

Abstract—This article investigates the optimality conditions

for solutions to set optimization problems using set scalarization
functions defined by oriented distance functions. Specifically,
we begin by examining the sup-inf set scalarization function,
which is defined by Hiriart-Urruty's oriented distance function.
We then proceed to define the Dini directional derivative of
set-valued maps and analyze its properties. Finally, we obtain
the optimality conditions for solutions to set optimization
problems through the use of the Dini directional derivative.

Index Terms—set optimization problem, set scalarization
functions, oriented distance functions, Dini directional
derivative, set order relations

I. INTRODUCTION

ET optimization problem is a vital problem of decision
optimization. In many real-life optimization problems,

the objective is a set rather than an individual, which means
the research on set optimization problems are extremely
important. Last decades, the set optimization problems have
been extensively used for solving many issues, such as
financial mathematics problems, multi-objective problems,
vector variational inequalities, and optimal control problems,
which attracted extensive attention from numerous scholars
[1-5].

There are two standards of characterization for the
solutions of set-valued optimization problems, i.e. set
criterion and vectorial criterion. The researches on these two
criteria are independent. The vectorial criterion is defined as
finding the effective points of objective function image set.
Therefore, the set-valued optimization problems with
vectorial criterion can be referred to as set-valued vector
optimization problems or vector optimization problems with
set mapping. Many studies have been done on this type of
problem. On the other, Kuroiwa[6] studied the solutions of
set-valued optimization problems under set criterion.
Thereafter, Kuroiwa et al. [7] proposed six set order relations
of set-valued optimization problems. Using the set criterion
for set-valued optimization problems is naturally rather than
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vectorial criterion. Therefore, set-valued optimization
problems under set criterion can be defined as set
optimization problems. The researches of set optimization
problems under different set order relations are significant.

The scalarization function is essential for solving vector
optimization problems and set optimization problems.
Theoretically, it is an essential tool for the research of
optimality conditions. Computationally, it is a vital means for
discovering new algorithms. The linear scalarization function
was first put forward and widely used. After that, two crucial
nonlinear scalarization functions were proposed, which are
Gerstewitz ’ s function [8] and Hiriart-Urruty oriented
distance function [9]. Gerstewitz ’ s function became an
essential tool for researching the vector optimization
problems. By using the Hiriart-Urruty oriented distance
function, well-posedness of the solution sets, the nonlinear
scalarization results and Lagrange multiplier rule of vector
optimization problems were obtained in [10-14]. In the recent
researches, the Hiriart-Urruty oriented distance function was
also studied for set optimization problems. In [15], the
optimality condition of four kinds of optimal solutions for
constraint set optimization problems based on different set
order relations were gained by the oriented distance function.
In [16], a sup-inf set scalarization function was proposed, and
directional derivative of the set-valued map were defined by
using the sup-inf set scalarization function. Moreover, the
optimality conditions of solutions to set optimization
problems were concluded. In [17-18], the properties of the
sup-inf set scalarization function were analyzed, and the
concept of minimum for set optimization problems was
described by the sup-inf set scalarization function. In [19], six
generalized oriented distance functions were discussed, and
the optimality conditions of solutions for set optimization
problems were given by six set scalarization functions. In
[20], Dini directional derivative of the set-valued map was
defined by imposing sup-inf set scalarization function, and
the optimality condition of solutions for set optimization
problems was described using this type of directional
derivative. From the above results, it is significant to study
different kinds of the sup-inf set scalarization functions and
research on optimality conditions of solutions for set
optimization problems based on these set scalarization
functions.

The rest of this paper is organized as follows. The basic
knowledge and preliminaries are introduced in Sect. 2. In
Sect. 3, the properties of the sup-inf set scalarization function
proposed by Jiménez [19] are studied. In Sect. 4, based on the
sup-inf set scalarization function proposed by Jiménez, we
define the Dini directional derivative and discuss the
properties of this directional derivative. Furthermore, the
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optimality condition of solutions for set optimization
problems is gained by Dini directional derivative. Finally, we
conclude this paper.

II. PRELIMINARIES

Assume V is a normed vector space. Let VB be a closed
unit sphere in V , and 0

VB be an open unit sphere in V .
Define 0 ( )V as the entire nonempty subsets of V . Suppose
that C V is a pointed closed convex cone, and C has the
nonempty interior. The cone C generates a partial order on
V , which can be defined below. 1 2,v v V  ,

1 2 2 1v v v v C    .
Denote the topological dual space of V as *V , and the

topological dual cone of C as *C , which is given as follows:

* *{ : ( ) 0, }C V v v C      .

Define * *{ : 1}CB C    , and the support function of

A at  can be defined as ( , ) sup ( )a AS A a  , where

0 ( )A V and *V  . The upper relation " "u can be

denoted as uM N M N C    , the weak upper relation
" "u can be noted as intuM N M N C    , and the
equivalence relation " "u can be defined
by uM N  uM N and uN M , where

0, ( )M N V .
Denote the topological interior of M as intM ; the

topological closure of M as clM ; the topological boundary
of M as M ; the convex hull of M as coM ; and the
complementary set of M as cM . For a nonempty set
M V , if M C V  , it is known as C -proper; ifM C is
a convex set, it is known as C -convex; if M C is a closed
set, it is known as C -closed; if for each neighbourhood I of
zero in V , there exist some number 0t  that M tI C  , it
is known as C -bounded; and if any cover formed as
{ : }I C I are open  of M exists a finite subcover, it is
called C -compact. Note (0)N as the neighborhoods of
0 V .
Remark 1 Obviously, if there is 0  such that VB is
C -closed, thus 0  that VB is C -closed.

Note that 0 ( )M V and m M . If
( ) ( ) {0}M m C   , m is a minimal point of M as
regards C can be defined as ( )m Min M . If
( ) ( int )M m C    , m is a weak minimal point of M
as regards C can be defined as ( )m WMin M .
Remark 2[21] Evidently, ( ) ( )Min M WMin M .
Furthermore, if M is nonempty and C -compact,
therefore ( )Min M   .

Let U be a normed vector space and D is a nonempty
subset of U . Denote : 2VF U  is a set-valued mapping,
then the set optimization problem is as follows:

(SOP) min ( )
x D

F x


.

Definition 1 *x D is referred to as
(1) u -minimal solution of (SOP), if x D  ,

*( ) ( )uF x F x means that *( ) ( )uF x F x ;
(2) weak u -minimal solution of (SOP), if x D  ,

*( ) ( )uF x F x means that *( ) ( )uF x F x .
Note that ( , )uE F D and ( , )uW F D are the u -minimal

solution set and weak u -minimal solution set of (SOP),
respectively.
Example 1 Let 2 ordered by 2

 ,Let

{ : [0 , )}xU S x   be the family of subsets of 2
defined by

{ (0 , 0 )} 0
1[(0 , 0 ), ( , )] 0x

if x
S

x if x
x


 

 
It is easy to check that there are not u -minimal sets of U ,
however each xS is a weak u -minimal sets of U .
Definition 2[22] A set-valued mapping : 2VU  is
called C -convex on D , where D is a convex subset and
nonempty of U , if 1 2,u u D  and [0,1]  ,

1 2 1 2( (1 ) ) ( ) (1 ) ( )u u u u C            .
Definition 3[23] Note that ( , )U d is a metric space.
Denote M and N are two nonempty subsets of U . The
Hausdorff distance can be refereed to as

( , ) max{ ( , ), ( , )}H M N e M N e N M ,
where

( , ) sup ( , )
m M

e M N d m N


 , ( , ) inf ( , )
n N

d m N d m n


 .

Definition 4[9] For a set D V , define the oriented distance
function : { }D V R   as

\( ) ( ) ( )D D V Dv d v d v   ,

with ( )d v   , where ( ) infD x D
d v v x


  .

The elementary properties of the oriented distance function
are given as follows.
Lemma 1[24-25] If D V is nonempty, and D V , we
have

(1) D is a real valued function;
(2) D is a 1 -Lipschitzian function;
(3) ( ) 0 intD v v D    ;
(4) ( ) 0D v v D    ;
(5) ( ) 0 int c

D v v D    ;
(6) if D is closed, thus { : ( ) 0}DD v V v    holds;
(7) if D is a cone, thus D is a positively homogeneous

function;
(8)if D is convex, thus D is a convex function;
(9) if D is a closed convex cone, ,v v V  ,

( ) ( )D Dv v D v v       ;
if D has a nonempty interior, therefore ,v v V  ,

int ( ) ( )D Dv v D v v       .
Therefore, we can easily derive the lemmas below.
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Lemma 2 Let 0  . Then
0( ) ( )D Vd v v B D      .

Lemma 3 Let 0  . There exist:
(1) if VB D  is a closed set, Vv B D  , then
( )Dd v  ;

(2) if VB D  is a closed set and ( )Dd v  , then

Vv B D  .
Proof (1)Since Vv B D  and nd D , then n Vv d B  ,

i.e. nv d   ,so ( )Dd v  .

(2)For n N , because ( )Dd v  , then
1( )Dd v
n

    . Therefore if nd D , there exists

1
nv d

n
   . Thereby,

1 1( ) ( )V n Vv B d B D
n n

       , n N  .

Hence, there is n Vb B that 1
n Vv b B D

n
   . Because

1
nv b v

n
  and VB D  is closed, Vv B D  holds. □

The following corollary is given based on Remark 1 and
Lemma 3.
Corollary 1 If D is a cone, and VB D is a closed set, then
for 0  , ( )D Vd v v B D     .
Proof since VB D is a closed set,by Remark 1, 0  ,that

VB D is a closed set, from Lemma 3,
( )D Vd v v B D     .

Lemma 4 If 0  and D is C -bounded, then
( int )

VB
D D C

 



   .

Proof Assume that
( int )

VB
D D C

 



   . (1)

Thus, 1d D  , there exists 2d D , so that

1 2 ( int )
VB

d d C
 




   . (2)

VB   , it is clear that VB   . Together with (2)
means that 1 2 intd d C   and 1 2 intd d C   .

VB   , we have 1 2 intVd d B C    . Similarly, for

nd D , there is 1nd D  so that 1 intn n Vd d B C    .
This shows that 1 1 intn Vd d n B C    and

1 1 int intn Vd d n B C C C C        . (3)
Because D is C -bounded, there is 0  such that

VD B C  , so we have VD B C   . Obviously, there

is 0n sufficiently large so that 0 1n d   . Observing that

0 1n Vd D B C    , there exists 0 Vb B  and

0c C such that
0 1 0 0nd b c    . Because of

1 0 0 Vd b n B  , 0c C and (3), we have

0 01 1 1 0 0 1 1 00 ( ) intn n Vd d d b c d d n B C C           

which is a contradiction. □

Lemma 5 If ( )F x is nonempty C -compact, x D , thus
( , )ux W F D iff it does not exist x D satisfying

( ) ( )uF x F x .

III. THE PROPERTIES OF SET SCALARIZATION FUNCTION

We discuss the set scalarization function of sup-inf type in
this section. Denote M and N as nonempty subsets of V .
The following scalarization function is introduced in [19]:

( , ) sup inf ( )C Cn Nm M
h M N m n

   .

Lemma 6 [16] If N is C -bounded then ( , )Ch M N   ; if
M is C -bounded then ( , )Ch M N   ; and if both M and
N are bounded then ( , )Ch M N is finite.
Proof If N is C -bounded. Therefore N M C  for some
nonempty bounded set M V  . Fix m M . For n N  ,
there exist m M  and c C , so that n m c  . Thus
n m . By using Lemma 1, there
is ( ) ( )C Cm n m m m m m m               . Then

( , ) infC m M
h M N m m

 
     . The other two cases can

be checked similarly. □
From Lemma 3.2 of [16], the following Lemma is given.

Lemma 7 Let M and N are nonempty subsets of U and
v V , respectively.

(1) If N is C -compact, therefore there is 0n N that

0( ) inf ( )C Cn N
x n x n 

     .

(2) If M , N is C -compact, therefore there is 0m M
that

0( , ) inf ( )C Cn N
h M N m n

   .

Proof (1) Assume that N is C -compact, thus N is
C -bounded. Suppose that n N is given, then

inf ( )Cn N
t m n
     can be obtained from Lemma 6.

Contrarily, ( )C m  does not reach its infimum on N .
Therefore for any n N , there is a positive scalar

( )n depending on n so that ( ) ( )C m n t n    . For
n N , let { ( ) ( )}n CU v V v n t n      . Because of

0 C , we get n nU U C  , and because of
( ) ( ) ( )C Cv c n v n t n         for any nv U and

c C , we get n nU C U  . Then, n nU U C  .
Furthermore, because C is Lipschitz, sets nU are
open, nn U , so that n

n N
N U


  holds. The C -compactness

of N means that there exist finite vectors 1, , in n so that

jn N for all 1, ,j i  and 1( )
j

i
j nN U C  . Thus,

1 j

i
j nN U  and we have

inf ( ) inf{ ( ) 1,... }C jn N
t m n t n j i t

       , which is a

contradiction. Therefore, there exists 0n N such that

0( ) inf ( )C Cn N
x n x n 

     .

(2) From the properties of the function C , one can easily
obtain that the function inf ( )Cn N

n
  is 1 -Lipschitz and
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monotone as follows:
2 1 1 2inf ( ) inf ( )C C Cn N n N

m m m n m n  
       .

Then, by Lemma 6, m M  , we get
inf ( )Cn N

m n
    and ( , )Ct h M N   . Assume

contrarily that inf ( )Cn N
n

  does not reach its maximum on

N . Fix m M . Therefore, there has a positive ( )m
depending on m so that inf ( ) ( )Cn N

m n t m
    . Set

{ inf ( ) ( )}m Cn N
U v V v n t m

      . One can get

m mU U C  . In the similar way in the proof of (1), and in
view of the properties of the function inf ( )Cn N

n
 

mentioned above, there exist finite numbers of vectors
1, , im m so that jm M for all 1, ,j i  and

1 1( )
j j

i i
j m j mM U C U     . Therefore,

sup inf ( ) inf{ ( ) 1,... }C jn Nm M
t m n t m j i t
       , a

contradiction. Then, there is 0m M so that

0( , ) inf ( )C Cn N
h M N m n

   . □

From Theorem 5.1 of [17], the proposition is obtained as
follows.
Proposition 1 Assume 0  ,

(1) If VN C B  is closed and VM N C B   , then
( , )Ch M N  ;
(2) If VN C B  is closed and ( , )Ch M N  , then

VM N C B   .
From Proposition 1, the following corollaries are given.

Corollary 2
(1) If uM N , then ( , ) 0Ch M N  ;

(2) If M is C -closed and ( , ) 0Ch M N  , then uM N .

Proof (1) Suppose that uM N iff M N C  . m M 
there is 0n N that 0m n C  , and then 0( ) 0C m n   .

0inf ( ) ( ) 0C Cn N
m n m n 

      holds. As n N is

arbitrarily chosen, we have ( , ) 0Ch M N  .

(2) Contrarily assume uM N

 iff M N C  . Then let

m M , so m N C  . For n N there exists m n C  ,
then ( ) 0C m n   for n N . This means

( , ) inf ( ) 0Cn N
h m N m n

    . Thus,

( , ) sup ( , ) sup inf ( ) 0C Cn Nm M m M
h M N h m N m n 

     , a

contradiction. Therefore uM N . □
Corollary 3 Let 0 ( )M N V， , N is C -compact and let
C be solid. Then ( , ) 0u

CM N h M N  .

Proof (1) Necessity. uM N iff intM N C  , i.e., if and
only if for all m M , there is 0n N such that

0 intm n C  , and therefore 0 intm n C  . By the
Lemma 1(3), 0( ) 0C m n   thus

( , ) inf ( ) 0Cn N
h m N m n

    , m M  .

Thus, as N is C -compact, we have

0( , ) ( , )Ch M N h m N for some 0m M . Then we have
( , ) 0Ch M N  .

(2) Sufficiency. Suppose that uM N

 , i.e.,

intM N C  . Thus, there is m M so that intm N C  .
Then, for n N , intm n C  holds. Therefore, by
Lemma 1(3) we get ( ) 0C m n   , for n N . Then

( , ) inf ( ) 0Cn N
h m N m n

    . Consequently,

( , ) sup ( , ) sup inf ( ) 0C Cn Nm M m M
h M N h m N m n 

     . Then,

uM N . 
Proposition 2 Assume that 0  .

(1) If ( , )Ch M N  , then 0
V

M N C B   ;

(2) If M is C -compact, N is C -bounded,
0
V

M N C B   holds, then ( , )Ch M N  .

Proof (1) For any m M , it follows from ( , )Ch M N 
that inf ( )Cn N

m n 
   . Thus there is 0n N such that

0( )C m n    . Two cases are considered here.
case1. 0m n C  , then 0m n C  . For any VB  ,

then VB   , that is VB  , thus

0 Vm n C B     , therefore
0

0 V Vm n C B N C B         .
case2. 0m n C  . Then 0 0( ) ( )C Cm n d m n       .

By Lemma 2, 0
0 Vm n B C    , and thus

0 0
0 V Vm n C B N C B       .

By the arbitrariness of m M , we get 0
V

M N C B   .

(2) From lemma 7(1), there is 0m M such that

0( , ) inf ( )C Cn N
h M N m n

   (4)

Because 0
VM N C B   , there is 0n N such that

0
0 0 V

m n C B   . By Lemma 2, there exists

0 0 0 0( ) ( )C Cm n d m n       . By (4) that

0 0 0( , ) inf ( ) ( )C C Cn N
h M N m n m n  

       . □

Proposition 3 Assume that 0  .
(1) If

0
( )

VB
M N C

 



   , thus ( , )Ch M N   ;

(2) If N is C -compact and ( , )Ch M N   , thus

0
( )

VB
M N C

 



   .

Proof (1) For any m M , because
0
( )

VB
M N C

 



   ,

there is n N that
0
( )

VB
m n C

 



   . This implies that

for any 0
V
B  , there is m n C   , and thus

m n C   . By the arbitrariness of 0
VB  , there

exists 0
Vm n B C    . Therefore,

0( ) ( \ ( ))Vm n B V C     . Since Lemma 2,

\ ( ) ( )V Cd m n    . Obviously m n C  . Then

\ ( )( ) ( )C V Cm n d m n         ,
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and thus
inf ( ) ( )C Cn N

m n m n  
       , m M  ,

By the arbitrariness of m M , there exists
( , ) sup inf ( )C Cn Nm M

h M N m n 
     .

(2) For any given m M , it follows from ( , )Ch M N  
that inf ( )Cn N

m n 
    . Since N is C -compact, by

Lemma 7(1), there is 0n N so that

0( ) inf ( ) 0C Cn N
m n m n  

        .

Therefore 0m n C  and

0 \( ) 0( ) ( )C V Cm n d m n         , and thus

\ ( ) 0( )V Cd m n    .

From Lemma 2, we get 0
0( ) ( \ ( ))Vm n B V C     ,

which implies that 0
0 Vm n B C    . Thus, for any

0
V
B  , we get 0m n C   , and thus 0m n C   .

Due to the arbitrariness of 0
V
B  , we obtain

00 ( )
VB

m n C
 




   . Therefore,

0 00 ( ) ( )
V VB B

m n C N C
   

 
 

       .

It follows from the arbitrariness of m M that

0
( )

VB
M N C

 



   . □

Proposition 4 Assume that 0  . Then the statements hold:
(1) If ( , )Ch M N   , then ( int )

VB
M N C

 



   ;

(2) If M is C -compact, N is C -bounded, V is finite
dimensional and ( int )

VB
M N C

 



   , then

( , )Ch M N   .
Proof (1) For any m M , it follows from ( , )Ch M N  

that inf ( )Cn N
m n 

    . Then there is 0n N such that

0( ) 0C m n      . This implies that

0 \( ) 0( ) ( )C V Cm n d m n         .
Then, \ ( ) 0( )V Cd m n    . Therefore, there is R such

that
\ ( ) 0( )V Cd m n      .

From Lemma 3(1), we get
0( ) ( \ ( ))Vm n B V C     ,

which means
0 0V V Vm n B m n B B C           （ ） .

It follows that 0 intVm n B C    . For any VB  ,
we get 0 intm n C   , and then 0 intm n C   .
Due to the arbitrariness of VB  , we get

0 ( int )
VB

m n C
 




   . Therefore,

0 ( int ) ( int )
V VB B

m n C N C
   

 
 

       .

By the arbitrariness of m M , we obtain
( int )

VB
M N C

 



   .

(2) By Lemma 7(2), we obtain that there is 0m M such

that
0( , ) inf ( )C Cn N

h M N m n
   . (5)

Because ( int )
VB

M N C
 




   , there is 0n N such

that
0 0 ( int )

VB
m n C

 



   .

This implies that 0 0 intVm n B C    . Since V is
finite dimensional, then 0 0 Vm n B  is compact. Thus
there is 0  such that 0 0 ( ) Vm n B C      , which
means that

0
0 0( ( ) ) ( \ ( ))

V
m n B V C       .

By Lemma 2, \ ( ) 0 0( )V Cd m n        hold.
Therefore,

0 0 \( ) 0 0( ) ( )C V Cm n d m n         .
Together with (5) means

0 0 0( , ) inf ( ) ( )C C Cn N
h M N m n m n  

        . □

Theorem 1 Suppose that M and N are C -bounded.
(1) If ( , ) 0Ch M N  , therefore

( , ) inf{ 0 : }C Vh M N t M N C tB     ;
(2) If ( , ) 0Ch M N  , therefore

( )
( , ) inf{ 0 : ( )}

V
C

t B
h M N t M N C




 
     .

Proof (1) Since M is C -bounded, by Lemma 6,
( , )Ch M N   hold. Thus there exists 0  such that
( , )Ch M N  . It follows from Proposition 2(1) that

0
V VM N C B N C B       ,

which implies that { 0 : }Vt M N C tB      . Note that
{ 0 : }Vt M N C tB      . For any 0  , there is 0t 

so that VM N C tB   and t    . From Proposition
1(1), ( , )Ch M N t     hold. By the arbitrariness of

0  , we get ( , )Ch M N  .
Moreover, assume ( , )Ch M N  . Thus there is R  so

that
( , )Ch M N    (6)

From Proposition 2(1), 0
V VM N C B N C B      

holds. This means that   , which contradicts (6).
Thus, ( , )Ch M N  .Therefore

( , ) inf{ 0 : }C Vh M N t M N C tB     .
(2) Due to ( , ) 0Ch M N  , there is R  such that
( , ) 0Ch M N   . By Proposition 4(1), there is

( ) ( )
( int ) ( )

V Vt B t B
M N C N C

 
 

   
       ,

which implies that
( )

{ 0 : ( )}
Vt B

t M N C



 

      .

Assume that

( )
inf{ 0 : ( )}

Vt B
t M N C




 
      . (7)

Let N is C -bounded, from Lemma 6, ( , )Ch M N  
hold. Thus there is 0  so that

( , )Ch M N  . (8)
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From (7),
( )

inf{ 0 : ( )}
Vt B

t M N C


 
 

     holds.

Therefore, there is 0 0t  with 0t  so that

0
0 0( ) ( )

( ) ( )
V V

t B t B
M N C N C

 
 

   
       .

By Proposition 3(1), 0( , )Ch M N t   hold, which
contradicts (8). Then,

( )
inf{ 0 : ( )}

Vt B
t M N C


 

 
       .

For any 0  , there is 0t  with t    so that

0( ) ( )
( ) ( )

V V
t B t B

M N C N C
 

 
   

       .

By Proposition 3(1), we get ( , )Ch M N t     . Due to
the arbitrariness of 0  , we get ( , )Ch M N  .

Moreover, assume that ( , )Ch M N  . Thus there is
R  so that

( , )Ch M N    . (9)
From (9) and Proposition 4(1), we have

( ) ( )
( int ) ( )

V VB B
M N C N C

   
 

   
       .

This implies that   , which contradicts (9). Then,
( , )Ch M N  holds. Therefore,

( , ) inf{ 0 : }C Vh M N t M N C tB     . □
Lemma 8

(1) If 0  and 0  , then
( ) ( ( ))

V VB B
C C

   
  

 
      ,

( int ) ( ( int ))
V VB B

C C
   

  
 

      .

(2)If 1 0  and 2 0  , then

1 2 1 2( )
( ) ( ) ( )

V V VB B B
C C C

      
  

   
         .

(3) If 2 1 0   , then

1
2 2 1( ) ( )

V
V V

B
C B C B C

 
   


        .

(4) If 1 2 0   , then

1 1 2
2

( )
( )

V V
V

B B
C B C C

    
  

  
        （ ）.

Proof (1) Noting that ( )
VB

z C
 




  , Thus for any

VB  , VB
 

 , we obtain

z C  , ( ( ))
VB

z C
 

 


  ,

so ( ) ( ( ))
V VB B

C C
   

  
 

      , on the contrary, we

obtain ( ( )) ( )
V VB B

C C
   

  
 

      . therefore

( ) ( ( ))
V VB B

C C
   

  
 

      . Similarly, we obtain

( int ) ( ( int ))
V VB B

C C
   

  
 

      .

(2) Noting that
1

1 ( )
VB

z C
 




  ,
2

2 ( )
VB

z C
 




  .

Thus for any 1 1 VB  , 2 2 VB  , we obtain

1 1z C  , 2 2z C  . (10)

For any 2 1( ) Vv B   , there exist 1
1

1 2
Vv B


 

 


and 2
2

1 2
Vv B




 
 


. It follows from (10) that

1
1

1 2

z v C
 

 


and 2
2

1 2

z v C
 

 


, and thus

1 2 1 2( ) Vz z v C B C        . By the arbitrariness of

2 1( ) Vv B   , we get
1 2

1 2
( )

( )
VB

z z C
  


 

    , and

thus

1 2 1 2( )
( ) ( ) ( )

V V VB B B
C C C

      
  

   
         .

(3) Noting that
1

( )
VB

z C
 




  , 2 Vv B and

0c C .Thus
z C  , 1 VB   . (11)

Due to 1
1

2
Vv B





 and (11), we get 1

2

z v C


  .

Therefore
1 2 1

0 0
2 2

2 1

( )

              ( ) V

z v c v v c C v C

B C

  
 

 


        

   
,

which implies that

1
2 2 1( ) ( )

V
V V

B
C B C B C

 
   


        .

(4) Noting that
1

( )
VB

z C
 




  , 2 Vv B and c C .

For any 1 2( ) VB    , there exits 1 Vv B    . By (11)
that z v C   . Then,

z v c v C v c C           .
By the arbitrariness of 1 2( ) VB    , we get

1 2( ) VB
z v c C

  


 
    （ ）, and thus

1 1 2
2

( )
( )

V V
V

B B
C B C C

    
  

  
        （ ）. □

Theorem 2 Suppose that 1M , 2M 1N and 2N are
C -bounded. Therefore

1 2 1 2 1 1 2 2( , ) ( , ) ( , )C C Ch M M N N h M N h M N    .
Proof By Lemma 6 that 1 1( , )Ch M N , 2 2( , )Ch M N and

1 2 1 2( , )Ch M M N N  are finite. Consider the following
four cases.

Case 1. 1 1( , ) 0Ch M N  and 2 2( , ) 0Ch M N  . For any
0  , from Theorem 1(1) , there exists

1 1 1 1 1( , ) ( , )C Ch M N t h M N    and

2 2 2 2 2( , ) ( , )C Ch M N t h M N    such that

1 1 1 VM N C t B   and 2 2 2 VM N C t B   . Then

1 2 1 2 1 2

1 2 1 2( )
V V

V

M M N N C C t B t B
N N C t t B

      
    

.

Due to Proposition 1(1) that the following holds
1 2 1 2 1 2

1 1 2 2

( , )
     ( , ) ( , ) 2

C

C C

h M M N N t t
h M N h M N 

   
  

.

By the arbitrariness of 0  , we have
1 2 1 2 1 1 2 2( , ) ( , ) ( , )C C Ch M M N N h M N h M N    .

Case 2. 1 1( , ) 0Ch M N  and 2 2( , ) 0Ch M N  . For any
0  with 1 1( , ) 0Ch M N   and 2 2( , ) 0Ch M N   ,
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From Theorem 1(2), there is
1 1 1 1 1( , ) ( , )C Ch M N t h M N    and

2 2 2 2 2( , ) ( , )C Ch M N t h M N    such that

1
1 1

( )
( )

Vt B
M N C




 
   and

2
2 2

( )
( )

Vt B
M N C




 
   .

Together with Lemma 8(2) means that

1 2
1 2 1 2

( ) ( )
( ) ( )

V Vt B t B
M M N N C C

 
 

   
       

0
1 2 1 2

1 2 1 2
( ) ( )

( ) ( )
V V

t t B t t B
N N C N N C

 
 

     
        

From Proposition 3(1), we have
1 2 1 2 1 2

1 1 2 2

( , )
     ( , ) ( , ) 2

C

C C

h M M N N t t
h M N h M N 

   
  

.

By the arbitrariness of 0  , we get
1 2 1 2 1 1 2 2( , ) ( , ) ( , )C C Ch M M N N h M N h M N    .

Case 3. 1 1( , ) 0Ch M N  and 2 2( , ) 0Ch M N  . For any
0  with 1 1( , ) 0Ch M N   , by Theorem1(2), there exists

1 1 1 1 1( , ) ( , )C Ch M N t h M N    such that

1
1 1

( )
( )

Vt B
M N C




 
   .

From Theorem 1(1), there is
2 2 2 2 2( , ) ( , )C Ch M N t h M N    such that

2 2 2 VM N C t B   . Thus

1
1 2 1 2 2

( )
( )

V
V

t B
M M N N C t B C




 
       (12)

If 1 1 2 2( , ) ( , ) 0C Ch M N h M N  , then

1 2 1 1 2 2( , ) ( , ) 0C Ct t h M N h M N    , and thus 2 1 0t t   .
By Lemma 8(3), we have

1
2 1 2

( )
( ) ( )

V
V V

t B
C t B C t t B C




 
        .

Together with (12) means that
1 2 1 2 1 2( ) VM M N N t t B C      . From Proposition 1(1),

1 1 2 2 1 2( , ) ( , )C Ch M N h M N t t   holds.
If 1 1 2 2( , ) ( , ) 0C Ch M N h M N  , in a general way, suppose

that 1 2 0t t  , then 1 2 0t t   . Due to Lemma 8(4), we
obain

1 1 2
2

( ) ( )
( )

V V
V

t B t t B
C t B C C

 
 

    
        （ ）.

It follows from (12) that

1 2

0
1 2

1 2 1 2
( )

1 2
( )

( )

( )
V

V

t t B

t t B

M M N N C

N N C







  

  

    

   




.

By Proposition 3(1), we get
1 1 2 2 1 2( , ) ( , )C Ch M N h M N t t   . Then,

1 2 1 2 1 2

1 1 2 2

( , )
     ( , ) ( , ) 2

C

C C

h M M N N t t
h M N h M N 

   
  

.

By the arbitrariness of 0  , we have
1 2 1 2 1 1 2 2( , ) ( , ) ( , )C C Ch M M N N h M N h M N    .

Case 4. 1 1( , ) 0Ch M N  and 2 2( , ) 0Ch M N  . From
Theorem 1(1), there is 1 1 1 1 1( , ) ( , )C Ch M N t h M N    such
that 1 1 1 VM N C t B   .

For any 0  with 2 2( , ) 0Ch M N   , by Theorem1(2),
there exists 2 2 2 2 2( , ) ( , )C Ch M N t h M N    such that

2
2 2

( )
( )

Vt B
M N C




 
   .

Thus

2
1 2 1 2 1

( )
( )

V
V

t B
M M N N C t B C




 
       (13)

If 1 1 2 2( , ) ( , ) 0C Ch M N h M N  , then

1 2 1 1 2 2( , ) ( , ) 0C Ct t h M N h M N    , and thus 1 2 0t t   .
By Lemma 8(3), we have

2
1 1 2

( )
( ) ( )

V
V V

t B
C t B C t t B C




 
        .

Together with (13) means that
1 2 1 2 1 2( ) VM M N N t t B C      . From Proposition 1(1),

1 1 2 2 1 2( , ) ( , )C Ch M N h M N t t   holds.
If 1 1 2 2( , ) ( , ) 0C Ch M N h M N  , in a general way, suppose

that 1 2 0t t  , then 2 1 0t t   . Due to Lemma 8(4), we
obain

2 1 2
1

( ) ( )
( )

V V
V

t B t t B
C t B C C

 
 

    
        （ ）.

It follows from (12) that

1 2

0
1 2

1 2 1 2
( )

1 2
( )

( )

( )
V

V

t t B

t t B

M M N N C

N N C







  

  

    

   




.

By Proposition 3(1), we get
1 1 2 2 1 2( , ) ( , )C Ch M N h M N t t   . Then,

1 2 1 2 1 2

1 1 2 2

( , )
     ( , ) ( , ) 2

C

C C

h M M N N t t
h M N h M N 

   
  

.

By the arbitrariness of 0  , we have
1 2 1 2 1 1 2 2( , ) ( , ) ( , )C C Ch M M N N h M N h M N    . □

Theorem 3 SupposeM , N and D are C -bounded. Then
(1) ( , ) ( , )C Ch coM coN h M N ;
(2) ( , ) ( , )C Ch M D N D h M N   .
Proof (1) Noting that ( , )Ch M N  . Two cases are

considered here.
Case 1. 0  . By Theorem 1(1), for any 0  , there is

t     such that V VM N C tB coN C tB      .

Let VcoN C tB  is convex, VcoM coN C tB   holds.
From Proposition 1(1), we get

( , ) ( , )C Ch coM coN t h M N       .
Case 2. 0  . For any 0  , from Theorem 2(2), there is

0 0t  so that 0t     and

0 0( ) ( )
( ) ( )

V Vt B t B
M N C coN C

 
 

   
       . Due to

0( )
( )

Vt B
coN C




 
  is convex, we get

0( )
( )

Vt B
coM coN C




 
   . Together with Proposition 3(1)

means that
0( , ) ( , )C Ch coM coN t h M N       .

Therefore, it follows from the arbitrariness of 0  that
( , ) ( , )C Ch coM coN h M N .
(2) Noting ( , )Ch M N  . Two cases are considered as

follows.
Case 1. 0  . By Theorem 1(1), for any 0  , there is

t     so that VM N C tB   . Let M , N and D
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are C -bounded, then VM D N D C tB     . Due to
Proposition 1(1), we get

( , ) ( , )C Ch M D N D t h M N         .
Case 2. 0  . For any 0  , from Theorem 2(2), there is

0 0t  so that 0t     and
0( )

( )
Vt B

M N C



 

   .

Because of M , N and D are C -bounded, the following is
obtained

0( )
( )

Vt B
M D N D C




 
     .

Together with Proposition 3(1) we have
0( , ) ( , )C Ch M D N D t h M N         .

Therefore, it follows from the arbitrariness of 0  that
( , ) ( , )C Ch M D N D h M N   . □

IV. APPLICATION TO SET OPTIMIZATION PROBLEMS BY DINI
DIRECTIONAL DERIVATIVES

In what follows, the optimality conditions of set
optimization problems are derived by the Dini directional
derivatives. Therefore, the definitions of the Dini directional
derivatives are given below.
Definition 5 Noting that : 2VG U  is a set-valued mapping.
At x in direction l where ,x l U , the upper Dini
directional derivative of G is defined as

0

0 0

1( , ) limsup ( ( ), ( ))

1            inf sup ( ( ), ( ))

C
t

Cs t s

G x l h G x tl G x
t

h G x tl G x
t





  

 

 
,

and the lower Dini directional derivative of G is defined as

0

00

1( , ) liminf ( ( ), ( ))

1            sup inf ( ( ), ( ))

Ct

Ct ss

G x l h G x tl G x
t

h G x tl G x
t





 

 

 
,

and the Dini directional derivative of G is denoted as
( , )G x l , and ( , ) ( , ) ( , )G x l G x l G x l    holds.

Obviously, ( , ) ( , )G x l G x l  . Then, ( , )G x l exists iff

( , ) ( , )G x l G x l  .
Theorem 4 SupposeG is C -convex and C -bounded values
on U , and nonempty. Thus

(1) the Dini derivative of G at x U exists for all
l U and

0

1( , ) ( , ) ( , ) inf ( ( ), ( ))Cs
G x l G x l G x l h G x sl G x

s
 


     ;

(2) ,x l U  , ( , ) ( , )G x l G x l   for all 0  ;
(3) x U  , ( , )G x  is a convex function, namely for any

1 2,l l U and [0,1] ,

1 2 1 2( , (1 ) ) ( , ) (1 ) ( , )G x l l G x l G x l          .
Proof (1) Firstly, ,t r R  , and 0 t r  , prove (14) holds,
which is

1 1( ( ), ( )) ( ( ), ( ))C Ch G x tl G x h G x rl G x
t r

   . (14)

As G is C -convex on U , there is

( ) ( ) ( )r t tG x tl G x G x rl C
r r


     . (15)

Noting that ( ( ), ( ))Ch G x rl G x   . Considering two
cases as follows.

Case 1. 0  . For any 0  , there is R  such that
      . By Proposition 2(1) and

( ( ), ( ))Ch G x rl G x     , there is
0( ) ( ) ( )V VG x rl G x C B G x C B        . (16)

From (16), there is ( ) ( ) V
t t t tG x rl G x C B
r r r r

    ,

therefore

( ) ( ) ( ) ( )

       ( )

V

V

t r t t t t r tG x rl G x G x C B G x
r r r r r r

t tG x C B
r r





 
     

  
.

Applying (15)

( ) ( ) ( )

( ) ( )V V

t r tG x tl G x rl G x C
r r

t t tG x C C B G x C B
r r r

 


    

      

.

Due to Proposition 1(1), there is

( ( ), ( )) ( )C
t th G x tl G x
r r
      .

By the arbitrariness of 0  , we get

( ( ), ( ))C
th G x tl G x
r
  , this together with

( ( ), ( ))Ch G x rl G x   and 0 t r  , therefore (14) holds.
Case 2. 0  . For any 0  with 0   , there is

0  such that        . From Proposition 4(1) there
is

( ) ( ) ( int )
VB

G x rl G x C
 




    . (17)

From (17), there is

( ) ( ) ( int )
VB

t t tG x rl G x C
r r r  




    , therefore

( ) ( ) ( ) ( ) ( int ).
VB

t r t t r t tG x rl G x G x G x C
r r r r r  




 
     

Applying (15)

( ) ( ) ( ) ( int )

( ) ( int )
V

V

B

t B
r

t r t tG x tl G x rl G x C C
r r r
G x C

 

 









      

  




.

By Proposition 3(1), there is

( ( ), ( )) ( ) ( )C
t th G x tl G x
r r

       .

By the arbitrariness of 0  , we get

( ( ), ( ))C
th G x tl G x
r
  , this together with

( ( ), ( ))Ch G x rl G x   and 0 t r  , so (14) holds.
From (14), for any 0s  , we have

0

1 1sup ( ( ), ( )) ( ( ), ( ))C C
t s

h G x tl G x h G x sl G x
t s 

   ,

thus

0

1( , ) inf ( ( ), ( ))Cs
G x l h G x sl G x

s



  .
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Therefore, for any 0s  ,

0 0

1 1inf ( ( ), ( )) inf ( ( ), ( ))C Ct s r
h G x tl G x h G x rl G x
t r  

   (18)

Clearly,

0 0

1 1inf ( ( ), ( )) inf ( ( ), ( ))C Ct s r
h G x tl G x h G x rl G x
t r  

   .

Assume that there is R  such that

0 0

1 1inf ( ( ), ( )) inf ( ( ), ( ))C Ct s r
h G x tl G x h G x rl G x
t r


  

    .

Therefore there is 0 0r  so that

0
0

1 ( ( ), ( ))Ch G x r l G x
r

  . (19)

If 00 r s  , then

0 0
0

1 1( ( ), ( )) inf ( ( ), ( ))C Ct s
h G x r l G x h G x tl G x

r t


 
    ,

which contradicts (19). Then 0r s . From (13), there is

0
0

0

1 1( ( ), ( )) ( ( ), ( ))

1     inf ( ( ), ( ))

C C

Ct s

h G x r l G x h G x sl G x
r s

h G x tl G x
t


 

  

  

,

which contradicts (19). Thus, the following results hold:

0 0

1 1inf ( ( ), ( )) inf ( ( ), ( ))C Ct s r
h G x tl G x h G x rl G x
t r  

   ,

and

0 00

1 1( , ) sup inf ( ( ), ( )) inf ( ( ), ( ))C Ct s rs
G x l h G x tl G x h G x rl G x

t r


  
    .

Therefore

0

1( , ) ( , ) ( , ) inf ( ( ), ( ))Cs
G x l G x l G x l h G x sl G x

s
 


     .

(2) For any 0  , there is

0

1( , ) inf ( ( ), ( ))Cs
G x l h G x s l G x

s
 


   . (20)

Noting that r s . Thus 1
s r


 where 0 0s r   .

Due to (19), we get

0

0

( , ) inf ( ( ), ( ))

1inf ( ( ), ( )) ( , )

Cr

Cr

G x l h G x rl G x
r

h G x rl G x G x l
r



 





  

  
.

(3) Let 1 2,l l U and (0,1) . For any 0  , noting that

1 10

1( , ) inf ( ( ), ( ))Cs
G x l h G x sl G x

s
   ,

and

2 20

1( , ) inf ( ( ), ( ))Cs
G x l h G x sl G x

s
   .

There are 1 0s  and 2 0s  , such that

1 1 1
1

1 ( ( ), ( )) ( , )Ch G x s l G x G x l
s

   (21)

and

2 2 2
2

1 ( ( ), ( )) ( , )Ch G x s l G x G x l
s

   . (22)

Let 0 1 2min{ , } 0s s s  . Based on (14), (21) and (22), we

can get 1 2, R   satisfying

0 1 1 1
0 1

1 1

1 1( ( ), ( )) ( ( ), ( ))

       ( , )

C Ch G x s l G x h G x s l G x
s s

G x l 

  

  
(23)

and

0 2 2 2
0 2

2 2

1 1( ( ), ( )) ( ( ), ( ))

       ( , )

C Ch G x s l G x h G x s l G x
s s

G x l 

  

  
. (24)

Bcause G is C -convex on U and
0 1 0 2 0 1 2( ) (1 )( ) ( (1 ) )x s l x s l x s l l           ,

we get
0 1 2

0 1 0 2

    ( ( (1 ) ))
( ) (1 ) ( )

G x s l l
G x s l G x s l C

 
 

  
     

. (25)

Four cases will be discussed as follows.
Case 1: 1( , ) 0G x l  and 2( , ) 0G x l  . From (23), (24) and

Proposition 2(1), there are
0

0 1 0 1( ) ( ) VG x s l G x C s B    ,
and

0
0 2 0 2( ) ( ) VG x s l G x C s B    .

Together with (25), we have
0 1 2 0 1 0 2( ( (1 ) )) ( ) (1 ) ( )G x s l l G x s l G x s l C           

0 0
0 1 0 2( ) (1 ) ( ) (1 ) (1 )V VG x C s B G x C s B C                

0
0 1 2( ) ( (1 ) ) VG x C s B      

From Proposition 1(1), there is
0 1 2 0 1 2( ( ( (1 ) )), ( )) ( (1 ) )Ch G x s l l G x s          . (26)

Based on (23), (24) and (26), we have

1 2 0 1 2
0

1 2

1( , (1 ) ) ( ( ( (1 ) )), ( ))

  (1 )

CG x l l h G x s l l G x
s

   

  

      

  

1 2( , ) (1 ) ( , )G x l G x l       . (27)
By the arbitrariness of 0  , from (27) there is

1 2 1 2( , (1 ) ) ( , ) (1 ) ( , )G x l l G x l G x l          (28)
Case 2: 1( , ) 0G x l  and 2( , ) 0G x l  . Without loss of

generality, suppose 1 1( , ) 0G x l    and

2 2( , ) 0G x l    . By (23), (24) and Proposition 4(1), we
have

0 1
0 1

( )
( ) ( ) ( int )

Vs B
G x s l G x C

 


 
   

and

0 2
0 2

( )
( ) ( ) ( int )

Vs B
G x s l G x C

 


 
    .

Together with (25) and Lemma 8(1), there is
0 1 2 0 1 0 2( ( (1 ) )) ( ) (1 ) ( )G x s l l G x s l G x s l C           

0 1 0 2( ) ( )
( ) ( int ) (1 ) ( ) (1 ) ( int )

V Vs B s B
G x C G x C

   
     

   
        

0 1 2( ( ) (1 )( ))
( ) ( int )

Vs B
G x C

    


    
   .

Due to Proposition 3(1), there is
0 1 2 0 1 2( ( ( (1 ) )), ( )) ( (1 ) )Ch G x s l l G x s          .

Therefore, we have
1 2 1 2( , (1 ) ) ( , ) (1 ) ( , )G x l l G x l G x l          easily.

Case 3. 1( , ) 0G x l  and 2( , ) 0G x l  . In a general way,
suppose 2 2( , ) 0G x l    . Based on (23) and Proposition
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2(1), there is
0

0 1 0 1 0 1( ) ( ) ( )V VG x s l G x C s B G x C s B        . (29)
Together with (24) and Proposition 4(1), there is

0 2

0 2

0 2
( )

( )

( ) ( ) ( int )

  ( ) ( )
V

V

s B

s B

G x s l G x C

G x C
 

 




 

 

   

  




. (30)

Based on (25), (29), (30) and Lemma 8(1), there is
0 1 2 0 1 0 2( ( (1 ) )) ( ) (1 ) ( )G x s l l G x s l G x s l C           

0 2
0 1

( )
( ) (1 ) ( ) (1 ) ( )

V
V

s B
G x C s B G x C C

 
      

 
        

0 2
0 1

(1 )( )
( ) ( )

V
V

s B
G x C s B C

  
  

  
     . (31)

If 0 1 0 2(1 ) ( ) 0s s       , then from (31) and Lemma
8(3) there exists

0 1 2 0 1 0 2( ( (1 ) )) ( ) ( (1 ) ) VG x s l l G x C s s B             .
By Proposition 1(1), there is

0 1 2 0 1 2( ( ( (1 ) )), ( )) ( (1 ) )Ch G x s l l G x s          .
If 0 1 0 20 (1 ) ( )s s       , from (31) and Lemma 8(4)

we obtain

0 1 0 2
0 1 2

( ( ) (1 ) ( ))
( ( (1 ) )) ( ) ( )

Vs s B
G x s l l G x C C

    
  

    
       .

By Proposition 3(1), we get
0 1 2 0 1 2( ( ( (1 ) )), ( )) ( (1 ) )Ch G x s l l G x s          .

Thus, (28) holds. By the arbitrariness of 0  , from (28)
there is

1 2 1 2( , (1 ) ) ( , ) (1 ) ( , )G x l l G x l G x l          .
Case 4. 1( , ) 0G x l  and 2( , ) 0G x l  . In a general way,

suppose 1 1( , ) 0G x l    . Based on (23) and Proposition
2(1), there is

0
0 2 0 2 0 2( ) ( ) ( )V VG x s l G x C s B G x C s B        . (32)

Together with (24) and Proposition 4(1), there is

0 1 0 1
0 1

( ) ( )
( ) ( ) ( int ) ( ) ( )

V Vs B s B
G x s l G x C G x C

   
 

   
        .

(33)
Based on (26), (32), (33) and Lemma 8(1), there is

0 1 2 0 1 0 2( ( (1 ) )) ( ) (1 ) ( )G x s l l G x s l G x s l C           

0 1
0 2

( )
( ) ( ) (1 ) ( ) (1 ) (1 )

V
V

s B
G x C G x C s B C

 
      

 
         

0 1
0 2

( )
( ) ( ) (1 )

V
V

s B
G x C C s B

  
  

 
      . (34)

If 0 1 0 2( ) (1 ) 0s s       , then from (34) and Lemma
8(3) there exists

0 1 2 0 1 0 2( ( (1 ) )) ( ) ( (1 ) ) VG x s l l G x C s s B             .
By Proposition 1(1), there is

0 1 2 0 1 2( ( ( (1 ) )), ( )) ( (1 ) )Ch G x s l l G x s          .
If 0 1 0 20 ( ) (1 )s s       , from (34) and Lemma 8(4)

we obtain

0 1 0 2
0 1 2

( ( ) (1 ) ( ))
( ( (1 ) )) ( ) ( )

Vs s B
G x s l l G x C C

    
  

    
       .

By Proposition 3(1), we get
0 1 2 0 1 2( ( ( (1 ) )), ( )) ( (1 ) )Ch G x s l l G x s          .

Thus, (28) holds. By the arbitrariness of 0  , from (28)
there is

1 2 1 2( , (1 ) ) ( , ) (1 ) ( , )G x l l G x l G x l          . □
Theorem 5 Suppose D is a C -bounded values nonempty
convex set, G is a C -convex function on D . 0x D  , if

0( , ) 0G x l  for all l U with 0x l D  and 0l  ,

therefore 0 ( , )ux E G D .
Proof x D  and 0x x , based on the assumption, there is

0 0( , ) 0G x x x   . From Theorem 4(1) there is

0 0 0 0 0 00

10 ( , ) inf ( ( ( )), ( )) ( ( ), ( ))C Cs
G x x x h G x s x x G x h G x G x

s
      .

Due to Corollary 3(1), there has 0( ) ( )uG x G x

 for all

x D where 0x x . This implies 0 ( , )ux E G D . 

Theorem 6 Suppose D is a convex set, and G is a
C -convex function on D with nonempty and C -bounded
values. Denote point 0x D so that 0( )G x is C -compact.
Thus 0 ( , )ux E G D iff 0( , ) 0G x l  for all l U where

0x l D  .
Proof (1) Sufficiency. For any x D , there is

0 0( , ) 0G x x x    . Based on Theorem 4(1), there we have

0 0 0 0 0 00

10 ( , ) inf ( ( ( )), ( )) ( ( ), ( ))C Cs
G x x x h G x s x x G x h G x G x

s
         .

Using Corollary 3, for any x D , 0( ) ( )uG x G x  is not
true, so 0 ( , )ux E G D .

(2) Necessity. Assume 0 ( , )ux E G D , thus by Lemma 5

there does not exist x D satisfying 0( ) ( )uG x G x .
Together with Corollary means that

0( ( ), ( )) 0Ch G x G x  , x D  . (35)
l U  where 0x l D  , and (0,1]t  , the convexity

of D means 0x tl D  .

By (35), there is 0 0
1 ( ( ), ( )) 0Ch G x tl G x
t

  , and thus

0 00 1

1inf ( ( ), ( )) 0Ct
h G x tl G x
t 

  . (36)

Due to (20), (36) and Theorem 4(1), there is

0 0 0 0 00 0 1

1 1( , ) inf ( ( ), ( )) inf ( ( ), ( )) 0C Cr t
G x l h G x rl G x h G x tl G x

r t  
      .□

V. CONCLUSIONS

The present paper introduces the sup-inf set scalarization
function, which is used to define the Dini directional
derivatives of set mapping. The optimality conditions of set
optimization problems are then derived by utilizing the Dini
directional derivatives. Further research will focus on
defining more general non-linear scalarization functions and
developing optimality conditions under different order
relations.
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