ω

{[
g−1/2 (x)

∂Φ (x, ξ)

∂ξ2

]
P ∗ (x, s)

+

[(
Pg (x)− Pv (x) g

1/2 (x)
) ∂Φ (x, ξ)

∂ξ2

−g1/2 (x) ∂Γ (x, ξ)

∂ξ2

]
c∗ (x, s)

}
dS (x)

−c∗ (ξ, s) ∂g
1/2 (ξ)

∂ξ2

Using the solutions c∗ (x, s) and its derivatives ∂c∗/∂x1
and ∂c∗/∂x2 obtained from reference (16), a numerical
technique is used to perform a Laplace transform inversion.
The Stehfest formula is employed to obtain the values of
c (x, t) and its derivatives ∂c/∂x1 and ∂c/∂x2. The Stehfest
formula is

c (x, t) ≃ ln 2

t

N∑
m=1

Vmc
∗ (x, sm)

∂c (x, t)

∂x1
≃ ln 2

t

N∑
m=1

Vm
∂c∗ (x, sm)

∂x1
(17)

∂c (x, t)

∂x2
≃ ln 2

t

N∑
m=1

Vm
∂c∗ (x, sm)

∂x2

where

sm =
ln 2

t
m

Vm = (−1)
N
2 +m ×

min(m,N2 )∑
k=[m+1

2 ]

kN/2 (2k)!(
N
2 − k

)
!k! (k − 1)! (m− k)! (2k −m)!

Possible multi-parameter solutions g1/2 (x) to (10) are

g1/2 (x) =

{
constant, λ = 0

exp (β0 + βixi) , d̂ijβiβj + v̂iβi − λ = 0
(18)

If the flow is incompressible, that is the divergence of the
velocity is zero, then

∂vi (x)

∂xi
= 0

Therefore the governing equation (1) reduces to

∂

∂xi

[
dij (x)

∂c (x, t)

∂xj

]
− vi (x)

∂c (x, t)

∂xi
= ψ (x)

∂c (x, t)

∂t

Also, from (5) we obtain

∂vi (x)

∂xi
= 2g1/2(x)v̂i

∂g1/2(x)

∂xi
= 0

TABLE I
VALUES OF Vm OF THE STEHFEST FORMULA FOR N = 8, 10, 12

Vm N = 8 N = 10 N = 12
V1 −1/3 1/12 −1/60
V2 145/3 −385/12 961/60
V3 −906 1279 −1247
V4 16394/3 −46871/3 82663/3
V5 −43130/3 505465/6 −1579685/6
V6 18730 −236957.5 1324138.7
V7 −35840/3 1127735/3 −58375583/15
V8 8960/3 −1020215/3 21159859/3
V9 164062.5 −8005336.5
V10 −32812.5 5552830.5
V11 −2155507.2
V12 359251.2

so that

v̂i
∂g1/2(x)

∂xi
= 0

Therefore equation (10) reduces to

d̂ij
∂2g1/2

∂xi∂xj
− λg1/2 = 0 (19)

Thus, for incompressible flow, possible multi-parameter
functions g1/2 (x) satisfying (19) are

g1/2 (x) =


β0 + βixi, if λ = 0
cos (β0 + βixi) + sin (β0 + βixi) ,

if d̂ijβiβj + λ = 0

exp (β0 + βixi) , if d̂ijβiβj − λ = 0
(20)

IV. NUMERICAL RESULTS

In this paragraph, the author describes some different test
problems that will be considered to evaluate the effectiveness
of the mixed Laplace transform-boundary element method
(LT-BEM). Some of the problems have analytical solutions
while others do not. The purpose of the tests is to validate
the boundary integral equation (16), as well as to assess the
accuracy, efficiency, and consistency of the mixed LT-BEM.
The problems are governed by equation (1), and they satisfy
specific initial and boundary conditions outlined in section
II. The equation’s coefficients, which represent the system’s
characteristics such as diffusivity, velocity, and change rate,
are assumed to take specific forms. The author will use stan-
dard BEM to obtain numerical results. They will use a unit
square (see Figure 1) with 320 equally sized elements and a
FORTRAN script to perform the computations. Additionally,
a subroutine to compute the Stehfest formula’s coefficients
for any even number N is included in the script, with Table
I displaying the results for N = 8, 10, 12.

A. A test problem

The problem will consider three cases of inhomogeneity
functions g (x), namely exponential function of the form
(18) for compressible flow, and quadratic or trigonometric
functions taking the form (20) for incompressible flow. We
take mutual coefficients d̂ij and v̂i for all test problems

d̂ij =

[
1 0.35

0.35 0.65

]
v̂i = (1, 2.5)
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-

6

x1

x2

A(0, 0) B(1, 0)

C(1, 1)D(0, 1)

c (x, 0) = 0

P given

P given

P given

c given

Fig. 1. The boundary conditions for Problem IV-A

and a mutual set of boundary conditions (see Figure 1)

P is given on side AB, BC, CD
c is given on side AD

For each case, numerical solutions for c and the deriva-
tives ∂c/∂x1 and ∂c/∂x2 at 19 × 19 interior points
which are (x1, x2) = {0.05, 0.1, 0.15, . . . , 0.9, 0.95} ×
{0.05, 0.1, 0.15, . . . , 0.9, 0.95} and 9 time-steps which are
t = 0.004, π8 ,

π
4 ,

3π
8 ,

π
2 ,

5π
8 ,

3π
4 ,

7π
8 , π are sought. The value

t = 0.004 is the approximating value of t = 0 which is the
singularity of the Stehfest formula (17). The relative error E
of the numerical solutions are computed using the formulas

E =

[∑19×19
i=1 (cn,i − ca,i)

2∑19×19
i=1 c2a,i

] 1
2

where cn and ca are respectively the numerical and analytical
solutions c or the derivatives.

Case 1:: First, we consider an example of an exponen-
tially graded material and compressible flow with analytical
solution

c (x, t) =
t exp (−0.2x1 + 0.3x2)

exp (1 + 0.2x1 − 0.1x2)

The gradation function is

g(x) = [exp (1 + 0.2x1 − 0.1x2)]
2

and the constant change rate is

ψ̂∗ = −0.476/s

From equation (10) we obtain the parameter

λ = −0.0175

Figure 2 shows the relative errors E of the numerical
solutions c (top row), ∂c/∂x1 (middle row) and ∂c/∂x2
(bottom row). Each row of Figure 2 shows the errors E for
N = 8, 10, 12. From Figure 2 we may say that the errors for
the solution c are optimized when N = 8, N = 10 for the
solutions ∂c/∂x1 and ∂c/∂x2. Table II shows the values of
E when N = 10. According to Hassanzadeh and Pooladi-
Darvish [21] increasing N will increase the accuracy up to
a point, and then the accuracy will decline due to round-off
errors.
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E

t
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 0.008

 0.009

 0.01

 0.011

 0.012

0.004 Pi/8 Pi/4 3Pi/8 Pi/2 5Pi/8 3Pi/4 7Pi/8 Pi

E

t

N = 8
N = 10
N = 12

Fig. 2. The relative error E of the numerical solutions c (top row), ∂c/∂x1

(middle row) and ∂c/∂x2 (bottom row) for Case 1 with N = 8, 10, 12.

TABLE II
THE RELATIVE ERRORS E FOR NUMERICAL SOLUTIONS

c, ∂c/∂x1, ∂c/∂x2 OF CASE 1 WITH N = 10

t
E

c ∂c/∂x1 ∂c/∂x2

0.004 2.4180403E-003 1.0798660E-002 6.3669128E-003
π/8 2.4018083E-003 1.0738634E-002 6.3434275E-003
π/4 2.3821686E-003 1.0719655E-002 6.3051214E-003
3π/8 2.3888847E-003 1.0695628E-002 6.3102100E-003
π/2 2.3695990E-003 1.0624211E-002 6.2536332E-003
5π/8 2.4633840E-003 1.0971267E-002 6.4588734E-003
3π/4 2.3777798E-003 1.0680458E-002 6.2820693E-003
7π/8 2.4028151E-003 1.0766729E-002 6.3423626E-003
π 2.4216329E-003 1.0835465E-002 6.3829037E-003

Case 2:: Next, we consider an example for a quadrat-
ically graded material for which the gradation function is a
quadratic function of the form

g(x) = [1 + 0.25x1 − 0.1x2]
2

With this gradation function, the flow is incompressible and
the parameter λ satisfying (19) is

λ = 0
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Fig. 3. The relative error E of the numerical solutions c (top row), ∂c/∂x1

(middle row) and ∂c/∂x2 (bottom row) for Case 2 with N = 8, 10, 12.

By taking the change rate

ψ̂∗ = −0.4935/s

the analytical solution is

c (x, t) =
t2 exp (−0.2x1 + 0.3x2)

1 + 0.25x1 − 0.1x2

Figure 3 shows the relative errors E of the numerical
solutions c, ∂c/∂x1 and ∂c/∂x2. From Figure 3 we may
take N = 12 as the optimized value for N for the solution
c, and N = 10 for the solutions ∂c/∂x1 and ∂c/∂x2. Table
III shows the values of E when N = 10.

Case 3:: Now we consider a system of a trigonomet-
rically graded medium and incompressible flow with the
following gradation function g, parameter λ, rate of change
ψ̂, and analytical solution

g(x) = [cos (1 + 0.25x1 − 0.1x2)]
2

λ = −0.0515

ψ̂∗ = −0.442/s

c (x, t) =
[1− exp (−t)] exp (−0.2x1 + 0.3x2)

cos (1 + 0.25x1 − 0.1x2)

TABLE III
THE RELATIVE ERRORS E FOR NUMERICAL SOLUTIONS

c, ∂c/∂x1, ∂c/∂x2 OF CASE 2 WITH N = 10

t
E

c ∂c/∂x1 ∂c/∂x2

0.004 2.3148002E-003 9.1358617E-003 6.0087032E-003
π/8 2.2982990E-003 9.0784419E-003 5.9737613E-003
π/4 2.2990075E-003 9.0856284E-003 5.9803528E-003
3π/8 2.2950130E-003 9.0681408E-003 5.9667730E-003
π/2 2.2964343E-003 9.0745157E-003 5.9717345E-003
5π/8 2.2962355E-003 9.0710413E-003 5.9670842E-003
3π/4 2.2987712E-003 9.0857796E-003 5.9787878E-003
7π/8 2.2968682E-003 9.0742465E-003 5.9694806E-003
π 2.2991135E-003 9.0838460E-003 5.9783026E-003
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 0.0205

 0.021

 0.0215

 0.022

 0.0225

0.004 Pi/8 Pi/4 3Pi/8 Pi/2 5Pi/8 3Pi/4 7Pi/8 Pi

E

t

N = 8
N = 10
N = 12

Fig. 4. The relative error E of the numerical solutions c (top row), ∂c/∂x1

(middle row) and ∂c/∂x2 (bottom row) for Case 3 with N = 8, 10, 12.

From Figure 4 it is obvious that N = 12 is the optimized
value for the solutions c and ∂c/∂x2 and N = 10 for the
solution ∂c/∂x1. Table IV shows the values of E when N =
12.

B. A problem without an analytical solution

A problem of an trigonometrically graded material will
be considered. We take the constant coefficients d̂ij , v̂i, ψ̂, a
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TABLE IV
THE RELATIVE ERRORS E FOR NUMERICAL SOLUTIONS

c, ∂c/∂x1, ∂c/∂x2 OF CASE 3 WITH N = 12

t
E

c ∂c/∂x1 ∂c/∂x2

0.004 1.5324263E-003 9.4962887E-003 2.1124620E-002
π/8 1.5352355E-003 9.5083278E-003 2.1150117E-002
π/4 1.5412352E-003 9.4965120E-003 2.1094723E-002
3π/8 1.5584006E-003 9.5274502E-003 2.1111052E-002
π/2 1.4871866E-003 9.4516823E-003 2.1171840E-002
5π/8 1.2481136E-003 9.1806122E-003 2.1406095E-002
3π/4 9.6745092E-004 8.7730884E-003 2.1933828E-002
7π/8 9.8386442E-004 8.2603824E-003 2.2336695E-002
π 1.1195222E-003 8.1170979E-003 2.2754939E-002

gradation function g(x) as follows

d̂ij =

[
1 0.35

0.35 0.65

]
v̂i = (1, 2.5)

ψ̂∗ = 1/s

g(x) = [cos (1 + 0.25x1 − 0.1x2)]
2

λ = −0.0515

and a set of boundary conditions as shown in Figure 5 with
cases of P (t)

Case 1: P (t) = 10
Case 2: P (t) = 10t/ (t+ 0.01)
Case 3: P (t) = 10 [1− exp (−t)]

We will also consider the case when the material is homo-
geneous of constant gradation function

g(x) = 1 λ = 0

and the case of isotropic material with

d̂ij =

[
1 0
0 1

]
For all cases the parameter N for the Stehfest formula is 12.

Figures 6 and 7 show the results. Figure 6 indicates that
the anisotropy and inhomogeneity of the material give effects
on the values of c, as expected. Whereas Figure 7 shows that
the solutions c at points (0.5, 0.3) , (0.5, 0.7) coincide when
the material is isotropic homogeneous. This is expected as
the problem is geometrically symmetric about the axis x2 =
0.5 when the material is isotropic homogeneous. Moreover,
the results in Figures 6 and 7 also indicate that for a pair
of material’s homogeneity and isotropy as t gets bigger the
solution c tends to approach a same steady state value. For
instance, when the material is anisotropic and homogeneous,
the value of c (0.5, 0.5, t) tends to approach 3.6 for the three
cases of P (t). This is also expected as the three forms of
P (t) will converge as t approaches infinity.

V. CONCLUSION

The LT-BEM method has been successfully applied to
solve initial boundary value problems for anisotropic func-
tionally graded materials, using the transient DC equation
(1) of compressible or incompressible flow. The method is
simple to implement and avoids round-off errors, produc-
ing accurate solutions. By applying the method to three
classes of functionally graded materials, it was found that
the coefficients can depend on the same inhomogeneity

-

6

x1

x2

A(0, 0) B(1, 0)

C(1, 1)D(0, 1)

c (x, 0) = 0

P = 0

c = 0

P = 0

P = P (t)

Fig. 5. The boundary conditions for Problem IV-B

or grading function, but it would be interesting to extend
the study to coefficients that depend on different grading
functions varying with time. To use the boundary integral
equation (16), the boundary conditions need to be Laplace
transformed, requiring an accurate technique for numerical
Laplace transform inversion. The Stehfest formula was found
to provide reasonably accurate solutions, as demonstrated by
the results of the test problems.
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