Properties of Cover and Seed of Partial Words

R. Krishna Kumari, Member, IAENG, L. Jeyanthi, K. Janaki, R. Arulprakasam, Member, IAENG and P. Madhusoodhanan *

Abstract

We take into account the problem of identifying the repeated structure in a given \wp word v_{\diamond} of length l. We show that a \wp word v_{\diamond} is a cover of a \wp word u_{\diamond} if every letter of u_{\diamond} lies within an occurrence of v_{\diamond} in u_{\diamond} and v_{\diamond} is a border of u_{\diamond}. Here, we examine string issues that are concerned with identifying recurring patterns in a given total word x. The total word's period p, a common regularity, captures x 's repetition, since x is a prefix of a string created by concatenating p. We think about a challenge developed by expanding the scope of this repetitiveness idea by permitting overlaps between the segments that are repeated. We focus on a key issue in string processing: the compact representation of a word by its most frequent factors. The frequency cover, or the longest repeating factor, is a useful and simple form of quasi-periodicity in words that is proposed in this paper.

Keywords: $\wp w o r d s$, cover, seeds, periodicity, border.

1 Introduction

Numerous branches of science such as combinatorics, system theory, coding and automata theory, formal language theory and molecular biology find regularities in total words (strings) [1, 9]. One of the common issues in pattern matching is how to effectively find repetitions in a given string. The biosequence analysis recently gave the practice of looking for repetitions in strings a new

[^0]impetus. A common feature of many genomic structures, such as telomeric regions, is the existence of sequentially repeated pieces in DNA sequences that frequently carry significant biological information. The practical role of satellites and alu-repeats in chromosome analysis and genotyping makes them of great interest to genomic researchers. As a result, several biological investigations based on the examination of tandem repeats have been carried out and databases of tandem repeats in certain species have even been created.

Periodicity is the most fundamental concept that encompasses repetitiveness. We say that a string is periodic if it can be created by repeatedly concatenating its smaller component. By allowing superpositions in addition to concatenation, Apostolico and Ehrenfeucht [1] introduced the concept of quasiperiodicity, which broadened the field of periodicity. The basic terms of quasiperiodicity are the notions of cover and seed. In contrast to periods, which are defined solely by concatenations, the terms cover and seed are generalizations of periods in the sense that superpositions as well as concatenations are taken into account to define them.

Covers and their generalizations are an interesting extension of the idea of a repetition. They have potential applications in DNA sequence analysis. The ability to find repeats is helpful in a wide range of word manipulation-related applications. There are many wellknown examples, including pattern recognition, computer vision, speech recognition, data compression, data communication, combinatorics, coding and automata theory, formal language theory, and system theory. Finding repeats can be used for text editing in general as well as for tasks like locating duplicate entries in databases. A cover of a word x is a string whose occurrences in x cover all positions of x, while a seed of x is a cover of some superstring of x. Various approximate variants of covers and seeds were studied $[4,10]$. Iliopoulos et al. [7] have proposed a new notion of string regularity and an extension of the notions of period and cover called seed. The problem of all restricted seeds with the smallest Hamming distance is studied in [6]. In computation of covers, two problems have been considered in the literature. The shortest-cover problem (also known as the superprimitivity test) is that of computing the shortest cover of a given word of length n , and the al l-covers problem is that of computing all the covers of a given word.

A \wp word (or partial word) is nothing but a word with holes over the alphabet and is considered in gene comparisons [5, 8, 12]. For instance, the alignment of two DNA sequences which are genetic information carriers can be regarded as construction of two compatible \wp words. In DNA computation, DNA strands are considered as finite words and are utilized for encoding information. While encoding, some part of the information may be unseen or missing which are revealed by using $\wp w o r d s$ that denote the positions of the missing symbols in a word. The study of \wp words was initiated by Berstel and Boasson [2] and later the work was extended by Blanchet Sadri [3]. words have wide application in pattern matching. In this paper, we have presented results on quasiperiodicity, covers and seeds. Locating such a regularity can be useful in a wide area of applications, for example in molecular biology (study of the dosDNA microsatellites).

The paper has the following organization. We recall some basics in Section 2 and in Section 3 we introduce cover and seed of a \wp word and study their properties. Cover of a directed \wp tree is also established. Finally, we conclude the paper in Section 4.

2 Preliminaries

Let the finite alphabet \mathbb{A} represent a non-empty set of symbols (or letters). A total word (or string) is a sequence of letters over \mathbb{A}. The length (or size) of a total word $x=x[1 \ldots n]$ is n. The length of a total word x is denoted by $|x|$. $\operatorname{Alph}(x)$ denotes the set of all elements in x. λ denotes the empty word. \mathbb{A}^{*} denotes the set of all total words from \mathbb{A} including λ and \mathbb{A}^{+}denotes the set of all total words from \mathbb{A} excluding λ. A language L is a subset of \mathbb{A}^{*}. The total word x is a subword (or factor) of y if the total words u and v exists such that $y=u x v$. If $u, v \neq \lambda$ then x is a proper subword of y. If $u=\lambda$ then x is a prefix of y. If $v=\lambda$ then x is a suffix of y. If x, y and z are total words, with $x=y z$, then $z y$ is a conjugate of x. A border of a non-empty word x is a proper factor of x that is both a prefix and a suffix of x.

A total word x of length n is a cover of a total word y of length $m \geq n$ if there exists a set of positions $k \subseteq\{0, \ldots, m-n\}$ that satisfies the following two conditions; (i) $x[i \ldots i+n-1]=y$ for all $i \in k$; (ii) $\bigcup_{i \in k}\{i, \ldots, i+n-1\}=\{0, \ldots, m-1\}$. A total word y is a superword of a total word x if there exists two total words p and q such that $y=p x q$. A total word z is a seed of the total word x if it is a cover of a superword of x. A string y is called quasiperiodic if it has a nontrivial cover, that is, there exists a shorter string x such that every position in y is inside one of the occurrences of x in y. The word $x y$ is a concatenation of two words x and y. The concatenations of t copies of x is denoted by x^{t}. For two words $x=x_{1} \ldots x_{n}$ and $y=y_{1} \ldots y_{m}$ such that $x_{n-i+1} \ldots x_{n}=y_{1} \ldots y_{j}$ for some $j \geq 1$, the word
$x=x_{1} \ldots x_{n} y_{j+1} \ldots y_{m}$ is a superposition of x and y with j overlaps. A word $w=w_{1} \ldots w_{n}$ is a circular rotation of $x=x_{1} \ldots x_{n}$ if $w_{1} \ldots w_{n}=x_{j} \ldots x_{n} x_{1} \ldots x_{j-1}$ for some $1 \leq j \leq n$ (for $j: 1, w=x$).

The sequence of symbols that contains a number of "do not know symbols" or "holes" denoted as \diamond is termed as a \wp word. The \wp word of u denoted by u_{\diamond} is the total function $u_{\diamond}:\{1,2, \ldots, n\} \rightarrow \mathbb{A}_{\diamond}=\mathbb{A} \cup\{\diamond\}$ defined by

$$
u_{\diamond}(i)= \begin{cases}u(i) & \text { if } i \in D(u) \\ \diamond & \text { if } i \in H(u)\end{cases}
$$

The set of all \wp words over \mathbb{A}_{\diamond} is denoted as $\mathbb{A}_{\diamond}^{*}$. $\mathbb{A}_{\diamond}^{+}$ denotes the set of all \wp words excluding the empty word. A partial language (\wp language) $L_{\diamond} \subseteq \mathbb{A}_{\diamond}^{*}$ is a set of all \wp words over \mathbb{A}_{\diamond}.

We note that,
(i) A total word is a $\wp w o r d$ with zero holes and the empty word is not a \wp word.
(ii) The symbol \diamond does not belong to the alphabet \mathbb{A} but a standby symbol for the unknown letter.
(iii) The symbol \diamond is compatible to the letters of the alphabet \mathbb{A}.
(iv) The symbol \diamond alone of any length cannot exist as a word. In other words, the hole of any length is neither a total word nor a \wp word.

A \wp word $u_{\diamond}=u_{\diamond}[1 \ldots n]$ is primitive (non-periodic) if no word v exists such that $u_{\diamond} \subset v^{i}$ with $i \geq 2$. \wp words that are not primitive are said to be periodic \wp words. If u_{\diamond} is a \wp word then the period of u_{\diamond} is denoted as $\mathbf{p}\left(u_{\diamond}\right)$. If u_{\diamond} and v_{\diamond} are two \wp words of equal length and if all the elements in domain of u_{\diamond} are also in domain of v_{\diamond} with $u_{\diamond}(i)=v_{\diamond}(i)$ for all $i \in D\left(u_{\diamond}\right)$, then u_{\diamond} is contained in v_{\diamond} and is denoted by $u_{\diamond} \subset v_{\diamond}$. Two \wp words u_{\diamond} and v_{\diamond} are compatible, denoted by $u_{\diamond} \uparrow v_{\diamond}$ if $u_{\diamond}(i)=v_{\diamond}(i)$ for all $i \in D\left(u_{\diamond}\right) \cap D\left(v_{\diamond}\right)$. Equivalently, the \wp words u_{\diamond} and v_{\diamond} are compatible if a \wp word w_{\diamond} exists such that $u_{\diamond} \subset w_{\diamond}$ and $v_{\diamond} \subset w_{\diamond}$. A \wp word u_{\diamond} is bordered (denoted as $\operatorname{Bor}\left(u_{\diamond}\right)$) if non-empty words p, q, v exist such that $u_{\diamond} \subset p v$ and $u_{\diamond} \subset q p$

3 Lseed and Rseed of \wp words

 ӊwords) of length l is a cover of a $\wp w o r d ~ u_{\diamond}$ of length $m \geq l$ if there exists a set of positions $k \subseteq\{0, \ldots, m-l\}$ that satisfies the following two conditions;

1. $u_{\diamond}[i \ldots i+l-1]=v_{\diamond}$ for all $i \in k$
2. $\cup_{i \in k}\{i, \ldots, i+l-1\}=\{0, \ldots, m-1\}$.

Note that a cover v_{\diamond} of a \wp word u_{\diamond} is proper if $v_{\diamond} \neq u_{\diamond}$.
Example 1. Consider a $\wp w o r d ~ u_{\diamond}=b a \diamond b a a \diamond b \diamond a b a a b$ over the alphabet $\mathbb{A}_{\diamond}=\{a, b\} \cup\{\diamond\}$. The set of \wp words $\{b a \diamond b, b a a \diamond, b \diamond a b, b a a b\}$ that are compatible to each other represent the cover of the \wp word u_{\diamond}. Figure 1 shows the cover of \wp word u_{\diamond}.

Figure 1: The cover of \wp word $u_{\diamond}=b a \diamond b a a \diamond b \diamond a b a a b$

Remark 1. If v_{\diamond} is a cover of the \wp word u_{\diamond}, then v_{\diamond} is both a prefix and suffix of u_{\diamond}.
Definition 2. A frequency cover of u_{\diamond} is the longest of those repeating factors v_{\diamond} of $u_{\diamond},\left|v_{\diamond}\right|>1$, that occurs the maximum number of times in u_{\diamond}.

Example 2. Consider $a \wp$ word $u_{\diamond}=a \diamond a \diamond a \diamond a$, the factor $a \diamond a$ is the frequency cover of u_{\diamond}, occurring three times, as do the shorter factors $a \diamond$ and $\diamond a$.

Remark 2. A frequency cover of a \wp word is not unique.
Example 3. Consider a \wp word $u_{\diamond}=a \diamond a \diamond c \diamond c \diamond$. It has two frequency covers $a \diamond$ and $c \diamond$.

Remark 3. Not all \wp words have a frequency cover.
Example 4. Consider $a \wp$ word $u_{\diamond}=a \diamond c d \diamond f g h$ does not have a frequency cover.

It should be noted that we require the length of a $\wp w o r d ' s$ frequency covers to be greater than one because it is simple and quick to calculate the frequency of each distinct letter in a \wp word, at least for an ordered alphabet of manageable size (simply scan the string from left to right and count the number of occurrences of each distinct letter).

Theorem 1. Suppose v_{\diamond} and w_{\diamond} are the longest and shortest frequency covers of u_{\diamond} respectively. Then v_{\diamond} always covers more positions in u_{\diamond} than w_{\diamond} does.

Proof. Since both v_{\diamond} and w_{\diamond} are frequency covers, $f_{u \diamond}, v_{\diamond}=f_{u \diamond}, w_{\diamond}$. Observe that the shortest frequency cover v_{\diamond} will always be of size two; that is, $\left|v_{\diamond}\right|=2$. For if $\left|v_{\diamond}\right|>2$, any factor of v_{\diamond} of length two would have the same frequency as that of v_{\diamond} in u_{\diamond} and be shorter than v_{\diamond}, thus contradicting the assumption that v_{\diamond} is the shortest frequency cover.

For v_{\diamond} to cover fewer positions than w_{\diamond} does, some occurrences of v_{\diamond} in u_{\diamond} must overlap. Note that the overlap between any two instances of u_{\diamond} cannot be greater than $\left\lfloor v_{\diamond} / 2\right\rfloor$ as it would create a repetition in v_{\diamond} which leads
to v_{\diamond} not being the frequency cover which is a contradiction. Therefore, $v_{\diamond}=x_{\diamond} b x_{\diamond}$ (where b is a symbol). Additionally b is non-empty as otherwise it would create a repetition in v_{\diamond} which leads to v_{\diamond} not being the frequency cover which is a contradiction. If $\left|x_{\diamond}\right|>1$, then x_{\diamond} would be the frequency cover and not x . Therefore, $\left|v_{\diamond}\right|=3$. Note that the least positions covered by v_{\diamond} is when all occurrences of v_{\diamond} in u_{\diamond} overlap. However, assuming this worst case, v_{\diamond}, where $\left|v_{\diamond}\right|=3$, still covers one more position in u_{\diamond} than w_{\diamond} does. Therefore, it is not possible for a shortest frequency cover to cover more positions than the positions covered by the longest frequency cover.

Definition 3. A border v_{\diamond} of a \wp word u_{\diamond} is an enriched cover of u_{\diamond}, if the number of letters of u_{\diamond} which lie within some occurrence of v_{\diamond} in u_{\diamond} is a maximum over all borders of u_{\diamond}.

Example 5. Consider a \wp word $u_{\diamond}=a b \diamond a b \diamond a b b \diamond a b \diamond a b$ over the alphabet $\mathbb{A}_{\diamond}=\{a, b\} \cup\{\diamond\}$. The \wp word $\{a b \diamond a b\}$ represent the border of the \wp word u_{\diamond}. Figure 5 shows the cover of \wp word u_{\diamond}.

Figure 2: The cover of \wp word $u_{\diamond}=a b \diamond a b \diamond a b b \diamond a b \diamond a b \diamond a b$

Definition 4. A œword v_{\diamond} is the minimal enriched cover of a \wp word u_{\diamond}, if v_{\diamond} is the shortest enriched cover of u_{\diamond}.

Theorem 2. Any \wp word with minimal enriched cover is not periodic.

Proof. Let v_{\diamond} be the minimal enriched cover of the \wp word u_{\diamond}. Suppose v_{\diamond} is periodic with longest border w_{\diamond}, then we have $\operatorname{Bor}\left(v_{\diamond}\right)+\mathbf{p}\left(v_{\diamond}\right) \geq 2 \mathbf{p}\left(v_{\diamond}\right)$. It follows that $\left|w_{\diamond}\right| \geq$ $\mathbf{p}\left(v_{\diamond}\right) \geq\left|v_{\diamond}\right| / 2$ and so w_{\diamond} is a cover of v_{\diamond}. Hence also the minimal enriched cover of u_{\diamond}, which is a contradiction.

Definition 5. A œword v_{\diamond} is a superъword of a \wp word u_{\diamond} if there exists two ъwords p_{\diamond} and q_{\diamond} such that $v_{\diamond}=$ $p_{\diamond} u_{\diamond} q_{\diamond}$. A \wp word w_{\diamond} (or a set of compatible \wp words) is a seed of the \wp word u_{\diamond} if it is a cover of a superъword of u_{\diamond}.

Example 6. Consider $a \wp w o r d u_{\diamond}=b a b \diamond a b b \diamond a b \diamond a b b a \diamond b$ over the alphabet $\mathbb{A}_{\diamond}=\{a, b\} \cup\{\diamond\}$. The set of \wp words $\{a b \diamond a, a b b \diamond, a b \diamond a, a b b a\}$ that are compatible to each other represent the seed of the \wp word u_{\diamond} since the set is a cover of a superŋ word $v_{\diamond}=a b \diamond a b b \diamond a b \diamond a b b a$ of u_{\diamond}. Figure 6 shows the seed of \wp word u_{\diamond}.

Definition 6. A left seed (denoted as Lseed) of a œword u_{\diamond} is a prefix of u_{\diamond} that exists as a cover of a superrword

bab \diamond a b b 0 a b \diamond ab bas b

Figure 3: The seed of \wp word $u_{\diamond}=b a b \diamond a b b \diamond a b \diamond a b b a \diamond b$
of u_{\diamond} in the form $u_{\diamond} z$ where z is a possibly empty word.

Likewise a right seed [denoted as Rseed] of a \wp word u_{\diamond} is a suffix of u_{\diamond} that exists as a cover of a superœ word of u_{\diamond} in the form $z u_{\diamond}$ where z is a possibly empty word.
Example 7. Consider $a \wp w o r d u_{\diamond}=a a b \diamond a b a a a b a \diamond b a \diamond b$ over the alphabet $\mathbb{A}_{\diamond}=\{a, b\} \cup\{\diamond\}$. The set of \wp words $\{a a b \diamond, \diamond a b a, a a b a, a \diamond b a\}$ that are compatible to each other represent the Lseed of the $\wp w o r d ~ u_{\diamond}$ since the set is a prefix of u_{\diamond} and is a cover of a super\wp word $v_{\diamond}=a a b \diamond a b a a a b a \diamond b a$ of u_{\diamond}. Figure 7 shows the Lseed of \wp word u_{\diamond}.

Figure 4: The Lseed of \wp word $u_{\diamond}=a a b \diamond a b a a a b a \diamond b a \diamond b$

Example 8. Consider a \wp word $u_{\diamond}=a b a b b \diamond b a \diamond a b$ over the alphabet $\mathbb{A}_{\diamond}=\{a, b\} \cup\{\diamond\}$. The set of \wp words $\{a a b \diamond, \diamond a b a, a a b a, a \diamond b a\}$ that are compatible to each other represent the Rseed of the œword u_{\diamond} since the set is a suffix of u_{\diamond} and is a cover of a superpword $v_{\diamond}=b a b b \diamond b a \diamond a b$ of u_{\diamond}. Figure 8 shows the Lseed of \wp word u_{\diamond}.

Figure 5: The Rseed of \wp word $u_{\diamond}=a b a b b \diamond b a \diamond a b$

Definition 7. The minimal (maximal) Lseed of $u_{\diamond} d e-$ noted as $L_{\text {min }} \operatorname{seed}\left(u_{\diamond}\right)\left(L_{\text {max }} \operatorname{seed}\left(u_{\diamond}\right)\right)$ is the prefix of u_{\diamond} with minimum (maximum) length such that it is a cover of a superøword of u_{\diamond}. Likewise the minimal (maximal) R seed of u_{\diamond} denoted as $R_{\text {min }} \operatorname{seed}\left(u_{\diamond}\right)\left(R_{\max } \operatorname{seed}\left(u_{\diamond}\right)\right)$ is the suffix of u_{\diamond} with minimum (maximum) length such that it is a cover of a superø word of u_{\diamond}.
Theorem 3. If a seed w_{\diamond} covers a word u_{\diamond} by concatenation, then all the circular conjugates of w_{\diamond} cover u_{\diamond} by concatenations.

Proof. Since the seed w_{\diamond} covers a \wp word u_{\diamond} by concatenation, a cover w_{\diamond}^{m} of u_{\diamond} by w_{\diamond} exists. Let w_{\diamond}^{\prime} be a
circular conjugate of w_{\diamond}. Here w_{\diamond}^{m} is a factor of w_{\diamond}^{m+2}. Then w_{\diamond}^{m+2} is a cover of u_{\diamond} and thus w_{\diamond}^{\prime} covers u_{\diamond} by concatenations. Thus all the circular conjugates of w_{\diamond} cover u_{\diamond} by concatenations.
Theorem 4. A ๒word v_{\diamond} is a Lseed (Rseed) of a \wp word u_{\diamond} if and only if v_{\diamond} is a cover of the prefix (suffix) of u_{\diamond} with $\left|v_{\diamond}\right| \leq \mathbf{p}\left(u_{\diamond}\right)$.

Proof. Let us assume that a \wp word v_{\diamond} covers a prefix of u_{\diamond}, say $q r$ with $\left|v_{\diamond}\right| \geq \mathbf{p}\left(u_{\diamond}\right)$, such that $|q|=\mathbf{p}\left(u_{\diamond}\right)$ and r is a possibly empty word. Consider a smallest integer t such that u_{\diamond} is a prefix of q^{t}. Then v_{\diamond} is a cover of $q^{t} r=u_{\diamond} r$ for some word s, possibly empty. Hence v_{\diamond} is a Lseed of u_{\diamond}.

Conversely, assume v_{\diamond} to be a Lseed of u_{\diamond}. Then the following two cases occur:

1. If $\left|v_{\diamond}\right| \leq \operatorname{Bor}\left(u_{\diamond}\right)$, then a suffix r of v_{\diamond}, possibly empty is a prefix of the border. Now consider the Lseed which is a cover of $u_{\diamond}\left[\mathbf{p}\left(u_{\diamond}\right)-1\right]$. Then v_{\diamond} is a cover of $q r$ and also $|q|=\mathbf{p}\left(u_{\diamond}\right)$.
2. Let us consider $\left|v_{\diamond}\right|>\operatorname{Bor}\left(u_{\diamond}\right)$. Suppose that v_{\diamond} with $\left|v_{\diamond}\right| \geq \mathbf{p}\left(u_{\diamond}\right)$, does not cover a prefix of u_{\diamond} then assume that $r=\operatorname{Bor}\left(u_{\vartheta}\right)$ such that r is a factor of $v_{\diamond}=q r s$, where q and r are non-empty. Now by considering the Lseed which is a cover of $u_{\diamond}\left[\mathbf{p}\left(u_{\diamond}\right)-1\right]$, we get $q r$ as a longest border of u_{\diamond}, which is a contradiction.

Hence the result.
Theorem 5. Let v_{\diamond} be a cover of \wp word u_{\diamond} and let $w_{\diamond} \neq$ v_{\diamond} be a factor of u_{\diamond} with $\left|w_{\diamond}\right| \leq\left|v_{\diamond}\right|$. Then w_{\diamond} is a cover of u_{\diamond} if and only if w_{\diamond} is a cover of v_{\diamond}.

Proof. If w_{\diamond} is a cover of v_{\diamond} and v_{\diamond} is a cover of u_{\diamond}, then w_{\diamond} is a cover of u_{\diamond}. Suppose if both w_{\diamond} and v_{\diamond} are covers of u_{\diamond}, then $w_{\diamond}=\operatorname{Bor}\left(v_{\diamond}\right)$ since length of w_{\diamond} is less than or equal to v_{\diamond}. Therefore w_{\diamond} must be a cover of v_{\diamond}. Hence the result.

Theorem 6. For any \wp word u_{\diamond} with $\left|u_{\diamond}\right|=m$, if $\mathbf{p}\left(u_{\diamond}\right)=$ m then $L_{\text {min }} \operatorname{seed}\left(u_{\diamond}\right)=u_{\diamond}$.

Proof. By the notion of $\mathrm{L}_{\text {min }}$ seed, we get $\mathrm{L}_{\min }\left(u_{\diamond}\right) \leq m$. Let us assume that $\mathrm{L}_{\min }\left(u_{\diamond}\right)<m$. Then in order to cover u_{\diamond}, a non-empty prefix v_{\diamond} of $\mathrm{L}_{\text {min }}\left(u_{\diamond}\right)$ which is also a suffix of u_{\diamond} exists. Now let us consider the Lseed that covers $u_{\diamond}[m-1]$. Then $m-\left|v_{\diamond}\right|$ is a minimal period of u_{\diamond} which is a contradiction. Hence the $\mathrm{L}_{\min } \operatorname{seed}\left(u_{\diamond}\right)$ is equal to u_{\diamond}.

Theorem 7. For any \wp word u_{\diamond} with $\left|u_{\diamond}\right|=n$ and $\mathbf{p}\left(u_{\diamond}\right)=m$, if $m=n$ then there is no longest right seed for u_{\diamond}.

Proof. Consider that $m=n$. Let us assume that $u_{\diamond}[k \ldots n-1]$ is the longest right seed of u_{\diamond} with $0<$ $k \leq n-1$. Then to cover u_{\diamond}, a non-empty suffix of $u_{\diamond}[k \ldots n-1]$ say v_{\diamond} is a prefix of u_{\diamond}. Then $n-\left|v_{\diamond}\right|$ gives a shorter period for u_{\diamond} which contradicts our assumption. Therefore if $m=n$ then there is no longest right seed for u_{\diamond}.

Theorem 8. For all $0 \leq i<m$, if Lseed $[i]=L_{\text {min }} \operatorname{seed}\left(u_{\diamond}[0 \ldots i]\right)$, then for all $0 \leq i<m-1$ we get L seed $[i] \leq \operatorname{Lseed}[i+1]$.

Proof. Let us prove by contradiction. Assume that Lseed $[i]>\operatorname{Lseed}[i+1]$. By the notion of the $\mathrm{L}_{\text {min }}$ seed, we have Lseed $[i]$ covers some superøword $u_{\diamond}[0 \ldots i] r$, where r is a possibly empty word. Similarly Lseed $[i+1]$ covers some superøword $u_{\diamond}[0 \ldots i+1] s$, where s is a possibly empty word. This shows that Lseed $[i+1]$ covers $u_{\diamond}[0 \ldots i] u_{\diamond}[i+1] s$. Thus by notion of $\mathrm{L}_{\text {min }}$ seed, $\operatorname{Lseed}[i+1]$ is the $\mathrm{L}_{m i n}$ seed of $u_{\diamond}[0 \ldots i]$. But we get a shorter Lseed for $u_{\Delta}[0 \ldots i]$ which is a contradiction. Hence the result.

3.1 Cover of a directed \wp tree

Definition 8. A \wp word v_{\diamond} is a cover of an edge labeled directed \wp tree τ if every edge of τ can be covered by some simple path with label v_{\diamond} such that all edges directed towards the parent node of τ.

Example 9. Consider a $\wp w o r d ~ v \diamond=a \diamond b \diamond b b a \diamond b \diamond a$ over the alphabet $\mathbb{A}_{\diamond}=\{a, b\} \cup\{\diamond\}$. The set of \wp words $\{a \diamond b \diamond, \diamond b b a, \diamond b \diamond a\}$ that are compatible to each other and also compatible with abba represent the cover of the directed \wp tree τ. Figure 9 shows the cover of a directed tree τ.

Figure 6: Cover of a directed tree τ

Remark 4. If v_{\diamond} is a cover of a directed tree τ, then it is a cover of minimum one \wp word of τ corresponding to terminal nodes-to-parent node.

Remark 5. If v_{\diamond} is a cover of a directed tree τ, then v_{\diamond} is a prefix of all terminal nodes-to-parent node labels and also is a prefix of longest common prefix of all terminal nodes-to-parent node paths.

4 Conclusion

In this paper, we have focused on the identification of various kinds of periodicities and other regularities in \wp words such as covers and seeds. The study is based on the maintenance of a new, simple but powerful data structure. For the future work, our immediate target is to investigate whether there exists $O(n)$-time algorithm for computing the minimal enriched cover. For certain applications, the notion of the minimal enriched cover might not be useful, since it primarily optimises the number of positions covered, while the length of the enriched cover cannot be managed. We can extend this notion by introducing the D-restricted enriched cover of \wp word u_{\diamond}, which is the shortest border of u_{\diamond} of length not exceeding D which covers the largest number of positions among borders no longer than D. We would like to design an algorithm based on determinization of a suffix automaton which is appropriate for computation of all \wp word seeds with the smallest Hamming distance.

References

[1] Alberto Apostolico and Andrzej Ehrenfeucht, Efficient detection of quasiperiodicities in strings, Theoretical Computer Science, vol.119, (1993), pp.247265.
[2] J. Berstel and L. Boasson, Partial Words and a Theorem of Fine and Wilf, Theoretical Computer Science, vol.218, (1999), pp.135-141.
[3] F. Blanchet-Sadri, Primitive Partial Words, Discrete Applied Mathematics, vol.148, (2005), pp.195-213.
[4] Christodoulakis, Manolis, Costas S. Iliopoulos, Kunsoo Park, and Jeong Seop Sim, Approximate Seeds of Strings, Journal of Automata, languages and Combinatorics, vol. 10(5), (2005), pp. 609-626.
[5] M.J. Fischer and M.S. Paterson, String Matching and other Products,In: Karp, R.M. (ed.) Complexity of Computation. SIAM-AMS Proceedings, (1974), pp.113-125.
[6] O. Guth and B. Melichar, Finite Automata Approach to Computing All Seeds of Strings with the Smallest Hamming Distance, IAENG International Journal of Computer Science, vol. 36, no. 2, (2009), pp. 137-146.
[7] C.S. Iliopoulos, D.W.G. Moore, K. Park, Covering a string, Proc. 4 th Ann. Symp. on Combinatorial Pattern Matching, Lecture Notes in Computer Science, vol. 684, (1993), pp. 54-62.
[8] K. Janaki and R. Arulprakasam, Tiling systems and domino systems for partial array languages, IAENG International Journal of Applied Mathematics, vol. $52(2),(2022)$, pp. 418-425.
[9] M. Lothaire, Combinatorics on Words, Cambridge University Press, 1983.
[10] Mhaskar, Neerja, and William F. Smyth, String covering with optimal covers, Journal of Discrete Algorithms, vol. 51, (2018), pp. 26-38.
[11] Mhaskar, Neerja, and William F. Smyth, Frequency covers for strings, Fundamenta Informaticae, vol. 163(3), (2018), pp.275-289.
[12] K. Sasikala, V. Rajkumar Dare and D.G. Thomas, Learning of Partial Languages, Engineering Letters, vol.14(2), (2007), pp.72-80.

[^0]: *Manuscript received November 17, 2022; revised June 21, 2023. R. Krishna Kumari is an Assistant Professor in the Department of Career Development Centre, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai-603203, Tamilnadu, India (e-mail: krishrengan@gmail.com).
 L. Jeyanthi is an Assistant Professor in the Department of Mathematics, Panimalar Engineering College, Varadharajapuram, Poonamallee, Chennai-600123, Tamilnadu, India (e-mail: jeyanthi.l@gmail.com).
 K. Janaki is an Assistant Professor in the Department of Mathematics, Saveetha Engineering College, Saveetha Nagar, Thandalam Chennai-602105, Tamilnadu, India (e-mail: janu89lava@gmail.com).
 R. Arulprakasam is an Assistant Professor in the Department of Mathematics, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai-603203, Tamilnadu, India (corresponding author e-mail: r.aruljeeva@gmail.com).
 P. Madhusoodhanan is the Head of the Department of Career Development Centre, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai-603203, Tamilnadu, India (e-mail: madhupms1973@gmail.com).

