
 

  

Abstract—Based on the multi-layer network perspective, a 

method for constructing the double-layer urban rail transit 

topology network was proposed. Then, the choice behavior of 

passengers at congested stations was analyzed, and the 

passenger flow loss rate was quantified. Moreover, a congestion 

propagation model for the double-layer urban rail transit 

network was proposed, and the congestion propagation process 

was analyzed using a real network as an illustration. The 

results indicate that once the congestion disturbance reaches an 

influence threshold, the congestion would propagate to other 

stations in the same or different layers, ultimately spreading 

widely in the network. The preferences and risk attitudes of 

passengers at congested stations affect the passenger flow loss 

rate. Furthermore, the spontaneous travel choice behavior of 

passengers at congested stations can regulate the congestion 

propagation process of urban rail transit networks. The 

stations with high topological importance are more capable of 

propagating congestion than stations with high functional 

importance, and the passenger flow distribution structure of 

the network is more fragile than the network topological 

structure. The increase in coupling coefficient leads to a rise in 

station-to-station interaction, making congestion more likely to 

propagate. The research results can provide a reference for 

urban rail transit passenger flow operation organization. 

Index Terms—Multi-layer network, Congestion propagation, 

Prospect theory (PT), Coupled map lattices (CML), Influence 

threshold 

I. INTRODUCTION 

ulti-layer integrated urban rail transit networks lead 

the development of metropolitan areas. However, the 

rapidly growing passenger flow and tightening connected 
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line networks increase the risk of congestion propagation on 

multi-layer rail networks [1][2]. Congestion has become a 

severe issue that rail operation management should address 

to prevent accidents and enhance operational service. 

A great deal of research has been conducted on the 

congestion propagation process of urban rail transit 

networks. Zhou et al. [3] were the first to propose the 

concept of passenger flow propagation during peak hours 

and analyzed the influencing factors in the congestion 

propagation process. Subsequently, numerous scholars have 

studied the passenger flow propagation process. Zhang et al. 

[4] established the interaction rules for passenger flow and 

analyzed the propagation process of commuter passenger 

flow using the meta-cellular automata model. Jiang et al. [5] 

defined a set of state parameters to reflect the dissipation 

propagation rate and simulated the dissipation process using 

the meta-cellular automata model. Zhao et al. [6] analyzed 

the delay propagation of urban rail transit by developing a 

meta-cellular automata model for single-station failure and a 

propagation model for multi-station failure. Li et al. [7] 

analyzed the propagation dynamics of passenger flow in 

train delay scenarios and proposed measures for passenger 

flow control. Xu et al. [8] developed a comprehensive model 

for large passenger flow propagation using AFC data, train 

operating data, and network topology data.  

The theory of cascade failure in networks provides a 

novel approach for analyzing the process of congestion 

propagation. The cascade failure model is particularly 

effective in describing the successive failure of nodes[9][10], 

eventually leading to failure propagation throughout the 

network. And the cascade failure model is particularly 

effective in describing the occurrence of station congestion 

in urban rail transit networks, which leads to subsequent 

congestion at other stations. The CML cascade failure model 

can reveal complicated phenomena such as chaotic traffic 

flow characteristics in the network, so it was commonly 

used to analyze the cascading failure of multi-layer traffic 

networks. Huang et al. [12] developed a weighted CML 

model to analyze the cascading failure process of rail transit 

networks by considering the network topology and the 

characteristics of passenger flow. Zhu et al. [13] analyzed 

the vulnerability of rail transit networks by using a CML 

model that accounts for the dynamic nature of passenger 

flow propagation. Zhang et al. [17] proposed an ICML 

model to investigate the impact of different attack strategies 

on the vulnerability of urban rail transit networks. 

The CML model mainly simulates the cascade failure 

dynamics process through the evolution of node states, and 
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inappropriate parameter settings may result in inaccurate 

results. The parameter settings of the established literature 

on the CML model are shown in Table.1. 

 
TABLE I 

THE PARAMETER SETTINGS OF ESTABLISHED LITERATURE 

Authors Subjects Considerations 
The initial state of 

the station 

Zhang 

[11] 

Road 

Network 
Topological factors section saturation 

Huang 

[12] 
Rail network 

Topological factors,  

passenger flow factors 
Random numbers 

Zhu 

[13] 
Rail network Topological factors Random numbers 

Ma 

[14] 

Bus - metro 

network 

Topological factors,  

passenger flow factors 
Random numbers 

Xiong 

[15] 
Rail network Topological factors 

Cross-sectional 

passenger flow 

Zhang 

[16] 

Multimodal 

Transport 

Network 

Topological factors,  

passenger flow factors, 

 directional factors 

Random numbers 

Zhang 

[17] 
Rail network 

Topological factors, 

 passenger flow factors, 

 directional factors 

Random numbers 

Wu 

[18] 
Rail network Topological factors Random numbers 

Gao 

[19] 

Double-layer 

rail network 

Topological factors,  

passenger flow factors 
Station load 

Huang 

[20] 
Rail network 

Topological factors,  

passenger flow factors 
Random numbers 

 

As shown in Table.1, The initial state of the CML model 

was assigned randomly in the majority of studies, and the 

relationship between passenger flow and model parameters 

was not quantified, making it challenging to ensure the 

accuracy of the iterative process. Consequently, further 

investigation into the quantification of model parameters is 

warranted. 

Furthermore, the majority of studies that analyze the 

congestion propagation process by cascade failure models 

commonly abstracted the urban rail transit network as a 

single-layer network. However, scholars have gradually 

realized that single-layer networks fail to adequately capture 

the differences between lines and stations in the urban rail 

transit network [21]. Consequently, an increasing number of 

scholars have recently conducted studies on the dynamics of 

multi-layer networks [22][23][24]. These researches are 

beneficial to characterize the process of congestion 

propagation in urban rail transit networks. 

The travel choice behavior of passengers is a bounded 

rational decision-making process influenced by subjective 

and objective factors, which subsequently affects the 

process of congestion propagation. Probabilistic choice 

models serve as the prevalent approach for analyzing travel 

choice behavior. In 1959, Luce developed the logit model as 

an extension of the disaggregate model. The majority of 

traditional logit models are based on the random utility 

theory, which assumes that passengers are perfectly rational 

and choose the option that maximizes their expectations.  

However, in the actual decision-making process, 

passengers exhibit bounded rationality due to variations in 

individuals' preferences for risk, and an increasing number 

of scholars in the field of human decision-making behavior 

have embraced the notion that passengers are bounded 

rational. The concept of bounded rationality was initially 

introduced by Simon [25], and one of the subsequent highly 

influential theories developed in the field was prospect 

theory (PT) [26][27]. Prospect theory directly integrates 

psychological perceptions into the decision-making process, 

and the application in passengers’ choice behavior focuses 

on route and departure time choice[28][29], etc. In recent 

years, the application of prospect theory in the field of 

transportation has become increasingly widespread, Gao et 

al. [30] proposed a travel mode choice model for commuters 

based on cumulative prospect theory and a multi-attribute 

decision-making method. Cheng et al. [31] developed a 

multi-objective optimization model to optimize urban rail 

transit-stopping schemes by employing prospect theory to 

maximize travel time savings and minimize congestion costs. 

Zhu et al. [32] and Ma et al. [33] proposed a route choice 

model for emergency logistics based on prospect theory that 

considered both route attributes and the risk attitudes of 

decision-makers. 

Some researchers attempt to incorporate the concept of 

bounded rationality into the traditional probabilistic choice 

model. Zhang et al. [34] proposed a hierarchical Logit 

model that considered the perceived cost difference, 

incorporating bounded rationality. Yao et al. [35] developed 

a travel mode choice model that took into account the 

psychological reference value of alternatives, combining 

rational decision-making and the choice preferences of 

passengers. Ma et al. [36] created an NL-cumulative 

prospect theory travel mode prediction model, which 

subjectivized the objective utility obtained from the NL 

model through prospect theory. The majority of the previous 

studies have focused on commuting choice behavior, and the 

choice behavior of passengers at congested stations deserves 

further investigation.  

In conclusion, while the existing literature offers valuable 

insights, further research is still needed. Specifically: (1) 

The majority of the existing studies regarded the entire 

urban rail transit network as a single-layer network, with 

few studies proposing a method to construct a double-layer 

urban rail transit network systematically. (2) Secondly, the 

primary cause of congestion propagation is passenger travel 

choice behavior, however, previous studies have not 

adequately explored the impact of this behavior on the 

propagation of congestion. (3) The initial state of the CML 

model was assigned randomly in the majority of existing 

studies and failed to quantify the relationship between 

passenger flow and model parameters, making it challenging 

to ensure the accuracy of the iterative process. 

In this paper, a congestion propagation model for a 

double-layer urban rail transit network based on CML was 

proposed, and the choice behavior of passengers at 

congested stations was analyzed using the prospect theory 

model. Then the congestion propagation of the double-layer 

urban rail transit network considering passengers’ bounded 

rationality was studied.  
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II. DOUBLE-LAYER URBAN RAIL TRANSIT TOPOLOGY 

NETWORK CONSTRUCTION  

A. Model Assumptions 

The double-layer urban rail transit topology network is 

constructed with the following assumptions: 

Hypothesis 1: Two systems comprise the double-layer 

urban rail transit network: a subway network and a regional 

rapid rail network. 

Hypothesis 2: Typically, the direction of urban rail transit 

lines is symmetrical, abstracting it as an undirected network. 

Hypothesis 3: Define stations as network nodes and the 

line connection relationship between stations as intra-layer 

connected edges. In order to establish relationships between 

the different layers of the network, the transfer of passengers 

between stations of different layers is defined as inter-layer 

connected edges. 

B. Composite network construction 

Based on these assumptions, a double-layer urban rail 

transit network (DRTN) is defined as 
1 2,R SDRTN G G=                           (1) 

Where, ( )1 1 1,R R RG = V E  is the regional rapid rail layer of the 

DRTN, ( )2 2 2= ,S S SG V E  is the subway layer of the DRTN. 

 ( ) , 1.2.nV V n =  is the node set of the DRTN, and 

 ( ) ( ) ( ) ( )1 ,..., ,...,n n n n

TV i N=  are the stations in each layer of the 

DRTN.  ( ) ( ), , 1.2.n nmE E E n m  =  is the edge set of the 

DRTN,  ( ) ( ) ( ) ( )( , )n n n n

ij i jE e v v= =  is the intra-layer connected 

link of station i and station j,  ( ) ( ) ( ) ( )( , )nm nm n m

ij i jE e v v= =  is the 

inter-layer connected link of station i and station j.  

The schematic diagram of the double-layer urban rail 

transit network is shown in Fig.1. 

 

Regional rapid rail 

network

Subway network

 
Fig. 1.  Schematic diagram of double-layer urban rail transit network 

 

C. Basic characteristics of the stations 

The basic characteristics of the stations in a double-layer 

urban rail transit network are analyzed as follows: 

(1) The station degree 

The degree reflects the importance of the station in the 

network. In a double-layer urban rail transit network, 

stations may exist in more than one layer of the network, 

then the degree of station i in layer n is:  

( ) ( ) ( ) ( )

( ) ( ) ( )

1, 1,n n n m

N M
n n nm

i ij ij

j j i j n m

k e e
=  = 

= +               (2) 

 

(2) The station strength 

In order to more realistically reflect the impact of the 

passenger flow on the station, the passenger flow is defined 

by the in-flow and out-flow: 
out in

i i j j iF F F= +→ →                                 (3) 

The strength of station i is determined by the total 

passenger flow. The larger the strength, the more critical the 

passenger flow transport capacity of the station in the 

network. The strength of station i in layer n is:  

( )
( ) ( ) ( )

( )

1,n n n

N
n out in

i i j j i

j j i

s F F
= 

= + → →                      (4) 

III. BOUNDED RATIONALITY BEHAVIOR ANALYSIS OF 

PASSENGERS AT CONGESTED STATIONS  

When an emergency event causes a large amount of 

passenger collecting volume and exceeds the allowable 

threshold, the station will become congested. Congestion 

can result in passengers experiencing irritability, anger, and 

anxiety, influencing travel choice as a bounded rational 

decision-making process. 

A. Analysis of factors influencing passengers' travel choice 

behavior 

Define the available travel modes for passengers traveling 

between origin and destination (OD) pairs, including urban 

rail transit, buses, and taxis. The route of each mode is 

determined by the shortest route principle. When the station 

is congested, passengers at the congested station have the 

option to switch from urban rail transit to buses or taxis as 

an alternative mode of transportation. Typically, the travel 

mode choice of passengers is determined by the travel time 

and travel cost. 

(1) Travel time 

When the station becomes congested, the travel time of 

passengers includes in-vehicle travel time, transfer time, 

waiting time, and additional time resulting from the 

congestion.  

The total travel time of mode k is 
vehicle trans wait

k k k kt t t t t= + + +                      (5) 

Where, 
vehicle

kt is the in-vehicle travel time, 
trans

kt  is the 

transfer time, 
wait

kt  is the waiting time, and t  is the 

additional time resulting from the congestion. 

(2) Travel cost 

Different travel modes lead to differences in costs. Urban 

rail transit and taxis usually adopt mileage-based fare 

pricing and buses mostly adopt universal fare pricing. The 

total travel cost of mode k is 
vehicle

k kE E E= +                               (6) 

Where, 
vehicleE  is the actual costs for choosing travel mode k, 

E   is the additional costs incurred by abandoning urban rail 

transit resulting from the congestion. 
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B. A travel mode choice behavior model based on prospect 

theory 

Due to a lack of information, passengers at congested 

stations usually set their mental expectations by referring to 

the current circumstances as their reference points. The 

disparity between mental expectation and actual perception 

is used to calculate gain or loss while traveling. 

The average travel time for each travel mode between OD 

is defined as the time reference point: * ( )

0

1 OD

k

k

T t
k

=  , while 

the average travel cost for each travel mode between OD is 

defined as the cost reference point: * ( )

0

1 OD

k

k

E E
k

=  .  

When passengers make their travel mode choices at 

congested stations, two possible outcomes arise: 

(1) If 
*

0kT T  or 
*

0kE E , it indicates that the passengers’ 

actual perception of the travel mode falls short of their 

mental expectation, resulting in relative losses. In this case, 

passengers tend to choose travel modes with shorter travel 

times or lower costs, manifested as risk-appetite. 

(2) If 
*

0kT T  or 
*

0kE E , it indicates that the passengers’ 

actual perception of the travel mode exceeds their mental 

expectation, resulting in a relative gain. In this case, 

passengers will avoid changing the travel mode, manifested 

as risk-averse. 

Based on these observations, the travel choice value 

functions for passengers at congested stations are built as 

follows: 

( )

( )

* *

0 0

* *

0 0

( )
k k

k k

T T T T
v T

b T T T T





 − 
= 

− − 


,

,
                   (7) 

( )

( )

* *

0 0

* *

0 0

( )
k k

k k

E E E E
v E

d E E E E





 − 
= 

− − 


,

,
                  (8) 

Where, ( )v T  is the travel time value function, ( )v E  is the 

travel cost value function. α, β are risk sensitivity 

coefficients, and b, d ( 1b  , 1d  ) are loss aversion 

coefficients. 

The value function curves of travel time and travel cost 

are shown in Fig.2. 

 

Risk-averse

Risk-appetite

(a) ( )v T

kT*

0T

*

0kT T

*

0kT T

Risk-averse

Risk-appetite

(b) ( )v E *

0kE E

*

0E kE

*

0kE E

 
Fig. 2.  The value function curve of travel time and travel cost. (a) travel 

time. (b) travel cost. 

 

At the same time, passengers usually make subjective 

judgments and travel decisions based on their perceived 

probability and usually overestimate low-probability events 

and underestimate large-probability events when making 

decisions. The subjective probability function based on the 

perceived probability of passengers is: 

1

( )
( )

[( ) (1 ) ]

k

k k

p
p

p p 



 
+ =

+ −
                    (9) 

1

( )
( )

[( ) (1 ) ]

k

k k

p
p

p p 



 
− =

+ −
                     (10) 

Where, 
kp  is the actual probability of choosing travel mode 

k, γ is the gain-perceived probability coefficient, and δ is the 

loss-perceived probability coefficient. Typically, γ = 0.61 

and δ = 0.69. The subjective probability function curve is 

shown in Fig.3. 

 

1

Overestimate 

low probabilities

Underestimate 

large probabilities

0.50

( )p

Actual value

p
 

Fig. 3.  Subjective probability function curve 

 

The prospect value can be expressed as a weighted 

combination of the value function and the subjective 

probability function. Therefore, the prospect values for 

travel time and travel cost are: 
( ) ( ) ( )OD

TV v T p=                             (11) 

( ) ( ) ( )OD

WV v W p=                             (12) 

To mitigate the impact of the reference point dimension 

on the results, the prospect values 
( )OD

TV  and 
( )OD

WV  are 

normalized: 

 

 

( )

( ) ( ) ( )

max( )

max

( )

( ) ( ) ( )

max( )

max

,| | max
| |

,| | max
| |

OD

OD OD ODT
T T TOD

T

OD

OD OD ODW

W W WOD

W

V
V V V

V

V
V V V

V


= =



 = =



       (13) 

The preference coefficient η is introduced to reflect the 

preferences of various types of passengers for travel time 

and travel costs, and the combined prospect value of travel 

mode k is:  
( ) ( ) ( )(1 )OD OD OD

k T WV V V = + −                  (14) 

Calculate the probability of passengers choosing mode k 

from the congested station using the MNL (Multinomial 

Logit) model: 
( )

( )

( )

OD
k

OD
k

V

OD

k V

k K

e
p

e


=


                            (15) 

Where, ( )OD

kp  is the probability that the passengers at the 

congested station will choose travel mode k, and K is the 

total number of travel modes between that OD. 

The macroscopic results of travel mode choice are 

presented as passenger flow loss at congested stations, 

which affects the network congestion propagation process. 
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The principle of passenger flow loss at congested stations 

under bounded rationality is shown in Fig.4. 
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Fig. 4.  The principle of passenger flow loss at the congested station 

 

As shown in Fig. 4, the passenger flow volume between a 

specific OD starting at station j is ( )OD

jq , the probability of 

passengers continuing to choose urban rail transit is 
( )OD

RTNp , 

and the passenger flow loss between this OD is 
( ) ( ) ( )( )OD OD OD

Taxi Bus jp p q+  . Then the passenger flow loss rate at 

congested station j is: 
( ) ( ) ( )

, , ( )

( )OD OD OD

Taxi Bus j

J

j j Taxi j Bus OD

j

J

p p q

p p p
q

+ 

= + =



       (16) 

Where, jp  is the passenger flow loss rate at congested 

station j, ( )OD

jq  is the passenger flow volume between OD. 

IV. A DOUBLE-LAYER URBAN RAIL TRANSIT NETWORK 

CONGESTION PROPAGATION MODEL  

The propagation of congestion is a dynamic process. 

When the passenger collecting volume at a station exceeds 

capacity at a station, some passengers may opt to exit the 

urban rail transit system and choose alternative travel modes. 

Others will be transported to adjacent stations with the train 

operation, leading to congestion propagation within the 

network. The principle of congestion propagation in urban 

rail transit networks is shown in Fig.5.  

 

Congested 

Affected

Subway System

Affected

Exit the 

rail transit system

Double-layer urban rail transit system

 

Regional Rapid Rail System

AffectedAffected

jp

 
Fig. 5.  The principle of congestion propagation 

Based on the analysis of the congestion propagation 

mechanism, a cascade failure model is proposed to describe 

the congestion propagation process in the double-layer 

urban rail transit network: 

( )

1 2

( )

1,

1 ( )

( ) ( )

1,

2 ( )

( )

1,

2 ( )

(1 ) ( )

( )

( 1) +(1 ) ( ) ( )

( ) ( )

n

i

N
n

ij j

j j i

n

i

N
n in n

i j ij i j j

j j i

n

i

N
out n

ij j i j

j j i

n

i

f x t

e f x t

k

x t Rp e F t f x t

s

e F t f x t

s

 







= 

= 

= 

 − − + 

  
 +

+ =  −   
 +

  








→

→

 (17) 

Where, 
1  is the topological network coupling coefficient, 

2  is the passenger flow distribution coupling coefficient, 

1 (0,1)  ,
2 (0,1)  , ije  is the connection information 

between station i and station j, jp  is the passenger flow loss 

rate at congested station j, ( )n

ik is the degree of station i, ( )n

is  

is the strength of station i, i.e., the total passenger flow at the 

station.  

The mapping function ( )( ) ( ) ( )( ) 4 ( ) 1 ( )n n n

i i if x t x t x t   =  −   
 

is chosen to describe the dynamic behavior of congestion at 

station i in layer n of the double-layer urban rail transit 

network, ( ) ( )n

ix t  is the state of station i at time step t. 

Initially, ( ) ( 1) (0,1)n

ix t −   is defined as the maximum 

section load factor at station i in layer n of the double-layer 

urban rail transit network, which represents the state of 

station i before congestion: 
( ) ( ) ( )

,1 ,2 ,( )

( ) ( ) ( )

,1 ,2 ,

( ) ( ) ( )
( 1) max , ,...,

( ) ( ) ( )

n n n

i i i kn

i n n n

i i i k

V l V l V l
x t

C l C l C l

  
− =  

  
      (18) 

Where, 
( )

, ( )n

i kV l  is the passenger flow volume of adjacent 

section k at station i in unit period l, 
( )

, ( )n

i kC l  is the train 

capacity passing through adjacent section k at station i in 

unit period l. 

An emergency event may cause a large amount of 

passenger collecting volume in a short period. To quantify 

the passenger collecting volume, a congestion disturbance 

1R   is defined. For stations unaffected by emergency 

events, 0R = . If all stations always maintain ( )0 ( ) 1n

ix t  , 

then there is no congested station in the network, if 
( ) ( ) 1n

ix t  , station i becomes congested, after that

( ) ( ) 0n

ix t   within ( )1,t + + , and neighboring stations will 

be affected by the state of station i, which causes the 

congestion propagation in the double-layer urban rail transit 

network. 

Based on the above analysis, the process of the simulation 

algorithm for congestion propagation in double-layer urban 

rail transit network is shown in Fig.6. 
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Fig. 6.  The process of the simulation algorithm

 

V. EXAMPLE ANALYSIS  

The simulation analysis focuses on a partial topology of 

the Shanghai urban rail transit network. The topology of the 

network is shown in Fig.7, and the in-flow and out-flow of 

passenger flow at the stations are shown in Fig. 8. 
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Fig. 7.  Urban rail transit topology network 
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Fig. 8.  The in-flow and out-flow of passenger flow at the stations 

Assuming the initial congested station is station 27 and 

collecting the passenger flow data during peak hours on a 

certain day. The parameters used for analysis are set as 

follows: η=0.5, 8mint = , R=2.4, ε1=ε2=0.25. The process 

of congestion propagation in the double-layer rail transit 

network is shown in Fig.9. 

 

 
Fig. 9.  The congestion propagation process in the double-layer rail transit 

network. 

 

As shown in Fig.9, when the passenger collecting volume 

at the station reaches a significant scale, the trains are unable 

to meet the transportation demand, leading to passenger 

detention. At the same time, operating trains close to full 

load will cause congestion to spread to adjacent stations, 

manifested as point-to-line propagation. When the train 

reaches an interchange station, congestion extends to other 

stations in adjacent layers of the double-layer urban rail 
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transit network, which is manifested as line-to-surface 

propagation. 

The process of congestion propagation can be influenced 

by various parameter values, making it essential to analyze 

the impact of each parameter on congestion propagation of 

the network. 

A. Effect of choice behavior on passenger flow loss rate 

The choice behavior of passengers plays a crucial role in 

passenger flow loss at congested stations, consequently 

affecting the congestion propagation process. Taking the 

choice behavior of passengers at station 27 as an example, 

the effects of choice behavior on the passenger flow loss 

rate are shown in Fig.10-17. 
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Fig. 10.  The relationship between the risk appetite coefficient α and 

passenger flow loss rate.  
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Fig. 11.  The relationship between the risk aversion coefficient β and 

passenger flow loss rate.  

 
Fig. 12.  The relationship between the α, β, and passenger flow loss rate. 

 

As shown in Fig.10-12, the passenger flow loss rate 

increases with the increase of risk appetite coefficient α, 

while it decreases with the increase of risk aversion 

coefficient β. Taking Fig.10 as an example, when risk 

appetite coefficient α is small, the majority of passengers 

will conservatively choose urban rail transit because the 

travel time and cost of urban rail transit are more balanced. 

In contrast, a minority of passengers will take the risk of 

choosing other modes. As the α increases, the number of 

passengers willing to explore other modes also increases, 

resulting in a higher passenger flow loss rate. The impact of 

the risk aversion coefficient β on the passenger flow loss 

rate follows a similar pattern, as the β increases, passengers 

are more willing to choose urban rail transit to avoid 

potential risks, resulting in a lower passenger flow loss rate. 
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Fig. 13.  The relationship between gain-perceived probability coefficient γ 

and passenger flow loss rate.  
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Fig. 14.  The relationship between loss-perceived probability coefficient δ 

and passenger flow loss rate.  

 
Fig. 15.  The relationship between γ, δ, and passenger flow loss rate. 
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As shown in Fig.13-15, the passenger flow loss rate 

increases with the increase of the gain-perceived probability 

coefficient γ and decreases with the increase of the loss-

perceived probability coefficient δ.  

Taking Fig.13 as an example, when passengers at 

congested rail transit stations choose their travel modes, they 

tend to exhibit the characteristic of overestimating low-

probability events and underestimating large-probability 

events. Urban rail transit offers a higher prospect value than 

other travel modes, if passengers are perfectly rational, 

choosing urban rail transit becomes a probabilistic event. 

However, if passengers are bounded rational, they tend to 

underestimate the benefits of choosing urban rail transit. 

Therefore, with the increase of gain-perceived probability 

coefficient γ, the perceived value of choosing alternative 

travel modes increases rapidly, leading to a higher passenger 

flow loss rate in the urban rail transit network. The impact 

of the loss-perceived probability coefficient δ on the 

passenger flow loss rate follows a similar pattern. with the 

increase of the loss-perceived probability coefficient δ, 

passengers tend to overestimate the loss of choosing other 

travel modes, leading to a decrease in passenger flow loss 

rate. 

Comparing Fig.12 and Fig.15, it can be seen that the 

passenger flow loss rate is more sensitive to β and δ. It is 

evident that passengers are more sensitive to the perception 

of loss and are more tend to avoid potential risks in their 

travels. 
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Fig. 16.  The relationship between prospective preference coefficient η and 

the passenger flow loss rate 

 

As shown in Fig.16, the passenger flow loss rate 

decreases as the prospective preference coefficient η 

increases initially and then increases. When η < 0.5, it 

indicates that passengers prioritize saving travel costs over 

saving travel time, resulting in more passengers opting for 

urban rail transit and buses, and urban rail transit is a 

superior option. Similarly, when η > 0.5, it indicates that 

passengers prioritize saving travel time over saving travel 

costs, leading to an increase in the choice of urban rail 

transit and taxis, urban rail transit also is a superior option.  

At η = 0.4, the passenger loss rate reaches its minimum, 

indicating passengers who value travel time are more likely 

to choose other travel modes. Therefore, ensuring passenger 

travel time is a crucial strategy for reducing the passenger 

flow loss rate. 
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Fig. 17.  The relationship between additional congestion time t  and 

passenger flow loss rate. 

 

As shown in Fig.17, it is observed that a longer duration 

of congestion in urban rail transit results in a higher 

passenger flow loss rate, there is a linear correlation 

between the passenger flow loss rate and the additional 

congestion time. The longer the duration of congestion, the 

lower the willingness of passengers to choose urban rail 

transit. Therefore, it is essential to implement timely 

measures to alleviate congestion, minimize the duration of 

congestion, and reduce the passenger flow loss rate as much 

as possible when congestion occurs. 

B. Effect of the passenger flow loss rate on congestion 

propagation 

From the analysis in part A, it is evident that choice 

behavior has a significant impact on the passenger flow loss 

rate. It is necessary to further analyze the effect of the 

passenger flow loss rate on the congestion propagation 

process. Assuming R=3, the passenger flow loss rate at each 

station is equal. The results are shown in Fig 18- 20. 
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Fig. 18.  Congestion propagation process with the different passenger flow 

loss rates when the station with the largest degree is congested. (a) the 

proportion of congested stations. (b) number of congested stations. 
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Fig. 19.  Congestion propagation process with the different passenger flow 

loss rates when the station with the largest passenger flow is congested. (a) 

the proportion of congested stations. (b)number of congested stations. 
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Fig. 20.  Congestion propagation process with the different passenger flow 

loss rates when the station with the largest initial state is congested. (a) the 

proportion of congested stations. (b) number of congested stations.  

 

As shown in Fig.18-20, it can be observed that the 

congestion propagation rate decreases with the increase of 

the passenger flow loss rate. This implies that as the value of 

the passenger flow loss rate jp  increases, more passengers 

choose to leave the urban rail transit system. The loss of 

passenger flow reduces the burden on transportation within 

the system, leading to the speed of congestion propagation 

slowing down. It is demonstrated that the spontaneous travel 

choice behavior of passengers can effectively regulate the 

passenger flow in the urban rail transit system during 

congested periods. However, the loss of passenger flow 

negatively impacts the revenue and passenger service 

quality of urban rail transit, highlighting the need for timely 

passenger flow control measures. 

When comparing Fig.18-20, it is evident that the process 

of congestion propagation varies when the initial congested 

station is different, even with the same passenger flow loss 

rate. Therefore, it is necessary to further analyze the effect 

of the initial congested station on congestion propagation. 

C. Effect of the different initial congested stations and 

congestion disturbance on congestion propagation 

Considering the significant impact of the initial congested 

station and the passenger collecting volume on the process 

of congestion propagation, the stations with the largest 

degree, the largest passenger flow, and the largest initial 

state are subjected to different congestion disturbances, 

respectively. And the congestion propagation threshold Rc is 

introduced, when 
cR R , congestion spreads widely in the 

network. Taking ε1=ε2=0.25, the congestion propagation 

processes at the stations with the largest degree, passenger 

flow, and initial state are depicted in Figs. 21-22, 23-24, and 

25-26, respectively. 
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Fig. 21.  The proportion of congested stations with time when the station 

with the largest degree is congested. (a) without considering passenger 

travel behavior at congested station. (b) considering passenger travel 

behavior at congested station.  
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Fig. 22.  The number of congested stations with time when the station with 

the largest degree is congested. (a) without considering passenger travel 

behavior at congested station. (b) considering passenger travel behavior at 

congested station. 

 

As shown in Fig.21, the rate of congestion propagation 

increases with the increase of the congestion disturbance. 

When congestion occurs at the station with the largest 

degree, 3.2cR =  regardless of whether the choice behavior 

of passengers is considered. When 3.2R  , the congestion 

spreads widely in the urban rail transit network. It can be 

seen that the choice behavior of passengers has less impact 

on the congestion propagation threshold at stations with 

high topological importance. Moreover, when congestion 

disturbances R are identical, considering passenger travel 

choice behavior results in a slower congestion propagation 

speed, indicating that spontaneous travel choice behavior of 

passengers can slow down the congestion propagation 

process. 

As shown in Fig.22, the number of congested stations and 

congestion time approximately follow a normal distribution. 

Additionally, the peak periods of the number of congested 

stations vary when different types of stations experience 

congestion. When the congestion disturbance is small, the 

congestion will only spread in a small area of the network. 

As the congestion disturbance increases, the congestion 

gradually spreads within the urban rail transit network, and 

the larger the congestion disturbance, the earlier the peak 

period of the number of congested stations appears. It 

proved that passenger flow control measures should be 

implemented as early as possible before the peak period of 

the number of congested stations appears to minimize the 

speed of congestion propagation and potential for hazardous 

accidents. 
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Fig. 23.  The proportion of congested stations with time when the station 

with the largest passenger flow is congested. (a) without considering 

passenger travel behavior at congested station. (b) considering passenger 

travel behavior at congested station.  
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Fig. 24.  The number of congested stations with time when the station with 

the largest passenger flow is congested. (a) without considering passenger 

travel behavior at congested station. (b) considering passenger travel 

behavior at congested station. 
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As shown in Fig.23, 28cR = .  is the congestion threshold 

at the station with the largest passenger flow, without 

considering the travel choice behavior of passengers. When 

2.8R  , the congestion spreads widely in the urban rail 

transit network. 3 2cR .=  is the congestion propagation 

threshold considering the choice behavior of passengers. 

When 3.2R  , the congestion spreads widely in the urban 

rail transit network. It can be seen that the travel choice 

behavior of passengers at stations with high functional 

importance has an essential influence on the congestion 

propagation process, significantly increasing the congestion 

threshold.  

Comparing Fig.21 and Fig.23, it can be seen that the 

station with the largest passenger flow exhibits a faster 

congestion propagation speed compared to the station with 

the largest degree. Moreover, the congestion propagation 

threshold Rc at the station with the largest passenger flow is 

lower than that at the station with the largest degree. It is 

found that the stations with high topological importance are 

more capable of propagating congestion than stations with 

high functional importance, and the passenger flow 

distribution structure of the network is more fragile than the 

network topological structure.  

Comparing Fig.22 and Fig.24, it can be seen that after 

reaching the congestion propagation threshold, the peak 

period of the number of congested stations at the station 

with the largest degree appears later than that at the station 

with the largest passenger flow, which further proves that 

the station with high topological importance has a stronger 

ability to propagate congestion. 
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Fig. 25.  The proportion of congested stations with time when the station 

with the largest initial state is congested. (a) without considering passenger 

travel behavior at congested station. (b) considering passenger travel 

behavior at congested station.  
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Fig. 26.  The number of congested stations with time when the station with 

the largest initial state is congested. (a) without considering passenger 

travel behavior at congested station. (b) considering passenger travel 

behavior at congested station. 

 

As shown in Fig.25, When congestion occurs at the 

station with the largest initial state, 2.4cR =  is the 

congestion propagation threshold regardless of whether the 

travel choice behavior of passengers is considered. Notably, 

the congestion propagation threshold is the lowest at the 

station with the largest initial state, indicating that the initial 

state has a critical effect on the occurrence of congestion 

propagation.  

As shown in Fig.26, when the congestion propagation 

disturbance at stations with the largest initial state is small 

(R  2.4), the number of congested stations converges at 

T=22. In contrast, when the congestion disturbance is large 

(R>2.4), the peak period of the number of congested stations 

appears earlier, and the number of congested stations 

converges at T≤16. It can be seen that the size of the initial 

aggregated passenger flow has a significant influence on the 

congestion propagation process at the station with the largest 

initial state. When the aggregated passenger flow is low, the 

congestion propagation period is prolonged, whereas it 

converges rapidly when the aggregated passenger flow is 

high. 

D. Effect of coupling coefficient on congestion propagation 

threshold 

Since the topological network coupling coefficient ε1 and 

the passenger flow distribution coupling coefficient ε2 

describe the interaction between network topology and 

passenger flow, it is necessary to explore their effect on the 

congestion propagation threshold. The thresholds for 

different coupling coefficients are shown in Fig.27. 
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Fig. 27.  The relationship between influence thresholds and coupling 

coefficient. (a)station with the largest degree. (b)station with the largest 

passenger flow. (c)The station with the largest initial state. 

 

As shown in Fig.27, both ε1 and ε2 affect the congestion 

propagation threshold Rc. When ε1 is held constant, there is a 

gradual decrease in Rc as ε2 increases. Similarly, when ε2 is 

held constant, there is a gradual decrease in Rc with an 

increase in ε1. The primary factor is the increase in the 

coupling coefficient, which results in higher station-to-

station interaction and an increased likelihood of congestion 

propagation. 

Meanwhile, the congestion propagation threshold Rc of 

the station with the largest degree is more sensitive to ε1, 

demonstrating that the tightness of inter-station connectivity 

has a greater impact on the congestion propagation process 

at stations with high topological importance, an increase in 

ε1 is more likely to cause congestion spreading widely in the 

network. Similarly, the congestion propagation threshold Rc 

of the station with the largest passenger flow is more 

sensitive to ε2, demonstrating that the closeness of passenger 

flow interactions between stations has a greater impact on 

the congestion propagation process at stations with high 

functional importance, an increase in ε2 is more likely to 

cause congestion spreading widely in the network. 

Moreover, the congestion propagation threshold Rc of the 

station with the largest initial state is equally sensitive to 

both ε1 and ε2. 

E. Effect of network coupling on congestion propagation 

The process of congestion propagation at the station may 

differ in single-layer and double-layer networks. For 

example, station 27, a transfer point between the subway 

and regional rapid rail, is compared in terms of the process 

of congestion propagation in the single-layer regional rail 

network, single-layer subway network, and double-layer 

urban rail transit network is compared. The results are 

shown in Fig.28-29.  
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Fig. 28. The proportion of congested stations in different networks 
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Fig. 29.  The number of congested stations with time in different networks 

 

As shown in Fig.28-29, when congestion occurs at station 

27 in the regional rapid rail network, congestion will only 

spread in a small area due to poor network connectivity. 

However, for station 27 in the subway network and double-

layer urban rail transit network, the congestion will spread 

extensively, potentially reaching stations unaffected by 

congestion in the single-layer regional rapid rail network. 

This is primarily due to enhanced station-to-station 

interaction resulting from network coupling. Furthermore, 

the final extent of congestion propagation in the double-

layer urban rail transit network is smaller compared to the 

subway network because the regional rapid rail can 

distribute the passenger flow among subways, proving that 

the network coupling can improve the stability of the 

network.  
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VI. CONCLUSIONS 

The main conclusions were obtained by constructing a 

double-layer urban rail transit topological network (DRTN) 

and developing a congestion propagation model to analyze 

the congestion propagation process in urban rail transit 

networks: 

(1) When the passenger collecting volume at the station 

reaches a significant scale, the trains are unable to meet the 

transportation demand. At the same time, operating trains 

close to full load will cause congestion to propagate to 

adjacent stations, manifested as point-to-line propagation. 

When the train reaches an interchange station, congestion 

extends to other stations in adjacent layers of the urban rail 

transit network, which is manifested as line-to-surface 

propagation. 

(2) Travel preferences and risk attitudes influence the 

travel choice behavior of passengers at congested stations, 

resulting in a loss of passenger flow. Specifically, 

passengers who are more risk- appetite are more likely to 

choose other travel modes, resulting in a higher passenger 

flow loss rate. Conversely, passengers who are more risk-

averse are more likely to continue choosing urban rail transit. 

Furthermore, a longer duration of congestion in the urban 

rail transit system correlates with a higher passenger flow 

loss rate, and the passenger flow loss rate exhibits a linear 

correlation with the amount of additional congestion time.  

(3) The spontaneous travel choice behavior of passengers 

can effectively regulate the passenger flow in the urban rail 

transit system during congested periods and reduce the rate 

of congestion propagation. However, the loss of passenger 

flow negatively impacts the revenue and passenger service 

quality of urban rail transit, highlighting the need for timely 

passenger flow control measures. 

(4) The initial congested station and the passenger 

collecting volume significantly affect the process of 

congestion propagation. The rate of congestion propagation 

increases with the increase of the congestion disturbance, 

while the number of congested stations and congestion time 

approximately follow a normal distribution. 

(5) The stations with high topological importance are 

more capable of propagating congestion than stations with 

high functional importance, and the passenger flow 

distribution structure of the network is more fragile than the 

network topological structure.  

(6) The increase in coupling coefficient leads to a rise in 

station-to-station interaction, making congestion more likely 

to propagate. Specifically, the topological distribution 

coupling coefficient has a more significant influence on the 

threshold for stations with high topological importance, 

while the passenger flow distribution coupling coefficient 

has a more substantial impact on the threshold for stations 

with high functional importance. 

(7) The coupling of networks increases the risk of 

congestion at previously uncongested stations in the single-

layer regional rapid rail network. Moreover, the final extent 

of congestion propagation in the double-layer urban rail 

transit network is smaller compared to the subway network, 

proving that the network coupling can improve the stability 

of the network. 
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