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Abstract—Disease diagnosis based on electronic medical 

records (EMRs) is one of the important research contents of 

intelligent healthcare. In recent years, disease diagnosis based 

on heterogeneous graph neural networks has received 

increasing attention. However, disease diagnosis tasks often 

suffer from the lack of labeling information due to the high 

cost of manual labeling. And existing disease diagnosis models 

based on heterogeneous graph neural networks ignore the 

correlation between different meta-paths. Therefore, we 

propose a disease diagnosis model based on multi-view 

contrastive learning (MVCDD). MVCDD uses medical data 

from electronic medical records to construct medical 

heterogeneous graphs, and uses a fixed-depth random walk 

method to obtain semantic subgraphs defined by multiple 

meta-paths. Meanwhile, we introduce the inter-view 

contrastive learning task to model the correlation between 

different meta-paths. MVCDD optimizes the patient   

representations by combining intra-view and inter-view 

contrastive learning tasks jointly. Extensive experiments are 

conducted on the MIMIC-III dataset. The experimental results 

on the MIMIC-III dataset demonstrate that MVCDD 

outperforms other baselines and effectively improves the 

performance of disease diagnosis. 

 
Index Terms—Disease Diagnosis Electronic Medical 

Records, Graph Neural Networks, Contrastive Learning  

I. INTRODUCTION 

ith the popularization of medical information 

technology, electronic medical records (EMRs) have 

received extensive attention. EMRs contains various 

medical data, such as drugs, procedures, patient vital signs, 

diagnoses and so on. The abundant medical data in 

electronic medical records can be utilized for tasks such as 

disease diagnosis[1] and patient similarity[2,3,4], etc. Many 

studies have attempted to use EMRs to provide personalized 

healthcare services to patients. In this paper, we study an 

important application of EMRs, namely disease diagnosis. 

The goal of disease diagnosis based on EMRs is to predict 

the diseases that patients may suffer from based on their 

basic information in the EMRs, thus assisting medical 

institutions in diagnosis and improving the efficiency and 

quality of health care services. 

 
Manuscript received March 10, 2023; revised Jul 31, 2023. This work 

was supported by the General Scientific Research Project from the 

Educational Department of Liaoning Province (LJKMZ20220646). 
Zhengkang Zhang is a postgraduate student at School of Computer 

Science and Software Engineering, University of Science and Technology 

Liaoning, Anshan, China (e-mail: aszhangzhengkang@foxmail.com). 
Dan Yang is a professor at School of computer Science and Software 

Engineering, University of Science and Technology Liaoning, Anshan, 

China (corresponding author to provide e-mail: asyangdan@163. com). 
Yu Zhang is a senior business manager at China Telecom Digital 

Intelligence Technology Co., Ltd, Beijing, China (e-mail: 

zhangy193@chinatelecom.cn). 
 

In recent years, with the advancement of data mining 

technique, graph neural networks (GNNs) have been 

increasingly applied to disease diagnosis tasks. However, in 

practical applications, obtaining manually labeled medical 

labels is very expensive and time-consuming. Therefore, one 

of the problems faced by GNNs when applied to the medical 

field is how to make full use of the unlabeled data on the 

graph. Recently, inspired by the latest advances in the fields 

of computer vision and natural language processing, 

contrastive learning (CL) has been naturally applied to 

graph learning tasks to address this problem. Graph neural 

network frameworks based on contrastive learning have 

great advantages in the absence of labeled information. And 

they can make full use of the unlabeled data of the graph to 

learn the embeddings better. For example, the literature [5] 

proposes cross-view contrastive learning and a view 

masking mechanism to extract positive and negative 

samples from two views (network schema view and 

meta-path view). That enables the two views to 

collaboratively supervise each other and eventually obtain 

better embeddings of the nodes. 

However, in the real world, most graphs typically exhibit 

a variety of node and edge types. These types of graphs are 

commonly known as heterogeneous graphs. As shown in Fig. 

1 (a), a medical heterogeneous graph composed of EMRs 

data contains three types of nodes: patient (P), drug (D), and 

procedure (O). And it contains two types of edges: 

patient-drug (representing that the patient takes a certain 

type of drug) and patient-procedure (representing that the 

patient has undergone a certain type of procedure). The 

meta-path is a widely used structure for capturing semantics 

in heterogeneous graphs. As shown in Fig. 1 (b), there are 

two meta-paths: patient-drug-patient (PDP) and 

patient-procedure-patient (POP). The PDP meta-path 

describes the relationship between patients who have taken 

the same type of drug and the POP meta-path describes the 

relationship between patients who have had the same type of 

procedure. Depending on the selected meta-paths, the 

relationships between various entities in the medical 

heterogeneous graph contain diverse semantic information. 

 

Fig.1 An example of medical heterogeneous graph and meta-path 
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Currently, disease diagnosis based on heterogeneous 

graph contrastive learning for EMRs still faces the following 

problems and challenges: 

⚫ How to effectively capture the rich semantic 

information in medical heterogeneous graphs to 

learn a more comprehensive patient representation. 

Most existing heterogeneous graph neural network 

models typically learn embeddings independently from 

each meta-path, and then integrate them into a final 

representation. The limitation of this approach is that it 

ignores the correlation between different meta-paths. 

For example, in Fig. 1 (a), patient P2 and patient P3 are 

related by having taken the same type of drug D4, which 

can be represented by the meta-path PDP. And patients 

P2 and P3 also have a relationship of undergoing the 

same type of procedure O2, which can be represented by 

the meta-path POP. These two meta-paths exhibit 

evident correlation, and the semantic information 

derived from one meta-path can assist in learning 

patient representations from the other meta-path. 

⚫ How to design a effective contrastive learning 

mechanism for medical heterogeneous graphs for 

more discriminative embeddings learning. Medical 

heterogeneous graphs contain rich semantic information, 

which is usually reflected by meta-path. Semantic 

subgraphs defined by different meta-paths contain 

different semantic information. Contrastive learning 

only on semantic subgraphs defined by a single 

meta-path cannot learn embeddings which contain rich 

semantic information. Therefore, it is particularly 

important to study the multi-view contrastive learning 

mechanism. 

⚫ How to efficiently sample semantic subgraphs for 

medical heterogeneous graphs to learn better 

embeddings in multi-view contrastive learning. 

Electronic medical record contains multiple types of 

medical data, and the constructed medical 

heterogeneous graph using electronic medical record 

has many high-order neighbors for each node. As shown 

in Fig. 1 (a), patient P2 and procedure O2 have a 

first-order interaction relationship, while patient P2 and 

patient P3 cannot be connected through a first-order 

interaction relationship. But there exists a second-order 

interaction relationship between them. Patient P3 is a 

high-order neighbor of patient P2 (i.e., there exists a 

second-order or higher-order interaction relationship). 

However, existing graph neural network models use the 

random walk with restart (RWR) method to sample 

subgraphs. At each step, the random walk returns to the 

starting point with probability r. If the RWR method is 

used to sample semantic subgraphs in the medical 

heterogeneous graph, it leads to a smaller number of 

higher-order neighbors of the nodes in the sampled 

semantic subgraphs. Therefore, a more comprehensive 

representation of patient representations cannot be 

learned in multi-view contrastive learning. 

 To address the above problems and challenges, we 

propose a disease diagnosis framework based on multi-view 

contrastive learning MVCDD. The framework first 

constructs medical heterogeneous graphs using medical data 

from electronic medical record. And then it samples 

semantic subgraphs defined by multiple meta-paths using a 

fixed-depth random walk method. After that, each semantic 

subgraph is encoded and an inter-view contrastive learning 

task is introduced to obtain the correlation between different 

meta-paths. Finally, the patient representations are jointly 

optimized by combining intra-view and inter-view 

contrastive learning tasks: 

The main contributions are summarized as follows:  

⚫ We propose a disease diagnosis framework based on 

multi-view contrastive learning, MVCDD. The 

framework uses a fixed-depth random walk method to 

obtain semantic subgraphs defined by multiple 

meta-paths. By introducing a multi-view contrastive 

learning mechanism, our framework can better learn the 

patient representations using unlabeled data. 

⚫ Considering that different meta-paths reflect different 

semantic information of the same object, and there are 

correlations between different meta-paths, we introduce 

the inter-view contrastive learning task to model the 

correlations between different meta-paths. 

⚫ A large number of experiments were conducted on the 

MIMIC-III dataset. The experimental results show that 

compared with other mainstream frameworks, the 

performance of the MVCDD framework proposed in 

this paper achieves the best.  

II. RELATED WORK 

This section discusses the work related to intelligent 

disease diagnosis, including: heterogeneous graph neural 

networks, contrastive learning, and disease diagnosis based 

on heterogeneous graph neural networks. Then, the key 

techniques proposed in this paper are compared with these 

techniques. 

A. Heterogeneous Graph Neural Networks 

In recent years, heterogeneous graph neural network has 

achieved great success in dealing with heterogeneous 

information networks and has generated widespread interest. 

For example, HAN [6] proposed the heterogeneous graph 

attention network that employs a hierarchical attention 

mechanism to learn node-level and semantic-level structures. 

Based on HAN, MAGNN [7] additionally considered 

intermediate nodes of meta-paths. To address the 

heterogeneity issue concerning edge connections, RSHN [8] 

built a coarse-grained graph neural network to obtain 

relational structural features. HetGNN [9] first used random 

wandering to obtain heterogeneous neighbors of nodes and 

then used Bi-LSTM to aggregate different types of node 

features. HGT [10] proposed a heterogeneous graph 

converter to handle heterogeneous graphs at the network 

scale.  

B. Contrastive Learning 

In order to solve the problem that supervised learning 

paradigm relies on artificial labels, contrastive learning has 

become a very significant research topic and has been 

widely applied to graph learning tasks. The contrastive 

learning model on the graph performs graph learning tasks 

by distinguishing positive samples and negative samples 

generated from the graph. DGI [11] compares local 
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information with global information through Infomax [12] 

method. On this basis, GMI[13] obtains interaction 

information separately from node characteristics and 

topological structures for comparison. MVGRL [14] 

compares the embeddings from the first-order neighbor and 

the second-order neighbor. GCC [15] takes the graph as an 

example and learns to distinguish different instances. GCA 

[16] randomly deletes the unimportant edges and adds noise 

to the node characteristics to destroy the attributes. In this 

way, new views are generated and then the model is 

optimized by contrastive learning. 

C. Disease Diagnosis Based on Heterogeneous Graph 

Neural Networks 

Graph neural networks have become a hot topic in 

research, as they offer a natural way to model the complex 

objects and various relationships present in EMRs data. 

Based on this, many researchers have started to use graph 

neural networks for disease diagnosis tasks. For example, a 

disease diagnosis model based on graph neural networks is 

proposed in the literature [17]. Considering the problem of 

insufficient data volume of electronic medical records 

(EMRs), the model additionally introduces a medical 

knowledge base. The medical concept graph is constructed 

based on the external medical knowledge base, while the 

patient record graph is constructed using EMRs. Then the 

embeddings of patient nodes and disease nodes are learned 

by aggregating the information of direct neighbor nodes 

through graph encoders for the disease prediction task. 

Considering the correlation between various modalities, a 

multimodal learning framework is proposed in the literature 

[18]. The attention mechanism is used to capture the 

correlation and complementarity between modalities for the 

disease diagnosis task. 

The disease diagnosis framework based on multi-view 

contrastive learning proposed in this paper differs from the 

above studies in the following ways: 
⚫ The existing disease diagnosis models based on 

heterogeneous graph neural networks overlook the 

correlation between different meta-paths. In contrast, 

the framework proposed in this paper introduces an 

inter-view contrastive learning task to model the 

correlation between different meta-paths, thereby 

learning more comprehensive patient representations. 

⚫ Most of the existing contrastive learning models on 

graphs focus on homogeneous graphs and cannot handle 

the rich semantic information on heterogeneous graphs. 

The framework in this paper concentrates on 

heterogeneous graphs and compares multiple semantic 

subgraphs defined by different meta-paths, which can 

better handle the rich semantic information in 

heterogeneous graphs and improve the performance of 

the framework. 

⚫ Most existing disease diagnosis models use a 

supervised learning paradigm and rely on manually 

annotated data. However, the cost of manually labeling 

EMRs data is very expensive. In contrast, the 

framework in this paper uses a contrastive learning 

method, which can effectively learn the patient 

representations better using unlabeled data.  

This paper combines the three advantages mentioned 

above and propose a disease diagnosis framework based on 

multi-view contrastive learning. The framework constructs 

medical heterogeneous graphs using the patient's electronic 

medical record, and performs contrastive learning on 

multiple semantic subgraphs defined by different meta-paths. 

It combines intra-view and inter-view contrastive learning 

tasks to jointly optimize the patient representations. 

III. PRELIMINARIES 

In this section, we formally define some key concepts in 

the disease diagnosis framework as follows. 

Definition 1. Medical heterogeneous graph. A medical 

heterogeneous graph is defined as G = (V, E, A, R). It 

associates a node-type mapping function 𝛷: V→A and an 

edge-type mapping function Ψ : E→R. A and R denote the 

sets of node-type and edge-type respectively, and∣A∣+∣

R∣>2.. 

Definition 2. Meta-path. A meta-path 𝑃 is defined as a 

path. It has the form A1
R1
→ A2

R2
→ ⋯

Rl
→ A𝑙+1(Abbreviations 

are A1A2…A𝑙+1 ), describes a composite relationship 

between node types A1  and A𝑙+1 : = 𝑅1 ∘ 𝑅2 ∘ ⋯ ∘ 𝑅𝑙 , 
where ∘ denotes the complex operator on the relation 

The symbols commonly used in this paper are specified 

as shown in Table I.  
TABLE I 

SYMBOLS AND THEIR DEFINITIONS 

Symbol DEFINITION 

G Medical Heterogeneous Graph 

V,E Node and edge sets 

A,R Node type and edge type sets 

 𝑃 Meta-path 

 𝐺𝑝 semantic subgraph set 

  𝑧𝑖
𝑝
 Embeddings of the node in the 

semantic subgraph 

  �̂�𝑖
𝑠,𝑡

 Semantic embeddings of the 

target semantic subgraph 𝑃𝑡 
decoded from the source 

semantic subgraph 𝑃𝑠 

IV. DISEASE DIAGNOSIS FRAMEWORK  

This section describes the proposed disease diagnosis 

framework MVCDD in detail. The overall framework 

structure is shown in Fig. 2, where medical heterogeneous 

graphs are constructed using medical data in EMR, and 

semantic subgraphs defined by multiple meta-paths are 

sampled using a fixed-depth random wandering approach to 

improve disease diagnosis performance by combining 

intra-view and inter-view contrastive learning tasks to 

jointly optimize the patient representations. 

A. Constructing Medical Heterogeneous Graph 

For constructing medical heterogeneous graph, the   

objective is to utilize multiple types of medical data in 

electronic medical records to improve the performance of 

the framework for disease diagnosis. In this paper, we 

construct a medical heterogeneous graph by extracting 

multiple types of medical data of patients from EMR data. 

As an example, the medical heterogeneous graph in Fig. 1 (a) 

contains three types of nodes: patient (P), drug (D), and 

procedure (O), and two types of edges: patient-drug (the 

patient took the type of drug), and patient-procedure (the 
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patient had the type of procedure). By using three sets of 

node types (patients, drugs, procedures) and different edge 

relationships between nodes to connect them, a medical 

heterogeneous graph is constructed. Given a medical 

heterogeneous graph G=(V，E，A，R), drug node 𝑉𝑑𝑙={𝑉𝑑1 , 

𝑉𝑑2 , …,𝑉𝑑𝑙 }, l is the number of drugs, procedure node 

𝑉𝑜𝑚={𝑉𝑜1 , 𝑉𝑜2, …,𝑉𝑜𝑚}, m is the number of procedures, and 

the edge 𝐸𝑟={𝐸1 , 𝐸2 , …,𝐸𝑟 }, r is the number of edges. 

Considering the adjacency matrix H of the medical 

heterogeneous graph G, if patient 𝑖 has taken drug 𝑉𝑑𝑙 or 

undergone procedure 𝑉𝑜𝑚 , then the drug node 𝑉𝑑𝑙 or the 

procedure node 𝑉𝑜𝑚  belongs to edge 𝐸𝑟 .Then the 

corresponding position of the adjacency matrix H is set to 1, 

otherwise it is set to 0. 

B. Fixed-depth Semantic Subgraph Sampling 

The original graph neural network model [15,19] uses the 

random walk with restart (RWR) method to sample the 

subgraph. At each step, the random walk returns to the 

starting point with probability r. However, there are more 

high-order neighbors of nodes in medical heterogeneous 

graphs which constructed by using patients' electronic 

medical records. If the RWR method is used to sample 

semantic subgraphs of medical heterogeneous graphs, it 

leads to fewer higher-order neighbors of nodes in semantic 

subgraphs, which impairs the rich semantic information in 

medical heterogeneous graphs. 

To address the problem mentioned, a fixed-depth random 

walk method is employed for semantic subgraph sampling. 

Specifically, this method performs a random walk guided by 

the meta-path P and samples semantic subgraphs with 

probability proportional to the edge weights of the 

meta-path constraint relations. When the depth of the 

random walk reaches the maximum depth 𝐾𝑃  set, the 

random walk stops. The semantic subgraph set 𝐺𝑝= {𝐺𝑝, 

𝑃 ∈ 𝑀} consists of all nodes sampled in n random walks. 

Since the maximum depth of the random walks is fixed, 

more high-order neighbors of patient nodes can be obtained 

by specifying the maximum depth 𝐾𝑃  to learn a better 

patient representation. 

Given a node 𝑣𝑖 in a medical heterogeneous graph G and 

a meta-path 𝑃 from the meta-path set M = {𝑀1, 𝑀2, …, 𝑀𝑡}, 
MVCDD obtains the semantic subgraph set 𝐺𝑝= {𝐺𝑝, 𝑃 ∈

𝑀} by a fixed-depth random walk method. After that, the 

adjacency matrix and node feature matrix of each semantic 

subgraph are generated as the input of the next module. 

  For the patient nodes feature matrix, we use various types 

of medical data from electronic medical records as patient 

features, such as drugs, procedures, etc. We use one-hot to 

encode the characteristics of patients. 

C. Semantic Subgraph Encoding 

Electronic medical records contain many types of medical 

data of patients, and different types of medical data have 

different degrees of association with the diseases obtained 

by patients. To capture the degree of impact that different 

types of medical data have on patients, we use GAT [20] as 

a graph encoder. MVCDD assigns different weights to nodes 

of different types in the semantic subgraph by using 

attention mechanism. Given a semantic subgraph 𝐺𝑝= {𝐺𝑝, 

𝑃 ∈ 𝑀} defined by a meta-path 𝑃, node 𝑣𝑖 and node 𝑣𝑗 ∈

𝑁𝑗
𝑝
, where 𝑁𝑗

𝑝
 is the neighborhood node of node 𝑣𝑖 in the 

semantic subgraph defined by meta-path 𝑃 . First, the 

attention coefficient 𝑎𝑖,𝑗 between nodes 𝑣𝑖 and 𝑣𝑗 in each 

semantic subgraph is calculated with the following formula: 

𝑎𝑖,𝑗 =
exp (𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑎𝑇[𝑊ℎ𝑖‖𝑊ℎ𝑗]))

∑ exp (𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑎𝑇[𝑊ℎ𝑖‖𝑊ℎ𝑙]))𝑙∈𝑁𝑗

(1) 

Where 𝑎𝑇  denotes the transpose of the weight vector, 𝑊 

is the trainable weight matrix, ℎ𝑖, ℎ𝑗 , ℎ𝑙  are the feature 

matrices of the corresponding nodes, ‖  is the splicing 

operation. After that, we use a multi-head attention 

mechanism to obtain the embeddings of the semantic 

subgraph  𝑧𝑖
𝑝
 = {𝑧𝑖

𝑝
∈ 𝑅1×𝑑𝑠 , 𝑃 ∈ M }, The formula is as 

follows: 

 𝑧𝑖
𝑃 = ‖𝐾=1

𝐾 𝜎 (∑ 𝑎𝑖𝑗
𝑘

𝑗∈𝑁
𝑖
𝑝 𝑊𝐾𝑧𝑗

𝑝
)         (2) 

Where ‖ is the splicing operation, 𝐾 represents the total 

number of heads of the multi-head attention mechanism, 𝜎 

is the activation function, 𝑁𝑖
𝑝

 denotes the neighbors of 

node 𝑣𝑖  in the semantic subgraph set 𝐺𝑝 , 𝑎𝑖𝑗
𝑘  is the 

normalized attention coefficient computed at the 𝐾-th head, 

and 𝑊𝐾  is the weight matrix of the 𝐾-th head. 

D. Multi-View Contrastive Learning 

For multi-view contrastive learning, the goal is to obtain 

an accurate patient representation by combining intra-view 

and inter-view contrastive learning, where the views in this 

process are the semantic subgraphs. 
1) Intra-view Contrastive Learning 

We use MoCo [21] as the contrastive learning framework 

 
Fig.2 The overall architecture of MVCDD 
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to maintain the dictionary as a negative sample queue and 

encode new keys instantaneously by a momentum updating 

encoder. Intra-view contrastive learning selects positive and 

negative samples from each semantic subgraph itself for 

comparison. In each semantic subgraph, the nodes that have 

direct interaction with the target node are considered as 

positive samples, while the remaining nodes are considered 

as negative samples. In each epoch of MVCDD, the query 

node is compared with all the negative sample nodes in the 

dictionary. Multi-View contrastive learning is performed 

separately for each semantic subgraph by InfoNCE [22] loss, 

and the intra-view contrast loss function is as follows 

         ℒ𝑖𝑛𝑡𝑟𝑎 =
1

|𝑀|
∑ − 𝑙𝑜𝑔

𝑒𝑥𝑝 (𝑧𝑖
𝑃∙𝑧𝐾+

𝑃 /𝜏)

∑ 𝑒𝑥𝑝 (𝑧𝑖
𝑃∙𝑧𝐾𝑗

𝑃 /𝜏)𝐾
𝑗=0

𝑃𝜖𝑀      (3) 

Where 𝑧𝑖
𝑃 is the embedding of the node in the semantic 

subgraph defined by the meta-path 𝑃  calculated by 

Equation 2, 𝑧𝐾+
𝑃  represents the positive samples matching 

the query node, 𝑧𝐾𝑗
𝑃  represents the negative samples, 𝐾 is 

the size of the dictionary, and 𝜏  is the temperature 

hyper-parameter. The value of ℒ𝑖𝑛𝑡𝑟𝑎  is lower when the 

query node 𝑧𝑖
𝑃 is similar to its positive sample 𝑧𝐾+

𝑃  but not 

similar to all other nodes (which are considered as negative 

samples of 𝑧𝑖
𝑃 ). Therefore, by minimizing ℒ𝑖𝑛𝑡𝑟𝑎 , the 

MVCDD framework is able to use each meta-path in M to 

distinguish the subgraph instances of different nodes. 

2) Inter-view Contrastive Learning 
The previous models of heterogeneous graph neural 

network independently learn embeddings from each 

meta-path and finally integrates them into the final 

representation. However, different meta-paths reflect 

different semantic information of the same object, and there 

are correlations between meta-paths. If the correlation 

between meta-paths is ignored in contrastive learning, the 

rich semantic information in the semantic subgraphs cannot 

be captured. Therefore, we introduce the inter-view 

contrastive learning task to capture the correlation between 

meta-paths. For each semantic embedding 𝑧𝑖
𝑃 of node 𝑣𝑖 

in the semantic subgraph defined by meta-path 𝑃, MVCDD 

decodes it into semantic embeddings of other semantic 

subgraphs to preserve the correlation between meta-paths. In 

this paper, MLP is chosen as the decoder with the following 

formula: 

�̂�𝑖
𝑠,𝑡 = 𝑔𝑠,𝑡(𝑧𝑖

𝑃𝑠)             (4) 

Where 𝑔𝑠,𝑡() represents the decoder that decodes the 

semantic embeddings from the source semantic subgraph 𝑃𝑠 

to the target semantic subgraph 𝑃𝑡 . �̂�𝑖
𝑠,𝑡

 represents the 

semantic embeddings of the target semantic subgraph 𝑃𝑡 
decoded from the source semantic subgraph 𝑃𝑠 . For 

example, if the meta-path of the source semantic subgraph is 

set to PDP and the meta-path of the target semantic 

subgraph is set to POP, the decoder tries to use the 

relationship of whether the patients have taken the same 

type of drug among themselves to predict the relationship of 

whether the patients have had the same type of procedure 

among themselves. In this way, MVCDD captures the 

correlation between different meta-paths. The inter-view 

contrastive learning takes the nodes in the target semantic 

subgraph that have direct interaction with the target node as 

positive samples, and the other nodes in the target semantic 

subgraph as negative samples. The loss function of 

inter-view contrastive learning is as follows: 

  ℒ𝑖𝑛𝑡𝑒𝑟 =
1

|𝑀|∗(|𝑀|−1)
∑ −𝑙𝑜𝑔

𝑒𝑥𝑝 (�̂�𝑖
𝑠,𝑡
∙𝑧𝐾+
𝑝𝑡 /𝜏)

∑ 𝑒𝑥𝑝 (�̂�𝑖
𝑠,𝑡∙𝑧𝐾𝑗

𝑝𝑡/𝜏)𝐾
𝑗=0

𝑃𝑠,𝑃𝑡𝜖𝑀,𝑠≠𝑡
 (5) 

Where |𝑀| represents the number of meta-paths, 𝑧𝐾+
𝑝𝑡  

represents the positive samples matching the query nodes, 

and 𝑧𝐾𝑗
𝑝𝑡  represents the negative samples. Finally, the 

MVCDD framework optimizes the overall loss ℒ jointly by 

combining intra-view and inter-view contrastive learning 

tasks to fully learn the patient representations: 

ℒ = 𝛼ℒ𝑖𝑛𝑡𝑟𝑎 + (1 − 𝛼)ℒ𝑖𝑛𝑡𝑒𝑟           (6) 

Where 𝛼  is the hyper-parameter used to balance the 

different loss functions. 

E. Disease Diagnosis 

The final patient representations ℎ𝑖 is obtained by the 

above calculation. The predicted values of different disease 

labels are obtained by classifying the final patient 

representations ℎ𝑖 using the Softmax function. The disease 

label with the highest prediction value is taken as the 

patient's disease diagnosis result �̂�. The calculation formula 

is as follows 

�̂� = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(ℎ𝑖)               (7) 

V. EXPERIMENTS AND EVALUATION 

This section first introduces the dataset and preprocessing, 

evaluation metrics and baselines used for the experiments, 

and then illustrate the performance of MVCDD based on the 

experimental data. 

A. Dataset and Preprocessing 

We utilize the real electronic medical records dataset, 

MIMIC-III [23]. Two types of information about the patient 

are used to construct the medical heterogeneous graph for 

disease diagnosis tasks, i.e., drugs and procedure. In this 

paper, we preprocessed data from the MIMIC-III dataset and 

select six disease labels: Coronary Disease, Diabetes, Heart 

Failure, Gastritis, Respiratory Failure and Septicemia. First, 

patients were screened to remove patients with missing 

medication or surgical information. For each patient, only 

drugs of type 'MAIN' were selected. The drugs of type 

'BASE' and drugs used less than M times were removed, 

where M is the hyper-parameter. After that, the drugs taken 

by each patient were randomly selected, and the number of 

drugs used by each patient was controlled to be within 30. 

For each patient's procedures, the procedures were ranked 

according to their importance, and the number of procedures 

was controlled to be within 10. Finally, the information of 

7736 patients was obtained, and the statistics of the 

processed data set are shown in Table II. 

TABLE II  

STATISTICS OF DATASETS 

Disease label Number of patients 

Coronary Disease 3017 

Diabetes 224 

Heart Failure 855 

Gastritis 415 

Respiratory Failure 1288 

Septicemia 1937 

Total 7736 
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B. Evaluation Metrics 

We used Macro-F1 and Micro-F1 as evaluation metrics 

for disease diagnostic tasks: 

1) Macro-F1 

Macro-F1 score calculates the arithmetic average of F1 

scores for all categories, and is not affected by data 

imbalance. It is suitable for multi-classification scenarios: 

𝑀𝑎𝑐𝑟𝑜 − 𝐹1 =
1

𝑛
∑

2𝑇𝑃𝑖
(2𝑇𝑃𝑖 + 𝐹𝑃𝑖 + 𝐹𝑁𝑖)

𝑛

𝑖=1

 (8) 

2) Micro-F1 

Micro-F1 score calculates the weighted average of F1 

scores of all categories, and is susceptible to data imbalance. 

It is suitable for multi-classification scenarios: 

𝑀𝑖𝑐𝑟𝑜 − 𝐹1 =
∑ 2𝑇𝑃𝑖
𝑛
𝑖=1

∑ (2𝑇𝑃𝑖 + 𝐹𝑃𝑖 + 𝐹𝑁𝑖)
𝑛
𝑖=1

 
 

(9) 

Where n represents the number of disease categories, 

𝑇𝑃𝑖，𝐹𝑃𝑖，𝐹𝑁𝑖  respectively denote the number of true 

positive, false positive and false negative in the class 𝑖 
disease. 

C. Baselines 

To test the performance of MVCDD framework, we 

compare MVCDD with the following baseline methods: 

⚫ GCN[24]. This method based on convolutional neural 

networks and is widely used for graph embedding. 

⚫ GAT[20]. This method Introduces a self-attention 

mechanism to aggregate features by calculating the 

attention coefficients of nodes. 

⚫ HAN[6]. This method uses a hierarchical attention 

mechanism to learn node-level and semantic-level 

structures 

⚫ HeCo[5]. This method extracts positive and negative 

embeddings from the network schema view and 

meta-path view, and learns the final node embeddings 

using a cross-view contrastive learning mechanism. 

⚫ MVSDD-GIN. This framework is a variant of MVCDD. 

When using this method in comparison experiments, the 

encoder uses the GIN[25]. 

⚫ MVSDD-GCN. This framework is a variant of 

MVCDD. When using this method in comparison 

experiments, the encoder uses the GCN. 

D. Implementation Details  

For GCN, GAT, HAN, HeCo, the parameters follow the 

settings in the original paper and the best performance is 

reported. For MVCDD-GIN, MVCDD-GCN, the encoder 

follows the parameter settings of the original paper, and the 

other parameters are consistent with the MVCDD 

framework. 

For the MVCDD framework proposed in this article, at 

each epoch, 32 fixed-depth random walks are performed to 

sample semantic subgraphs constrained by element paths, 

where the maximum depth is set to twice the depth of the 

element path, i.e., 𝐾𝑃=2∣P∣, where ∣P∣ is the depth 

of the element path. A 2-layer MLP is used as a decoder to 

model the correlation between different element paths. The 

Adam [26] optimizer is used during training, with a learning 

rate of 0.003, semantic subgraph embedding dimensions set 

to 64, and node embedding dimensions d set to 64. We 

selected three meta-paths: patient-drug-patient (PDP), 

patient-procedure-patient (POP) and 

patient-drug-patient-procedure-patient (PDPOP). During the 

preprocessing of the dataset, drugs that were used less than 

M times were removed, and M was set to 50. 

For MoCo [21], the dictionary size K is set to 7740 and 

temperature hyper-parameter τ = 0.07. For the fine-tuning 

phase, the training is performed using a 2-layer GCN [11], 

and the weight decay is set to 1e-5. 

E. Experimental Results and Analysis 

The performance of MVCDD was tested by completing a 

disease diagnosis task in the experiment. Given the medical 

data of patients in the EHR (e.g., drugs the patients have 

taken, procedures the patient have undergone, etc.), the 

disease diagnosis task is to predict the diseases that patients 

may have. Unlabeled patient nodes were used for training 

during the pre-training process of MVCDD. During the 

fine-tuning process, 5%, 10%, and 15% of labeled patient 

nodes were randomly selected as training sets, and the 

remaining labeled nodes were used as the test set. 

The experimental results are shown in Table III. Based on 

the results, the following conclusions can be drawn: 

⚫ The performance of the proposed MVCDD framework 

in this paper consistently outperforms other baseline 

methods. It is shown that by additionally introducing an 

inter-view contrastive learning task to capture the 

correlation between meta-paths, the patient 

representations can be effectively optimized and the 

disease diagnosis performance of the framework can be 

improved. 

⚫ Methods based on contrastive learning (HeCo, 

MVCDD-GIN, MVCDD-GCN, MVCDD) exhibit 

TABLE III  

RESULTS OF DISEASE DIAGNOSIS EXPERIMENTS USING DIFFERENT METHODS 

Methods 

Percentage of 

labeled nodes =5% 

Percentage of 

labeled nodes =10% 

Percentage of 

labeled nodes =15% 

Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 

GCN 66.14 80.19 69.71 81.68 71.79 82.14 

GAT 67.46 81.49 70.36 83.08 74.75 83.29 

HAN 62.55 79.30 64.30 80.47 67.97 82.55 

Heco 69.28 80.34 73.98 82.69 75.47 83.37 

MVCDD-GIN 68.66 80.11 73.65 81.60 75.83 83.99 

MVCDD-GCN 72.61 81.73 75.29 83.51 76.55 83.61 

MVCDD 72.91 82.07 76.30 84.03 78.42 84.73 
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better performance than other methods. This suggests 

that the pre-training process of contrastive learning 

methods can use a large amount of unlabeled data to 

obtain embeddings with rich semantic information, 

which makes them perform better in disease diagnosis 

tasks. When the proportion of labeled nodes is low, the 

performance improvement of contrastive learning 

methods for disease diagnosis is more remarkable. 

F. Variant Analysis 

To validate the rationality of the MVCDD framework 

structure, this paper proposes two variations of MVCDD: 

MVCDD-Intra and MVCDD-Inter. MVCDD-Intra only 

considers the intra-view contrastive learning task, while 

MVCDD-Inter only considers the inter-view contrastive 

learning task. The performance of the two variations is 

compared with MVCDD on the MIMIC-III dataset. The 

experimental results use Macro-F1 and Micro-F1 as 

evaluation metrics, as shown in Fig. 3. 

From this, we can draw the following conclusions: 

⚫ The results of MVCDD consistently outperform other 

variants, demonstrating the effectiveness and necessity 

of combining intra-view and inter-view contrastive 

learning tasks for multi-view contrastive learning. 

⚫ The results of MVCDD-Inter outperform the results of 

MVCDD-Intra, indicating the importance of 

introducing an inter-view contrastive learning task that 

captures correlations between meta-paths. 

 
Fig.3 The comparison of MVCDD and its variants 

G. Visualization 

To visually evaluate the disease diagnosis results, we use 

t-SNE [27] to map the patient nodes embeddings in the test 

set to a two-dimensional space. The results of the 

visualization experiments are shown in Fig. 4, where 

different colors represent different types of disease labels. 

 
Fig.4 Visualization of the patient nodes embeddings 

 

It can be seen that the differently labeled patient nodes in 

HAN are not well aggregated and the differently labeled 

patient nodes in GCN are not well separated. The contrastive 

learning methods (Heco, MVCDD) produce more distinct 

boundaries and fewer overlapping regions. For HeCo, the 

nodes are still mixed to some extent because it fails to 

capture the correlation between meta-paths. The MVCDD 

proposed in this paper properly separates patient nodes with 

different labels with relatively clear boundaries, and patient 

nodes with the same labels are also better aggregated 

together, indicating that better patient nodes embeddings are 

learned. 

H. Parameter Analysis 

This section discusses the parameter impact analysis of 

MVCDD, which mainly involves four important 

hyper-parameters: the number of fixed-depth random walks 

N, the dictionary size K, the node embedding dimension d 

and meta-path. Taking 15% of the labeled nodes as the 

training set, we change the values of N, K and d by keeping 

the other parameters constant and observe the performance 

change of MVCDD. Macro-F1 and Micro-F1 are used as 

evaluation metrics. Fig. 5 - Fig. 7 respectively show the 

performance variation of MVCDD under different 

fixed-depth of random walks, dictionary sizes, and node 

embedding dimensions. Table IV shows the performance of 

different meta-paths. 

a) Different fixed-depth of random walks 

The number of fixed-depth random walks determines the 

number of higher-order neighbors of the patient nodes in the 

sampled semantic subgraph. As shown in Fig. 5, the 

performance of MVCDD initially improves and then 

declines as the number of random walks N increases. The 

best result is achieved when the number of random walks is 

set to 32. The reason for this phenomenon is that when the 

number of fixed-depth random walks is too large, nodes that 

are not related to the patient node are also sampled into the 

semantic subgraph, which is not conducive to learning the 

embeddings of patient nodes. 

 
Fig.5 Performance variation of MVCDD with different number of 

fixed-depth random walk 
 

 
Fig.6 Performance variation of MVCDD with different dictionary sizes  
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b) Dictionary sizes 

The dictionary size determines the number of negative 

samples in multi-view contrastive learning. As shown in Fig. 

6, when the dictionary size is set to 7740, the performance 

of MVCDD is the best. And the performance gradually 

improves when the dictionary size is smaller than 7740, and 

decreases when the dictionary size is larger than 7740. 

c) Node embedding dimensions 

As shown in Fig. 7, the performance is optimal when the 

node embedding dimension is set to 64. The performance 

decreases gradually when the value is greater or less than 

0.5. 
 

 
Fig.7 Performance variation of MVCDD with different node embedding 

dimensions 

d) Meta-path 

MVSDD obtains different semantic subgraphs according 

to different meta-paths, and different semantic subgraphs 

capture different semantic information in the medical 

heterogeneous graph. As shown in Table IV, the effect of 

selecting three meta-paths PDP, POP and PDPOP is 

significantly better than the effect of arbitrarily selecting 

two meta-paths, reflecting the effectiveness of selecting 

semantic subgraphs defined by multiple meta-paths for 

contrastive learning. 

TABLE IV 

THE PERFORMANCE OF DIFFERENT META-PATHS 

Meta-path Macro-F1 Micro-F1 

PDP，POP 75.49 82.79 

PDP, PDPOP 73.18 81.17 

POP, PDPOP 75.55 83.77 

PDP, POP, 
PDPOP 

78.42 84.73 

 

VI. CONCLUSIONS AND FUTURE WORK 

In this paper, we propose a disease diagnosis framework 

based on multi-view contrastive learning (MVCDD). The 

framework constructs a medical heterogeneous graph using 

electronic medical records and introduces a multi-view 

contrastive learning mechanism to improve disease 

diagnosis performance. When MVCDD performs semantic 

subgraph sampling, considering the large number of 

high-order neighbors of patient nodes in medical 

heterogeneous graphs constructed from electronic medical 

record data, a fixed-depth random walk method is used to 

obtain semantic subgraphs defined by multiple meta-paths. 

We introduce an inter-view contrastive learning task to 

model the correlation between different meta-paths, and 

combines intra-view and inter-view contrastive learning 

tasks to jointly optimize the framework. Extensive 

experiments were conducted on the MIMIC-III dataset, and 

the experimental results showed that MVCDD outperformed 

baseline methods and could effectively utilize unlabeled 

data to learn better patient representations. 

In the following work, we will investigate how to use 

multiple modalities of medical data in electronic medical 

records, such as patient chest X-rays. The fusion of 

multimodal features can help to obtain more accurate patient 

representations and thus improve disease diagnosis 

performance. 
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