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Abstract—We take into account the problem of
identifying the repeated structure in a given ℘word
v◊ of length l. We show that a ℘word v◊ is a cover of
a ℘word u◊ if every letter of u◊ lies within an occur-
rence of v◊ in u◊ and v◊ is a border of u◊. Here, we
examine string issues that are concerned with identi-
fying recurring patterns in a given total word x. The
total word’s period p, a common regularity, captures
x’s repetition, since x is a prefix of a string created by
concatenating p. We think about a challenge devel-
oped by expanding the scope of this repetitiveness
idea by permitting overlaps between the segments
that are repeated. We focus on a key issue in string
processing: the compact representation of a word by
its most frequent factors. The frequency cover, or the
longest repeating factor, is a useful and simple form
of quasi-periodicity in words that is proposed in this
paper.
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1 Introduction

Numerous branches of science such as combinatorics,
system theory, coding and automata theory, formal lan-
guage theory and molecular biology find regularities in
total words (strings) [1, 9]. One of the common issues
in pattern matching is how to effectively find repetitions
in a given string. The biosequence analysis recently gave
the practice of looking for repetitions in strings a new
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impetus. A common feature of many genomic structures,
such as telomeric regions, is the existence of sequentially
repeated pieces in DNA sequences that frequently carry
significant biological information. The practical role of
satellites and alu-repeats in chromosome analysis and
genotyping makes them of great interest to genomic re-
searchers. As a result, several biological investigations
based on the examination of tandem repeats have been
carried out and databases of tandem repeats in certain
species have even been created.

Periodicity is the most fundamental concept that en-
compasses repetitiveness. We say that a string is peri-
odic if it can be created by repeatedly concatenating its
smaller component. By allowing superpositions in ad-
dition to concatenation, Apostolico and Ehrenfeucht [1]
introduced the concept of quasiperiodicity, which broad-
ened the field of periodicity. The basic terms of quasiperi-
odicity are the notions of cover and seed. In contrast to
periods, which are defined solely by concatenations, the
terms cover and seed are generalizations of periods in the
sense that superpositions as well as concatenations are
taken into account to define them.

Covers and their generalizations are an interesting ex-
tension of the idea of a repetition. They have poten-
tial applications in DNA sequence analysis. The abil-
ity to find repeats is helpful in a wide range of word
manipulation-related applications. There are many well-
known examples, including pattern recognition, com-
puter vision, speech recognition, data compression, data
communication, combinatorics, coding and automata
theory, formal language theory, and system theory. Find-
ing repeats can be used for text editing in general as well
as for tasks like locating duplicate entries in databases. A
cover of a word x is a string whose occurrences in x cover
all positions of x, while a seed of x is a cover of some
superstring of x. Various approximate variants of covers
and seeds were studied [4, 10]. Iliopoulos et al. [7] have
proposed a new notion of string regularity and an exten-
sion of the notions of period and cover called seed. The
problem of all restricted seeds with the smallest Ham-
ming distance is studied in [6]. In computation of covers,
two problems have been considered in the literature. The
shortest-cover problem (also known as the superprimitiv-
ity test) is that of computing the shortest cover of a given
word of length n, and the al l-covers problem is that of
computing all the covers of a given word.
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A ℘word (or partial word) is nothing but a word with
holes over the alphabet and is considered in gene compar-
isons [5, 8, 12]. For instance, the alignment of two DNA
sequences which are genetic information carriers can be
regarded as construction of two compatible ℘words. In
DNA computation, DNA strands are considered as finite
words and are utilized for encoding information. While
encoding, some part of the information may be unseen
or missing which are revealed by using ℘words that de-
note the positions of the missing symbols in a word. The
study of ℘words was initiated by Berstel and Boasson [2]
and later the work was extended by Blanchet Sadri [3].
℘words have wide application in pattern matching. In
this paper, we have presented results on quasiperiodicity,
covers and seeds. Locating such a regularity can be useful
in a wide area of applications, for example in molecular
biology (study of the dosDNA microsatellites).

The paper has the following organization. We recall some
basics in Section 2 and in Section 3 we introduce cover
and seed of a ℘word and study their properties. Cover of
a directed ℘ tree is also established. Finally, we conclude
the paper in Section 4.

2 Preliminaries

Let the finite alphabet A represent a non-empty set of
symbols (or letters). A total word (or string) is a sequence
of letters over A. The length (or size) of a total word
x = x[1 . . . n] is n. The length of a total word x is denoted
by ∣x∣. Alph(x) denotes the set of all elements in x. λ
denotes the empty word. A

∗ denotes the set of all total
words from A including λ and A

+ denotes the set of all
total words from A excluding λ. A language L is a subset
of A∗. The total word x is a subword (or factor) of y if the
total words u and v exists such that y = uxv. If u, v ≠ λ
then x is a proper subword of y. If u = λ then x is a
prefix of y. If v = λ then x is a suffix of y. If x, y and z
are total words, with x = yz, then zy is a conjugate of x.
A border of a non-empty word x is a proper factor of x
that is both a prefix and a suffix of x.

A total word x of length n is a cover of a total
word y of length m ≥ n if there exists a set of posi-
tions k ⊆ {0, . . . ,m − n} that satisfies the following two
conditions; (i) x[i . . . i + n − 1] = y for all i ∈ k; (ii)

⋃i∈k{i, . . . , i + n − 1} = {0, . . . ,m − 1}. A total word y is
a superword of a total word x if there exists two total
words p and q such that y = pxq. A total word z is a
seed of the total word x if it is a cover of a superword
of x. A string y is called quasiperiodic if it has a non-
trivial cover, that is, there exists a shorter string x such
that every position in y is inside one of the occurrences
of x in y. The word xy is a concatenation of two words
x and y. The concatenations of t copies of x is denoted
by xt. For two words x = x1 . . . xn and y = y1 . . . ym
such that xn−i+1 . . . xn = y1 . . . yj for some j ≥ 1, the word

x = x1 . . . xnyj+1 . . . ym is a superposition of x and y with
j overlaps. A word w = w1 . . .wn is a circular rotation
of x = x1 . . . xn if w1 . . .wn = xj . . . xnx1 . . . xj−1 for some
1 ≤ j ≤ n (for j ∶ 1,w = x).

The sequence of symbols that contains a number of “do
not know symbols” or “holes” denoted as ◊ is termed as
a ℘word. The ℘word of u denoted by u◊ is the total
function u◊ ∶ {1,2, . . . , n} → A◊ = A ∪ {◊} defined by

u◊(i) =
⎧⎪⎪
⎨
⎪⎪⎩

u(i) if i ∈D(u)

◊ if i ∈H(u).

The set of all ℘words over A◊ is denoted as A
∗
◊. A

+
◊

denotes the set of all ℘words excluding the empty word.
A partial language (℘ language) L◊ ⊆ A

∗
◊ is a set of all ℘

words over A◊.

We note that,
(i) A total word is a ℘word with zero holes and the
empty word is not a ℘word.

(ii) The symbol ◊ does not belong to the alphabet
A but a standby symbol for the unknown letter.

(iii) The symbol ◊ is compatible to the letters of
the alphabet A.

(iv) The symbol ◊ alone of any length cannot exist
as a word. In other words, the hole of any length is
neither a total word nor a ℘word.

A ℘word u◊ = u◊[1 . . . n] is primitive (non-periodic) if
no word v exists such that u◊ ⊂ v

i with i ≥ 2. ℘words that
are not primitive are said to be periodic ℘words. If u◊ is
a ℘word then the period of u◊ is denoted as p(u◊). If
u◊ and v◊ are two ℘words of equal length and if all the
elements in domain of u◊ are also in domain of v◊ with
u◊(i) = v◊(i) for all i ∈ D(u◊), then u◊ is contained in
v◊ and is denoted by u◊ ⊂ v◊. Two ℘words u◊ and v◊
are compatible, denoted by u◊ ↑ v◊ if u◊(i) = v◊(i) for all
i ∈ D(u◊) ∩D(v◊). Equivalently, the ℘words u◊ and v◊
are compatible if a ℘word w◊ exists such that u◊ ⊂ w◊ and
v◊ ⊂ w◊. A ℘word u◊ is bordered (denoted as Bor(u◊))
if non-empty words p, q, v exist such that u◊ ⊂ pv and
u◊ ⊂ qp

3 Lseed and Rseed of ℘words

Definition 1. A ℘word v◊ (or a set of compatible
℘words) of length l is a cover of a ℘word u◊ of length
m ≥ l if there exists a set of positions k ⊆ {0, . . . ,m − l}
that satisfies the following two conditions;

1. u◊[i . . . i + l − 1] = v◊ for all i ∈ k

2. ⋃i∈k{i, . . . , i + l − 1} = {0, . . . ,m − 1}.
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Note that a cover v◊ of a ℘word u◊ is proper if v◊ ≠ u◊.

Example 1. Consider a ℘word u◊ = ba◊baa◊b◊abaab
over the alphabet A◊ = {a, b} ∪ {◊} . The set of ℘words
{ba◊b, baa◊, b◊ab, baab} that are compatible to each other
represent the cover of the ℘word u◊. Figure 1 shows the
cover of ℘word u◊.

Figure 1: The cover of ℘word u◊ = ba◊baa◊b◊abaab

Remark 1. If v◊ is a cover of the ℘word u◊, then v◊ is
both a prefix and suffix of u◊.

Definition 2. A frequency cover of u◊ is the longest of
those repeating factors v◊ of u◊, ∣v◊∣ > 1, that occurs the
maximum number of times in u◊.

Example 2. Consider a ℘word u◊ = a◊a◊a◊a, the factor
a◊a is the frequency cover of u◊, occurring three times,
as do the shorter factors a◊ and ◊a.

Remark 2. A frequency cover of a ℘word is not unique.

Example 3. Consider a ℘word u◊ = a◊a◊c◊c◊. It has
two frequency covers a◊ and c◊.

Remark 3. Not all ℘words have a frequency cover.

Example 4. Consider a ℘word u◊ = a◊cd◊fgh does not
have a frequency cover.

It should be noted that we require the length of a ℘word’s
frequency covers to be greater than one because it is sim-
ple and quick to calculate the frequency of each distinct
letter in a ℘word, at least for an ordered alphabet of man-
ageable size (simply scan the string from left to right and
count the number of occurrences of each distinct letter).

Theorem 1. Suppose v◊ and w◊ are the longest and
shortest frequency covers of u◊ respectively. Then v◊ al-
ways covers more positions in u◊ than w◊ does.

Proof. Since both v◊ and w◊ are frequency covers,
fu◊, v◊ = fu◊,w◊. Observe that the shortest frequency
cover v◊ will always be of size two; that is, ∣v◊∣ = 2. For
if ∣v◊∣ > 2, any factor of v◊ of length two would have the
same frequency as that of v◊ in u◊ and be shorter than v◊,
thus contradicting the assumption that v◊ is the shortest
frequency cover.

For v◊ to cover fewer positions than w◊ does, some oc-
currences of v◊ in u◊ must overlap. Note that the overlap
between any two instances of u◊ cannot be greater than
⌊v◊/2⌋ as it would create a repetition in v◊ which leads

to v◊ not being the frequency cover which is a contra-
diction. Therefore, v◊ = x◊bx◊ (where b is a symbol).
Additionally b is non-empty as otherwise it would create
a repetition in v◊ which leads to v◊ not being the fre-
quency cover which is a contradiction. If ∣x◊∣ > 1, then
x◊ would be the frequency cover and not x. Therefore,
∣v◊∣ = 3. Note that the least positions covered by v◊ is
when all occurrences of v◊ in u◊ overlap. However, as-
suming this worst case, v◊, where ∣v◊∣ = 3, still covers one
more position in u◊ than w◊ does. Therefore, it is not
possible for a shortest frequency cover to cover more posi-
tions than the positions covered by the longest frequency
cover.

Definition 3. A border v◊ of a ℘word u◊ is an enriched
cover of u◊, if the number of letters of u◊ which lie within
some occurrence of v◊ in u◊ is a maximum over all bor-
ders of u◊.

Example 5. Consider a ℘word u◊ = ab◊ab◊abb◊ab◊ab
over the alphabet A◊ = {a, b} ∪ {◊} . The ℘word {ab◊ab}
represent the border of the ℘word u◊. Figure 5 shows the
cover of ℘word u◊.

Figure 2: The cover of ℘word u◊ = ab◊ab◊abb◊ab◊ab◊ab

Definition 4. A ℘word v◊ is the minimal enriched cover
of a ℘word u◊, if v◊ is the shortest enriched cover of u◊.

Theorem 2. Any ℘word with minimal enriched cover is
not periodic.

Proof. Let v◊ be the minimal enriched cover of the ℘word
u◊. Suppose v◊ is periodic with longest border w◊, then
we have Bor(v◊)+p(v◊) ≥ 2p(v◊). It follows that ∣w◊∣ ≥
p(v◊) ≥ ∣v◊∣/2 and so w◊ is a cover of v◊. Hence also the
minimal enriched cover of u◊, which is a contradiction.

Definition 5. A ℘word v◊ is a super℘word of a ℘word
u◊ if there exists two ℘words p◊ and q◊ such that v◊ =
p◊u◊q◊. A ℘word w◊ (or a set of compatible ℘words) is
a seed of the ℘word u◊ if it is a cover of a super℘word of
u◊.

Example 6. Consider a ℘word u◊ = bab◊abb◊ab◊abba◊b
over the alphabet A◊ = {a, b} ∪ {◊} . The set of ℘words
{ab◊a, abb◊, ab◊a, abba} that are compatible to each other
represent the seed of the ℘word u◊ since the set is a cover
of a super℘word v◊ = ab◊abb◊ab◊abba of u◊. Figure 6
shows the seed of ℘word u◊.

Definition 6. A left seed (denoted as Lseed) of a ℘word
u◊ is a prefix of u◊ that exists as a cover of a super℘word
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Figure 3: The seed of ℘word u◊ = bab◊abb◊ab◊abba◊b

of u◊ in the form u◊z where z is a possibly empty word.

Likewise a right seed [denoted as Rseed] of a ℘word u◊ is
a suffix of u◊ that exists as a cover of a super℘word of
u◊ in the form zu◊ where z is a possibly empty word.

Example 7. Consider a ℘word u◊ = aab◊abaaaba◊ba◊b
over the alphabet A◊ = {a, b} ∪ {◊} . The set of ℘words
{aab◊,◊aba, aaba, a◊ba} that are compatible to each
other represent the Lseed of the ℘word u◊ since the
set is a prefix of u◊ and is a cover of a super℘word
v◊ = aab◊abaaaba◊ba of u◊. Figure 7 shows the Lseed
of ℘word u◊.

Figure 4: The Lseed of ℘word u◊ = aab◊abaaaba◊ba◊b

Example 8. Consider a ℘word u◊ = ababb◊ba◊ab over
the alphabet A◊ = {a, b} ∪ {◊} . The set of ℘words
{aab◊,◊aba, aaba, a◊ba} that are compatible to each
other represent the Rseed of the ℘word u◊ since the
set is a suffix of u◊ and is a cover of a super℘word
v◊ = babb◊ba◊ab of u◊. Figure 8 shows the Lseed of ℘word
u◊.

Figure 5: The Rseed of ℘word u◊ = ababb◊ba◊ab

Definition 7. The minimal (maximal) Lseed of u◊ de-
noted as Lminseed(u◊) (Lmaxseed(u◊)) is the prefix of u◊
with minimum (maximum) length such that it is a cover
of a super℘word of u◊. Likewise the minimal (maximal)
Rseed of u◊ denoted as Rminseed(u◊) (Rmaxseed(u◊)) is
the suffix of u◊ with minimum (maximum) length such
that it is a cover of a super℘word of u◊.

Theorem 3. If a seed w◊ covers a ℘word u◊ by concate-
nation, then all the circular conjugates of w◊ cover u◊ by
concatenations.

Proof. Since the seed w◊ covers a ℘word u◊ by concate-
nation, a cover wm

◊ of u◊ by w◊ exists. Let w′◊ be a

circular conjugate of w◊. Here wm
◊ is a factor of wm+2

◊ .

Then wm+2
◊ is a cover of u◊ and thus w′◊ covers u◊ by

concatenations. Thus all the circular conjugates of w◊
cover u◊ by concatenations.

Theorem 4. A ℘word v◊ is a Lseed (Rseed) of a ℘word
u◊ if and only if v◊ is a cover of the prefix (suffix) of u◊
with ∣v◊∣ ≤ p(u◊).

Proof. Let us assume that a ℘word v◊ covers a prefix of
u◊, say qr with ∣v◊∣ ≥ p(u◊), such that ∣q∣ = p(u◊) and
r is a possibly empty word. Consider a smallest integer
t such that u◊ is a prefix of qt. Then v◊ is a cover of
qtr = u◊r for some word s, possibly empty. Hence v◊ is a
Lseed of u◊.

Conversely, assume v◊ to be a Lseed of u◊. Then the
following two cases occur:

1. If ∣v◊∣ ≤ Bor(u◊), then a suffix r of v◊, possibly empty
is a prefix of the border. Now consider the Lseed
which is a cover of u◊[p(u◊)−1]. Then v◊ is a cover
of qr and also ∣q∣ = p(u◊).

2. Let us consider ∣v◊∣ > Bor(u◊). Suppose that v◊ with
∣v◊∣ ≥ p(u◊), does not cover a prefix of u◊ then
assume that r =Bor(u◊) such that r is a factor of
v◊ = qrs, where q and r are non-empty. Now by con-
sidering the Lseed which is a cover of u◊[p(u◊)− 1],
we get qr as a longest border of u◊, which is a con-
tradiction.

Hence the result.

Theorem 5. Let v◊ be a cover of ℘word u◊ and let w◊ ≠
v◊ be a factor of u◊ with ∣w◊∣ ≤ ∣v◊∣. Then w◊ is a cover
of u◊ if and only if w◊ is a cover of v◊.

Proof. If w◊ is a cover of v◊ and v◊ is a cover of u◊, then
w◊ is a cover of u◊. Suppose if both w◊ and v◊ are covers
of u◊, then w◊ = Bor(v◊) since length of w◊ is less than
or equal to v◊. Therefore w◊ must be a cover of v◊. Hence
the result.

Theorem 6. For any ℘word u◊ with ∣u◊∣ =m, if p(u◊) =
m then Lminseed(u◊) = u◊.

Proof. By the notion of Lminseed, we get Lmin(u◊) ≤m.
Let us assume that Lmin(u◊) <m. Then in order to cover
u◊, a non-empty prefix v◊ of Lmin(u◊) which is also a
suffix of u◊ exists. Now let us consider the Lseed that
covers u◊[m − 1]. Then m − ∣v◊∣ is a minimal period of
u◊ which is a contradiction. Hence the Lminseed(u◊) is
equal to u◊.

Theorem 7. For any ℘word u◊ with ∣u◊∣ = n and
p(u◊) = m, if m = n then there is no longest right seed
for u◊.
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Proof. Consider that m = n. Let us assume that
u◊[k . . . n − 1] is the longest right seed of u◊ with 0 <
k ≤ n − 1. Then to cover u◊, a non-empty suffix of
u◊[k . . . n − 1] say v◊ is a prefix of u◊. Then n − ∣v◊∣
gives a shorter period for u◊ which contradicts our as-
sumption. Therefore if m = n then there is no longest
right seed for u◊.

Theorem 8. For all 0 ≤ i < m, if
Lseed[i] =Lminseed(u◊[0 . . . i]), then for all 0 ≤ i < m − 1
we get Lseed[i] ≤ Lseed[i + 1].

Proof. Let us prove by contradiction. Assume that
Lseed[i] > Lseed[i+1]. By the notion of the Lminseed, we
have Lseed[i] covers some super℘word u◊[0 . . . i]r, where
r is a possibly empty word. Similarly Lseed[i + 1] cov-
ers some super℘word u◊[0 . . . i + 1]s, where s is a pos-
sibly empty word. This shows that Lseed[i + 1] cov-
ers u◊[0 . . . i]u◊[i + 1]s. Thus by notion of Lminseed,
Lseed[i + 1] is the Lminseed of u◊[0 . . . i]. But we get
a shorter Lseed for u◊[0 . . . i] which is a contradiction.
Hence the result.

3.1 Cover of a directed ℘tree

Definition 8. A ℘word v◊ is a cover of an edge labeled
directed ℘tree τ if every edge of τ can be covered by some
simple path with label v◊ such that all edges directed to-
wards the parent node of τ.

Example 9. Consider a ℘word v◊ = a◊b◊bba◊b◊a
over the alphabet A◊ = {a, b} ∪ {◊} . The set of ℘words
{a◊b◊,◊bba,◊b◊a} that are compatible to each other and
also compatible with abba represent the cover of the di-
rected ℘tree τ. Figure 9 shows the cover of a directed tree
τ.

Figure 6: Cover of a directed tree τ

Remark 4. If v◊ is a cover of a directed tree τ, then it
is a cover of minimum one ℘word of τ corresponding to
terminal nodes-to-parent node.

Remark 5. If v◊ is a cover of a directed tree τ, then v◊
is a prefix of all terminal nodes-to-parent node labels and
also is a prefix of longest common prefix of all terminal
nodes-to-parent node paths.

4 Conclusion

In this paper, we have focused on the identification of var-
ious kinds of periodicities and other regularities in ℘words
such as covers and seeds. The study is based on the main-
tenance of a new, simple but powerful data structure. For
the future work, our immediate target is to investigate
whether there exists O(n)-time algorithm for computing
the minimal enriched cover. For certain applications, the
notion of the minimal enriched cover might not be use-
ful, since it primarily optimises the number of positions
covered, while the length of the enriched cover cannot
be managed. We can extend this notion by introducing
the D-restricted enriched cover of ℘word u◊, which is the
shortest border of u◊ of length not exceeding D which
covers the largest number of positions among borders no
longer than D. We would like to design an algorithm
based on determinization of a suffix automaton which is
appropriate for computation of all ℘word seeds with the
smallest Hamming distance.
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