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Abstract—In the current research, we represent a novel class
of multivalued contractive mappings that are cyclic orthogonal
(φ,ψ)− (Λ, δ,Υ)-admissible. In the framework of O-complete
metric spaces, we establish the fixed point results for these
new cyclic orthogonal (φ,ψ)− (Λ, δ,Υ)-admissible contractive
mappings.

Index Terms—cyclic (φ,ψ)-admissible mapping, cyclic or-
thogonal (φ,ψ)-admissible mapping, cyclic (φ,ψ) − (Λ, δ,Υ)-
admissible multivalued mapping, cyclic orthogonal (φ,ψ) −
(Λ, δ,Υ)-admissible multivalued mapping, fixed point, orthog-
onal metric space.

I. INTRODUCTION

MANY years ago, various fixed point findings were
obtained in the context of metric spaces. If (X, d)

is a complete metric space (abbreviated CMS) and f :
X → X is a contraction mapping (i.e., d(f(x), f(y)) ≤
αd(x, y), ∀ x, y ∈ X , where 0 ≤ α < 1), then f has
a unique fixed point (abbreviated UFP). First, Kirk et al.
[8] introduced the concept of cyclic contraction in the fixed
point theory. There has been a lot of research done on the
fixed points of multi-valued functions. A point x is said
to be a fixed point of a single-valued mapping f (multi-
valued mapping F) if f(x) = x(x ∈ F (x)). Nadler [1]
examined the convergence of a sequence of the Banach
contraction multivalued fixed point results of a convergent
of multivalued contraction mappings of a CMS X into the
nonempty CL(X) in 1969. In 2014, Ali et al. [2] introduced
the concept of (α,ψ, ξ)-contractive multivalued mappings
and extended the notion of α − ψ-contractive mappings to
closed valued multi-functions, as well as providing fixed-
point theorems for (α,ψ, ξ)-contractive multivalued map-
pings in CMS’s. Alizadeh et al. [3] introduced the concept
of cyclic (α, β) − (ψ, ϕ)-contractive mappings, and cyclic
rational weak α−β−ψ-contraction mappings. In the situation
of CMS’s, they demonstrated some new fixed point results for
such mappings. Hussain et al. [4] developed some fixed point
theorems for multi and single-valued mappings via α − ψ-
contractive requirements in CMS in 2014. Samet et al. [5]
developed the ideas of α − ψ-contractive and α-admissible
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mappings in CMS’s in 2012 and established different fixed
point theorems for such mappings. Others have achieved
significant results in this prominent field recently, more
details see ([6], [7], [9], [10], [11]).

Gordji et al. [12] invented the concept of orthogonal
sets and metric spaces in 2017. They also established the
existence and uniqueness of fixed points for mappings on
a generalized orthogonal metric space (shortly, OMS). Fol-
lowing that, several authors proved many existing fixed point
theorems in various metric spaces (for example, [13] - [21]).

In this paper, we combine the ideas of cyclic (φ,ψ) −
(Λ, δ,Υ)-admissible multivalued mapping(shortly, A.M.M.)
and orthogonal concept of metric space and prove a fixed
point theorem in these cyclic orthogonal (φ,ψ)− (Λ, δ,Υ)-
admissible multivalued contraction mappings.

II. PRELIMINARIES

Several results in the present context is listed below.
Throughout this paper, we denote N and R+ by the set of
all positive integers and real numbers, R by (−∞,+∞) and
R+

0 by [0,∞).

Definition 1. [5] Let ℑ : £ → £ and φ : £×£ → R+
0 be

functions. ℑ is called φ-admissible when β, ζ ∈ £ such that
(s.t.) φ(β, ζ) ≥ 1 =⇒ φ(ℑβ,ℑζ) ≥ 1.

Definition 2. [3] Let e : £ → CL(£) and φ,ψ : £ → R+

be two functions. ℑ is said to be a cyclic (φ,ψ)-admissible
mapping if
(1) φ(β) ≥ 1 for some β ∈ £ =⇒ ψ(ℑβ) ≥ 1,
(2) ψ(β) ≥ 1 for some β ∈ £ =⇒ φ(ℑβ) ≥ 1.

Definition 3. [3] Let (£, ∂) be a CMS and ℑ : £ → £ be a
cyclic (φ,ψ)-admissible mapping. We say that ℑ is a cyclic
(φ,ψ)− (Λ,Υ)-contractive mapping if for all β, ζ ∈ £,

φ(β)ψ(ζ) ≥ 1

=⇒ Λ(∂(ℑβ,ℑζ)) ≤ Λ(∂(β, ζ))−Υ(∂(β, ζ)),

where Λ : R+
0 → R+

0 is increasing and continuous function
and Υ : R+

0 → R+
0 is a lower semi-continuous function with

Υ(ι) = 0 =⇒ ι = 0.

Theorem 1. [3] Let (£, ∂) be a CMS and ℑ : £ → £
be a (φ,ψ) − (Λ,Υ)-admissible mapping. Assume that the
following axioms hold:
(1) there exists β0 ∈ £ s.t. φ(β0) ≥ 1 and ψ(β0) ≥ 1,
(2) ℑ is continuous, or
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(3) if {βε} is a sequence in £ s.t. βε → β and
ψ(βε) ≥ 1, ∀ ε ∈ N, then ψ(β) ≥ 1,

then ℑ has a fixed point. Moreover, if φ(β) ≥ 1 and
ψ(ζ) ≥ 1, ∀ β, ζ ∈ F(ℑ), then ℑ has a UFP.

Definition 4. [2] The family ∆ of all functions
δ : R+

0 → R+
0 satisfies the properties:

(1) δ is continuous;
(2) δ is nondereasing on R+;
(3) δ(0) = 0 and δ(ι) > 0, ∀ ι ∈ (0,∞);
(4) δ is sub additive.

Lemma II.1. [2] Let (£, ∂) be a metric space, let δ ∈ ∆ and
ℑ ∈ CL(£). Suppose there exists β ∈ £ s.t. δ(∂(β,ℑ)) > 0.
Then, there exists ζ ∈ ℑ s.t.

δ(∂(β, ζ)) < ϱδ(∂(β,ℑ)),

where ϱ > 1.

Definition 5. [12] Let £ ̸= ∅ and define a binary relation
⊥ ⊆ £×£ if ⊥ satisfy:

∃ β0 ∈ £, (∀ β ∈ £, β⊥β0) or (∀β ∈ £, β0⊥β),

then, the pair (£,⊥) is known as orthogonal set (briefly
O-set).

Example 1. [12] Let £ = [0, 1). Suppose β⊥ζ if β ≤ ζ.
(£,⊥) is an O-set.

Example 2. [12] Let (£, ∂) be a metric space and
ℑ : £ → £ be a Picard operator, i.e., ℑ has a UFP β∗ ∈ £
and lim

ε→∞
ℑε(β) = β∗, ∀ ζ ∈ £. We define the binary relation

⊥ on £ by ζ⊥β if

lim
ε→∞

∂(β,ℑε(ζ)) = 0.

Then, (£,⊥) is an O-set.

Example 3. Suppose that M(ε) is the set of all ε×ε matrices
and Q is an invertible matrix. Define the relation ⊥ on M(ε)
by K⊥E ⇐⇒ ∃ £ ∈ M(ε) : K£ = E . It is easy to seen
that Q⊥E , ∀ E ∈ M(ε).

Definition 6. [12] Let (£,⊥) be an O-set. A sequence {βε}
is called an orthogonal sequence (briefly, O-sequence) if

( ∀ ε ∈ N, βε⊥βε+1) or ( ∀ ε ∈ N, βε+1⊥βε).

Definition 7. [12] Let (£,⊥, ∂) be an OMS. Then, a
mapping ℑ : £ → £ is said to be orthogonally continuous
(or ⊥-continuous) in β ∈ £ if for each O-sequence {βε}
in £ with βε → β as n → ∞, we have ℑ(βε) → ℑ(β) as
ε → ∞. Also, ℑ is said to be ⊥-continuous on £ if ℑ is
⊥-continuous in each β ∈ £.

Example 4. The continuity implies orthogonal continuity but
the converse is not true. If ℑ : R → R is defined by
ℑ(β) = [β], ∀ β ∈ R and the relation ⊥ ⊂ R×R is defined
by

β⊥ζ if β, ζ ∈
(
i+

1

3
, i+

2

3

)
, i ∈ Z or β = 0.

Then, ℑ is ⊥-continuous while ℑ is discontinuous on R.

Example 5. Let £ = R. Suppose that β⊥ζ if and only if
β = 0 or 0 ̸= ζ ∈ Q. It is easy to seen that (£,⊥) is an
O-set. Define ℑ : £ → £ by

ℑ(β) =

{
1, if β ∈ Q,
0, if β ∈ Qc.

Therefore, ℑ is ⊥-continuous at all rational numbers.

Definition 8. [12] Let (£,⊥, ∂) be an OMS. Then, £ is said
to be orthogonal complete (briefly, O-complete) if every O-
Cauchy sequence is convergent.

Example 6. The completeness of the metric space implies
O-completeness, but the converse is not true. We know that
£ = [0, 1) with Euclidean metric ∂ is not a CMS. If we
define the relation ⊥ ⊂ £× £ by β⊥ζ ⇐⇒ β ≤ ζ ≤ 1

2 or
β = 0, then (£,⊥, ∂) is an O-complete.

Definition 9. [12] Let (£,⊥) be an O-set. A mapping
ℑ : £ → £ is called ⊥-preserving if ℑβ⊥ℑζ whenever
β⊥ζ. Also ℑ : £ → £ is called weakly ⊥-preserving if
ℑ(β)⊥ℑ(ζ) or ℑ(ζ)⊥ℑ(β) whenever β⊥ζ.

Example 7. Let £ = [0, 1) and define a relation
⊥ ⊂ [0, 1)× [0, 1) by

β⊥ζ if βζ ∈ {β, ζ} ⊂ [0, 1).

Then, £ = [0, 1) is an O-set. Now, define a function
ℑ : £ → CL(£) by

ℑ(β) =

{
[ β15 ,

β+1
7 ], if β ∈ Q ∩£,

{0}, if β ∈ Qc ∩£,

is a ⊥-preserving mapping.

III. MAIN RESULTS

Now, we introduce the definition of a cyclic orthogonal
(φ,ψ)−(Λ, δ,Υ)(abbreviated C.O.(φ,ψ)−(Λ, δ,Υ))-A.M.M
and prove a fixed point theorem on O-CMS.

Definition 10. Let ℑ : £ → £ be a a self-mapping and
a function φ : £ × £ → R+

0 . ℑ is called orthogonal φ-
admissible when if β, ζ ∈ £ with β⊥ζ s.t. φ(β, ζ) ≥ 1 then
we have φ(ℑβ,ℑζ) ≥ 1.

Definition 11. Let e : £ → CL(£) be a mapping and
φ,ψ : £ → R+ be two functions. ℑ is said to be a cyclic
orthogonal (φ,ψ)-admissible mappingping if ∀ β with β⊥β
(1) φ(β) ≥ 1 for some β ∈ £ =⇒ ψ(ℑβ) ≥ 1,
(2) ψ(β) ≥ 1 for some β ∈ £ =⇒ φ(ℑβ) ≥ 1.

Definition 12. Let (£, ∂) be an O-CMS and ℑ : £ → £ be
a C.O. (φ,ψ)-admissible mapping. We say that ℑ is a C.O.
(φ,ψ)−(Λ,Υ)-contractive mapping if ∀ β, ζ ∈ £ with β⊥ζ

∂(ℑβ,ℑζ) > 0, φ(β)ψ(ζ) ≥ 1

=⇒ Λ(∂(ℑβ,ℑζ)) ≤ Λ(∂(β, ζ))−Υ(∂(β, ζ)),

where Λ : R+
0 → R+

0 is a continuous and increasing
function and Υ : R+

0 → R+
0 is a lower semi-continuous

function with Υ(ι) = 0 =⇒ ι = 0.

Definition 13. Let (£,⊥, ∂) be an OMS and
ℑ : £ → CL(£) by cyclic (φ,ψ) admissible mapping. We
say that ℑ is a C.O.(φ,ψ) − (Λ, δ,Υ)-A.M.M of type A if
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there exists φ,ψ : £×£ → R+
0 ,Λ ∈ Ξ, δ ∈ ∆ and Υ ∈ Π

s.t. ∀ β, ζ ∈ £ with β⊥ζ:

H(ℑβ,ℑζ) > 0, φ(β)ψ(ζ) ≥ 1

=⇒ δ(H(ℑβ,ℑζ)) ≤ Λ(δ(M(β, ζ)))−Υ(M(β, ζ)),
(1)

where

M(β, ζ) = max

{
∂(β, ζ), ∂(β,ℑβ), ∂(ζ,ℑζ),

1

2
[∂(β,ℑζ) + ∂(ζ,ℑβ)]

}
.

Definition 14. Let (£,⊥, ∂) be an OMS. The mapping
ℑ : £ → CL(£) is said to be a C.O. (φ,ψ)- A.M.M of type
B if there exists φ,ψ : £ × £ → R+

0 ,Λ ∈ Ξ, δ ∈ ∆ and
Υ ∈ Π s.t. ∀ β, ζ ∈ £ with β⊥ζ:

H(ℑβ,ℑζ) > 0, φ(β)ψ(ζ) ≥ 1

=⇒ δ(H(ℑβ,ℑζ)) ≤ Λ(δ(P(β, ζ)))−Υ(P(β, ζ)) (2)

where

P(β, ζ) = max

{
∂(β, ζ),

[1 + ∂(β,ℑβ)]∂(ζ,ℑζ)
∂(β, ζ) + 1

}
.

Theorem 2. Let (£,⊥, ∂) be an orthogonal CMS and
ℑ : £ → CL(£) by C.O.(φ,ψ)− (Λ, δ,Υ)-A.M.M of
type A. Assume that the following postulations hold:

1) there exits β0 ∈ £ and β1 ∈ ℑβ0 with β0⊥β1 s.t.

φ(β0) ≥ 1 =⇒ ψ(ℑβ0) = ψ(β1) ≥ 1,

ψ(β0) ≥ 1 =⇒ φ(ℑβ0) = φ(β1) ≥ 1,

2) if {βε} is an O-sequence in £ with βε → β as
β → ∞ and ψ(βε) ≥ 1, ∀ ε ∈ N, then ψ(β) ≥ 1,

3) ⊥-continuous,
4) ⊥-preserving,

then ℑ has a UFP.

Proof: Since (£,⊥) is an O-set,

∃ β0 ∈ £ (∀ β ∈ £, β⊥β0) ∨ (∀ β ∈ £, β0⊥β).

It follows that β0⊥ℑ(β0) or ℑ(β0)⊥β0.
Let

β1 = ℑ(β0);β2 = ℑ(β1); . . . ;βε+1 = ℑ(βε), ∀ ε ∈ N.

By starting from β0 and β1 ∈ ℑβ0 with β0⊥β1 in
axioms (1), we have

φ(β0) ≥ 1 =⇒ ψ(ℑβ0) = ψ(β1) ≥ 1,

ψ(β0) ≥ 1 =⇒ φ(ℑβ0) = φ(β1) ≥ 1.

Therefore, φ(β0) ≥ 1 and ψ(β1) ≥ 1, equivalently,
φ(β0)ψ(β1) ≥ 1. If β0 = β1, we conclude that β1 ∈ F(ℑ)
and so the proof is completed. Now, taking β0 ̸= β1 and
β1 /∈ ℑβ1. From (1), we have

0 < δ(∂(β1,ℑβ1))
≤ δ(H(ℑβ0,ℑβ1))
≤ Λ(δ(M(β0, β1)))−Υ(M(β0, β1)), (3)

where

M(β0, β1) = max

{
∂(β0, β1), ∂(β0,ℑβ0), ∂(β1,ℑβ1),

1

2
[∂(β0,ℑβ1) + ∂(β1,ℑβ0)]

}
= max

{
∂(β0, β1), ∂(β0, β1), ∂(β1,ℑβ1),

1

2
[∂(β0,ℑβ1)]

}
= max

{
∂(β0, β1), ∂(β1,ℑβ1),

1

2
[∂(β0, β1) + ∂(β1,ℑβ1)]

}
= max

{
∂(β0, β1), ∂(β1,ℑβ1)

}
. (4)

From (3) and (4) and by using the properties of Υ, we get

0 < δ(∂(β1,ℑβ1))

≤ Λ

(
δ

(
max

{
∂(β0, β1), ∂(β1,ℑβ1)

}))
−Υ

(
max

{
∂(β0, β1), ∂(β1,ℑβ1)

})
. (5)

Assume that max

{
∂(β0, β1), ∂(β1,ℑβ1)

}
= ∂(β1,ℑβ1),

then we obtain

0 < δ(∂(β1,ℑβ1)) ≤ Λ(δ(∂(β1,ℑβ1)))−Υ(∂(β1,ℑβ1))
< Λ(δ(∂(β1,ℑβ1))),

which is a contradiction. Thus

max

{
∂(β0, β1), ∂(β1,ℑβ1)

}
= ∂(β0, β1).

From (5), we obtain

0 < δ(∂(β1,ℑβ1)) ≤ Λ(δ(∂(β0, β1)))−Υ(∂(β0, β1))

< Λ(δ(∂(β0, β1))). (6)

For ϱ > 1 by Lemma II.1, there exists β2 ∈ ℑβ1 s.t.

0 < δ(∂(β1, β2)) < ϱδ(∂(β1,ℑβ1)). (7)

From (6) and (7), we get

0 < δ(∂(β1, β2)) < ϱΛ(δ(∂(β0, β1))). (8)

By applying Λ in (8), we have

0 < Λ(δ(∂(β1, β2))) < Λ(ϱΛ(δ(∂(β0, β1)))). (9)

Set ϱ1 =
Λ(ϱΛ(δ(∂(β0, β1))))

Λ(δ(∂(β1, β2)))
.

Then ϱ1 ≥ 1. From the Definition 11, condition (1)
and β2 ∈ ℑβ1, we have

φ(β1) ≥ 1 =⇒ ψ(ℑβ1) = ψ(β2) ≥ 1,

ψ(β1) ≥ 1 =⇒ φ(ℑβ1) = φ(β2) ≥ 1.

So, φ(β1) ≥ 1, and ψ(β2) ≥ 1. Equivalently,
φ(β1)ψ(β2) ≥ 1. If β2 ∈ ℑβ2, then β2 ∈ F(ℑ). So, we
assume that β2 /∈ ℑβ2. From (1), we conclude that

0 < δ(∂(β2,ℑβ2))
≤ δ(H(ℑβ1,ℑβ2))
≤ Λ(δ(M(β1, β2)))−Υ(M(β1, β2)), (10)
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where

M(β1, β2) = max

{
∂(β1, β2), ∂(β1,ℑβ1), ∂(β2,ℑβ2),

1

2
[∂(β1,ℑβ2) + ∂(β2,ℑβ1)]

}
= max

{
∂(β1, β2), ∂(β1, β2), ∂(β2,ℑβ2),

1

2
∂(β1,ℑβ2)

}
= max

{
∂(β1, β2), ∂(β2,ℑβ2),

1

2
[∂(β1, β2) + ∂(β2,ℑβ2)]

}
= max

{
∂(β1, β2), ∂(β2,ℑβ2)

}
.

If M(β1, β2) = ∂(β2,ℑβ2) and by using properties of Υ,
we have

0 < δ(∂(β2,ℑβ2)) ≤ Λ(δ(∂(β2,ℑβ2)))−Υ(∂(β2,ℑβ2))
< Λ(δ(∂(β2,ℑβ2))),

which is a contradiction. Thus, if M(β1, β2) = ∂(β1, β2),
we get

0 < δ(∂(β2,ℑβ2))
≤ δ(H(ℑβ1,ℑβ2))
≤ Λ(δ(∂(β1, β2)))−Υ(∂(β1, β2))

< Λ(δ(∂(β1, β2))). (11)

For ϱ1 > 1 by Lemma II.1, then there exists β3 ∈ ℑβ2 s.t.

0 < δ(∂(β2, β3)) < ϱ1δ(∂(β2,ℑβ2)). (12)

From (11) and (12), we obtain

0 < ∂(β2, β3) < ϱ1Λ(δ(∂(β2,ℑβ2)))
= Λ(ϱΛ(δ(∂(β0, β1)))). (13)

By applying Λ in (13), we have

0 < Λ(δ(∂(β2, β3))) < Λ2(ϱΛ(δ(∂(β0, β1)))). (14)

By continuing this procedure and since ℑ is ⊥-preserving,
form the O-sequence {βε} ∈ £ s.t. βε+1 ̸= βε ∈ ℑβε. Since
ℑ is a C.O. (φ,ψ)-admissible mapping, we obtain

φ(βε) ≥ 1 and ψ(βε) ≥ 1, ∀ ε ∈ N.

This implies that

φ(βε)ψ(βε+1) ≥ 1,

and

0 < δ(∂(βε, βε+1))Λ
ε(ϱΛ(δ(∂(β0, β1)))), ∀ N ∪ {0}.

Let o, ε ∈ N s.t. o > ε. By the triangle inequality, we have

δ(∂(βo, βε)) ≤
o−1∑
ℓ=ε

δ(∂(βℓ, βℓ+1))

≤
o−1∑
ℓ=ε

Λℓ−1(ϱΛ(δ(∂(β0, β1)))).

From the Λ properties, this implies that
lim

ε,o→∞
δ(∂(βo, βε)) = 0 and from ⊥-continuity of δ,

we obtain lim
ε,o→∞

∂(βo, βε) = 0. Thus {βε} is an O-Cauchy

sequence in (£,⊥) s.t. βε → β as ε→ ∞, ∀ ε ∈ N.
For all ε ∈ N, assume that axiom (2) hold. Hence
φ(βε)ψ(ζ) ≥ 1. From (1), we have

δ(H(ℑβε,ℑζ)) ≤ Λ(δ(M(βε, ζ)))−Υ(M(βε, ζ)), (15)

for all ε ∈ N. Where

max

{
∂(βε, ζ), ∂(ℑβε, βε), ∂(ζ,ℑζ),

1

2
[∂(βε,ℑζ) + ∂(ζ,ℑβε)]

}
.

Assume that ∂(ζ,ℑζ) ̸= 0. Let ϵ = ∂(ζ,ℑζ)
2 .

Since βε → ζ as ε→ ∞, we can find ς1 ∈ N s.t.

∂(ζ, βε) <
∂(ζ,ℑζ)

2
, ∀ ε ≥ ς1. (16)

Also, we get

∂(βε,ℑζ) ≤ ∂(βε, ζ) + ∂(ζ,ℑζ)

<
∂(ζ,ℑζ)

2
+ ∂(ζ,ℑζ)

=
3∂(ζ,ℑζ)

2
, ∀ ε ≥ ς2. (17)

Furthermore, we obtain

∂(βε,ℑβε) ≤ ∂(βε, βε+1) <
∂(ζ,ℑζ)

2
, ∀ ε ≥ ς3. (18)

Using (16) – (18), we have

M(βε, ζ) = max

{
∂(βε, ζ), ∂(ℑβε, βε), ∂(ζ,ℑζ),

1

2
[∂(βε,ℑζ) + ∂(ζ,ℑβε)]

}
= ∂(ζ,ℑζ), ∀ ε ≥ ς = {ς1, ς2, ς3}. (19)

For ε ≥ ς , from triangle inequality and equation (15) and
the hypothesis of Υ, we obtain

δ(∂(ζ,ℑζ)) ≤ δ(∂(ζ, βε+1)) + δ(H(ℑβε,ℑζ))
≤ δ(∂(ζ, βε+1)) + Λ(δ(M(βε, ζ)))

−Υ(M(βε, ζ))

≤ δ(∂(ζ, βε+1)) + Λ(δ(∂(ζ,ℑζ)))
−Υ(∂(ζ,ℑζ))

≤ δ(∂(ζ, βε+1)) + Λ(δ(∂(ζ,ℑζ))),

taking ε→ ∞ in the above inequality, we get

δ(∂(ζ,ℑζ)) ≤ Λ(δ(∂(ζ,ℑζ))) < δ(∂(ζ,ℑζ)),

which is a contradiction. Thus, we have ∂(ζ,ℑζ) = 0, that
is, ζ ∈ ℑζ. Hence ζ is a fixed point of ℑ.
To prove the uniqueness property of fixed point.
Let ζ∗ ∈ £ be another fixed point of ℑ. Then, we have
ℑε(ζ∗) = ζ∗ and ℑε(ζ) = ζ, ∀ ε ∈ N. By the choice of β0
in the first part of proof, we have

[β0⊥ζ and β0⊥ζ∗] or [ζ⊥β0 and ζ∗⊥β0].

Since ℑ is ⊥-preserving, we have

[ℑε(β0)⊥ℑε(ζ) and ℑε(β0)⊥ℑε(ζ∗)],
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or

[ℑε(ζ)⊥ℑε(β0) and ℑε(ζ∗)⊥ℑε(β0)], ∀ ε ∈ N.

Therefore, from (15), we have

δ(∂(ζ, ζ∗)) ≤ δ(H(ℑε(ζ),ℑε(ζ∗)))

≤ Λ(δ(M(ζ, ζ∗)))−Υ(M(ζ, ζ∗))

≤ Λ(δ(∂(ζ, ζ∗)))−Υ(∂(ζ, ζ∗))

≤ Λ(δ(∂(ζ, ζ∗)))

< δ(∂(ζ, ζ∗)).

Hence, δ(∂(ζ, ζ∗)) ≤ δ(H(ℑε(ζ),ℑε(ζ∗))) < δ(∂(ζ, ζ∗)),
which is a contradiction, unless ∂(ζ, ζ∗) = 0 =⇒ ζ = ζ∗.
Therefore, ℑ has a UFP.

Corollary 1. Let (£,⊥, ∂) be an orthogonal CMS and
ℑ : £ → CL(£). There exists four functions
φ,ψ : £ → R+

0 ,Λ ∈ Ξ, δ ∈ ∆ and Υ ∈ Π s.t.

β, ζ ∈ £ with β⊥ζ,H(ℑβ,ℑζ) > 0,

φ(β)ψ(ζ)δ(H(ℑβ,ℑζ)) ≤ Λ(δ(M(β, ζ)))−Υ(M(β, ζ)).

Assume that the following postulations hold:
1) ∃ β0 ∈ £, β1 ∈ ℑβ0 s.t.

φ(β0) ≥ 1 =⇒ ψ(ℑβ0) = ψ(β1) ≥ 1,

ψ(β0) ≥ 1 =⇒ φ(ℑβ0) = φ(β1) ≥ 1,

2) if {βε} is an O-sequence in £ with βε → β ∈ £
as ε→ ∞ and ψ(βε) ≥ 1, ∀ ε ∈ N, then ψ(β) ≥ 1,

3) ⊥-continuous,
4) ⊥-preserving,

then ℑ has a UFP.

Proof: Let φ(β)ψ(ζ) ≥ 1 for every β, ζ ∈ £.
Then by equation (4), we have:

δ(H(ℑβ,ℑζ)) ≤ φ(β)ψ(ζ)δ(H(ℑβ,ℑζ))
≤ Λ(δ(M(β, ζ)))−Υ(M(β, ζ)),

this provides that ℑ C.O. (φ,ψ)− (Λ, δ,Υ)-admissible mul-
tivalued mapping. Hence, So, by the proof of Theorem 2, we
reach the required result.

If we let Λ(ι) = δ(ι) = ι and Υ(ι) = (1−h)ι in Theorem
2, we derive the following corollary.

Corollary 2. Let (£,⊥, ∂) be an O-CMS and
ℑ : £ → CL(£). There exists four functions
φ,ψ : £ → R+

0 ,Λ ∈ Ξ, δ ∈ ∆ and Υ ∈ Π s.t.

β, ζ ∈ £ with β⊥ζ,H(ℑβ,ℑζ) > 0,

φ(β)ψ(ζ) ≥ 1 =⇒ δ(H(ℑβ,ℑζ)) ≤ hM(β, ζ),

for h ∈ [0, 1). Assume that the below axioms true:
1) ∃ β0 ∈ £, β1 ∈ ℑβ0 s.t.

φ(β0) ≥ 1 =⇒ ψ(ℑβ0) = ψ(β1) ≥ 1,

ψ(β0) ≥ 1 =⇒ φ(ℑβ0) = φ(β1) ≥ 1,

2) if {βε} is an O-sequence in £ with βε → β ∈ £
as ε→ ∞ and ψ(βε) ≥ 1, ∀ ε ∈ N, then ψ(β) ≥ 1,

3) ⊥-continuous,
4) ⊥-preserving,

then ℑ has a UFP.

Theorem 3. Let (£,⊥, ∂) be an orthogonal CMS and
ℑ : £ → CL(£) be a C.O.(φ,ψ)− (Λ, δ,Υ)-A.M.M of type
B. Suppose that the following assumptions hold:

1) for each β0 ∈ £, β1 ∈ ℑβ0 s.t.

φ(β0) ≥ 1 =⇒ ψ(ℑβ0) = ψ(β1) ≥ 1,

ψ(β0) ≥ 1 =⇒ φ(ℑβ0) = φ(β1) ≥ 1,

2) if {βε} is an O-sequence in £ with βε → β ∈ £ as
ε→ ∞ and ψ(βε) ≥ 1, ∀ ε ∈ N, then ψ(β) ≥ 1,

3) ⊥-continuous,
4) ⊥-preserving,

then ℑ has a UFP.

Proof: By similar way in Theorem 2, from β0 and
β1 ∈ ℑβ0 in condition (1), we have

φ(β0) ≥ 1 =⇒ ψ(ℑβ0) = ψ(β1) ≥ 1,

ψ(β0) ≥ 1 =⇒ φ(ℑβ0) = φ(β1) ≥ 1.

Therefore, φ(β0) ≥ 1 and ψ(β1) ≥ 1, equivalently,
φ(β0)ψ(β1) ≥ 1. If β0 = β1, we taking β1 ∈ F(ℑ) and
so the proof is obvious. Now, suppose that β0 ̸= β1 and
β1 ∈ ℑβ1 implies ∂(β1,ℑβ1) > 0. From (1), we obtain

0 < δ(∂(β1,ℑβ1))
≤ δ(H(ℑβ0,ℑβ1))
≤ Λ(δ(P(β0, β1)))−Υ(P(β0, β1)), (20)

where

P(β0, β1) = max

{
∂(β0, β1),

[1 + ∂(β0,ℑβ0)∂(β1,ℑβ1)]
∂(β0, β1) + 1

}
= max

{
∂(β0, β1),

[1 + ∂(β0, β1)∂(β1,ℑβ1)]
∂(β0, β1) + 1

}
= max

{
∂(β0, β1), ∂(β1,ℑβ1)

}
.

We will use the same procedure as in Theorem 2 to complete
the proof after the above pause.

Definition 15. Let (£,⊥, ∂) be an O-CMS and
ℑ : £ → CL(£). ℑ is called an orthogonal (φ,ψ−Λ, δ,Υ)-
Meir-Keeler-Khan multivalued mapping if there exists
Λ ∈ Ξ, δ ∈ ∆ and Υ ∈ Π and φ,ψ : [0,∞) → R+

0 s.t.

H(ℑβ,ℑζ) > 0, [φ(β)ψ(ζ) ≥ 1 =⇒
δ(H(ℑβ,ℑζ)) ≤ Λ(δ(N (β, ζ)))−Υ(N (β, ζ))], (21)

where

N (β, ζ) =
∂(β,ℑβ)∂(β,ℑζ) + ∂(ζ,ℑζ)∂(ζ,ℑβ)

∂(β,ℑζ) + ∂(ζ,ℑβ)
,

∀ β, ζ ∈ £ with β⊥ζ.

Now, we will state our results in this section.

Theorem 4. Let ℑ : £ → CL(£) be a C.O. (φ,ψ) −
(Λ, δ,Υ)-Meir-Keeler-Khan multivalued mapping on OMS
(£,⊥, ∂). Assume that the following axioms hold:
(1) there exists β0 ∈ £ and β1 ∈ ℑβ0 s.t.

φ(β0) ≥ 1 =⇒ ψ(ℑβ0) = β(β1) ≥ 1,

ψ(β0) ≥ 1 =⇒ φ(ℑβ0) = φ(β1) ≥ 1,
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(2) ⊥-continuous,
(3) ⊥-preserving,
then ℑ has a fixed point.

Proof: Since (£,⊥) is an O-set,

∃ β0 ∈ £ (∀ β ∈ £, β⊥β0) ∨ (∀ β ∈ £, β0⊥β).

It follows that β0⊥ℑ(β0) or ℑ(β0)⊥β0.
Let

β1 = ℑ(β0);β2 = ℑ(β1); . . . ;βε+1 = ℑ(βε), ∀ ε ∈ N.

By starting from β0 and β1 ∈ ℑβ0 with β0⊥β1 in
axioms (1), we have

φ(β0) ≥ 1 =⇒ ψ(ℑβ0) = ψ(β1) ≥ 1,

ψ(β0) ≥ 1 =⇒ φ(ℑβ0) = φ(β1) ≥ 1.

Therefore, φ(β0) ≥ 1 and ψ(β1) ≥ 1, equivalently,
φ(β0)ψ(β1) ≥ 1. If β0 = β1, we conclude that β1 ∈ F(ℑ)
and so the proof is completed. Now, taking β0 ̸= β1 and
β1 /∈ ℑβ1. From (21), we have β0 ∈ £ and β1 ∈ ℑβ0 s.t.

0 < ∂(β1,ℑβ1) ≤ δ(H(ℑβ0,ℑβ1))
≤ Λ(δ(N (β0, β1)))−Υ(N (β0, β1)),

(22)

where

N (β0, β1)

=
∂(β0,ℑβ0)∂(β0,ℑβ1) + ∂(β1,ℑβ1)∂(β1,ℑβ0)

∂(β0,ℑβ1) + ∂(β1,ℑβ0)
= ∂(β0, β1). (23)

From (22) and (23) and using the properties of Υ, we get

0 < δ(∂(β1,ℑβ1))
≤ Λ(δ(∂(β0, β1)))−Υ(∂(β0, β1))

< Λ(δ(∂(β0, β1))). (24)

For σ > 1, by Lemma II.1, there exists β2 ∈ ℑβ1 s.t.

0 < δ(∂(β1, β2)) < σδ(∂(β1,ℑβ1)). (25)

From (24) and (25), we get

0 < δ(∂(β1, β2)) < Λ(σΛ(δ(∂(β0, β1)))). (26)

Since ℑ is a cyclic (φ,ψ)-admissible mapping, from condi-
tion (1) and β2 ∈ ℑβ2, we have

φ(β1) ≥ 1 =⇒ ψ(ℑβ1) = ψ(β2) ≥ 1,

ψ(β1) ≥ 1 =⇒ φ(ℑβ1) = φ(β2) ≥ 1.

So, φ(β1) ≥ 1 and ψ(β2) ≥ 1.
Equivalently, φ(β1)ψ(β2) ≥ 1. If β2 ∈ ℑβ2, then
β2 ∈ F(ℑ). So, we assume that β2 /∈ ℑβ2,
that is ∂(β2,ℑβ2) > 0. From (21), we deduce

0 < δ(∂(β2,ℑβ2)) ≤ δ(H(ℑβ1,ℑβ2))
≤ Λ(δ(N (β1, β2)))−Υ(N (β1, β2)),

(27)

where

N (β1, β2)

=
∂(β1,ℑβ1)∂(β1,ℑβ2) + ∂(β2,ℑβ2)∂(β2,ℑβ1)

∂(β1,ℑβ2) + ∂(β2,ℑβ1)
= ∂(β1, β2). (28)

Using properties of Υ, we have

0 < δ(∂(β2,ℑβ2)) ≤ δ(H(ℑβ1,ℑβ2))
< Λ(δ(∂(β1, β2))). (29)

For σ1 > 1 by Lemma II.1, there exists β3 ∈ ℑβ2 s.t.

0 < δ(∂(β2, β3)) < σ1δ(∂(β2,ℑβ2)). (30)

From (29) and (30), we obtain

0 < δ(∂(β1, β2)) < Λ2(σΛ(δ(∂(β0, β1)))). (31)

By continuing in this way, we construct the O-sequence
{βε} ⊂ £ s.t. βε+1 ̸= βε ∈ ℑβε, again, since ℑ is a C.O.
(φ,ψ)-admissible mapping, we have

φ(βε) ≥ 1 and ψ(βε) ≥ 1, ∀ ε ∈ N.

This implies that

φ(βε)ψ(βε+1) ≥ 1,

0 < δ(∂(βε, βε+1)) < Λε(ϱΛ(δ(∂(β0, β1)))), ∀ N ∪ {0}.
(32)

Let o, ε ∈ N s.t. o > ε. By the triangle inequality, we get

δ(∂(βo, βε)) ≤
o−1∑
ℓ=ε

δ(∂(βℓ, βℓ+1))

≤
o−1∑
ℓ=ε

Λℓ−1(ϱΛ(δ(∂(β0, β1)))). (33)

Since Λ ∈ Ξ and δ is ⊥-continuous, we have

lim
ε,o→∞

∂(βo, βε) = 0.

Thus, {βε} is O-Cauchy sequence in (£,⊥, ∂). By the O-
completeness of (£,⊥, ∂), there exists β∗ ∈ £ s.t. βε → β∗

as ε→ ∞. Since ℑ is ⊥-continuous, we get

∂(β∗,ℑβ∗) = lim
ε→∞

∂(βε+1,ℑβ∗) ≤ lim
ε→∞

H(ℑβε,ℑβ∗) = 0.

Therefore, we have β∗ ∈ ℑβ∗.
To prove the uniqueness property of fixed point. Let ζ∗ ∈ £
be another fixed point of ℑ. Then, we have ℑε(ζ∗) = ζ∗ and
ℑε(ζ) = ζ, ∀ ε ∈ N. By the choice of β0 in the first part
of proof, we have

[β0⊥ζ and β0⊥ζ∗] or [ζ⊥β0 and ζ∗⊥β0].

Since ℑ is ⊥-preserving, we have

[ℑε(β0)⊥ℑε(ζ) and ℑε(β0)⊥ℑε(ζ∗)],

or

[ℑε(ζ)⊥ℑε(β0) and ℑε(ζ∗)⊥ℑε(β0)], ∀ ε ∈ N.

Therefore, from (15), we have

δ(∂(ζ, ζ∗)) ≤ δ(H(ℑε(ζ),ℑε(ζ∗)))

≤ Λ(δ(M(ζ, ζ∗)))−Υ(M(ζ, ζ∗))

≤ Λ(δ(∂(ζ, ζ∗)))−Υ(∂(ζ, ζ∗))

≤ Λ(δ(∂(ζ, ζ∗)))

< δ(∂(ζ, ζ∗)).
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Hence, δ(∂(ζ, ζ∗)) ≤ δ(H(ℑε(ζ),ℑε(ζ∗))) < δ(∂(ζ, ζ∗)),
which is a contradiction, unless ∂(ζ, ζ∗) = 0 =⇒ ζ = ζ∗.
Therefore, ℑ has a UFP.

Example 8. Let £ = R+
0 and ∂ : £×£ → R+

0 be defined
by ∂(β, ζ) = |β − ζ| for all β, ζ ∈ £ with β⊥ζ. Define a
relation ⊥ on £ by

β⊥ζ ⇐⇒ βζ ∈ {β, ζ} ⊆ £.

Thus, (£,⊥, ∂) is an OCMS.
Define ℑ : £ → £ and φ,ψ : £ → R+

0 by

ℑβ =

{
β
3 , if β ∈ [0, 1],

3β, if β ∈ (1,∞).

φ(β) =

{
β+5
2 , if β ∈ [0, 1],

0, if β ∈ (1,∞).

ψ(β) =

{
β+8
3 , if β ∈ [0, 1],

0, if β ∈ (1,∞).

Now, we prove that the existence of fixed point of the Theorem
2 of ℑ. Firstly, we want to show that ℑ is a C.O. (φ,ψ)-
admissible mapping.
For β, ζ ∈ £, we have

φ(β) ≥ 1 =⇒ β ∈ [0, 1]

=⇒ ψ(ℑβ) = ψ(
β

3
) =

β + 24

9
≥ 1,

and

ψ(β) ≥ 1 =⇒ β ∈ [0, 1]

=⇒ φ(ℑβ) = ψ(
β

3
) =

β + 15

6
≥ 1.

Next, we prove that ℑ is a C.O. (φ,ψ−Λ, δ,Υ)-multivalued
contractive mapping. Define functions Λ,Υ : R+

0 → R+
0 by

Λ(γ) =
8

3
γ, δ(γ) = γ and Υ(γ) =

3

11
γ,∀ γ ∈ R+

0 .

If {βε} is an O-sequence in £ s.t.ψ(βε) ≥ 1 and βε → β
as ε→ ∞. So, βε ∈ [0, 1]. Hence, i.e., ψ(β) ≥ 1.
Let φ(β)ψ(β) ≥ 1. Then β, ζ ∈ [0, 1] and δ(γ) = γ.
Therefore, we have

δ(H(ℑβ,ℑζ)) = 1

3
|β − ζ|

≤ 8

11
|β − ζ|

=
8

11
∂(β, ζ)

≤ 8

11
M(β, ζ)

=
8

3
(
3

11
M(β, ζ))−Υ(M(β, ζ))

= Λ(δ(M(β, ζ)))−Υ(M(β, ζ)).

So, all the axioms of Theorem 2 hold, which imply that
ℑ has fixed point.

IV. APPLICATION TO FRACTIONAL DIFFERENTIAL
EQUATIONS

Let ∆ = {w ∈ C0,1,w(c) > 0 ∀ c ∈ [0, 1]}.
Define an orthogonal relation ⊥ on ∆ as follows:

q⊥ς ⇐⇒ q(c)ς(c) ≥ q(c) or q(c)ς(c) ≥ ς(c), ∀ c ∈ [0, 1].

Let C0,1 be the space of continuous functions
ω : [0, 1] → (−∞,∞). Define the metric
∂ : C0,1 × C0,1 → [0,∞) by

∂(q, ς) = ||q− ς||∞ = max
c∈[0,1]

|q(c)− ς(c)|,

∀ q, ς ∈ C0,1 with q⊥ς . Then the space (C0,1,⊥, ∂) is an
O-complete metric space. Let f : C0,1 × C0,1 → [0,∞) be a
mapping defined by

f(q, ς) = e||q+ς||∞ ,

for q, ς ∈ C0,1. Let K1 : [0, 1] × (−∞,∞) → (−∞,∞)
be a ⊥-continuous mapping. We will investigate the Caputo
fractional differential equations

CDβq(c) = K1(c, q(c)) (34)

with boundary conditions

q(0) = 0, Iq(1) = q
′
(0).

Here CDβ denotes the CFD of order β defined by

CDβK1(c) =
1

Γ(π − β)

∫ c

0

(c− η)π−β−1Kπ
1 (η)∂η,

where π − 1 < β < π and π = [β] + 1, and IβK1 is given
by

IβK1(c) =
1

Γ(β)

∫ c

0

(c− η)β−1K1(η)∂η, with β > 0.

Then equation (34) can be modified to

q(c) =
1

Γ(β)

∫ c

0

(c− η)β−1K1(η, q(η))∂η

+
2c

Γ(β)

∫ 1

0

∫ η

0

(η − u)β−1K1(u, q(u))∂u∂η.

Now, we show that R is ⊥-preserving. For each q, ς ∈ C0,1
with q⊥ς and c ∈ [0, 1], we have

R(q(c)) =
1

Γ(β)

∫ c

0

(c− η)β−1K1(η, q(η))∂η

+
2c

Γ(β)

∫ 1

0

∫ η

0

(η − u)β−1K1(u, q(u))∂u∂η ≥ 1.

Accordingly, we have [R(q(c))][R(ς(c))] ≥ R(q(c)), and thus
R(q(c))⊥R(ς(c)). Then, R is ⊥-preserving.

Theorem IV.1. Equation (34) admits a solution in C0,1
provided that:
(I) ∃ ∂(q, ς) > 0 such that for all q, ς ∈ C0,1 with q⊥ς ,

we have

K1(η, q(η))−K1(η, ς(η))

≤ e−∂(q,ς)Γ(β + 1)

4δ
|q(η)− ς(η)|

(δ = min{f(q, ς)|q, ς ∈ C0,1}),
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(II) ∃ q0 ∈ C0,1 such that for all c ∈ [0, 1], we have

q0(c) ≤
1

Γ(β)

∫ c

0

(c− η)β−1K1(η, q0(η))∂η

+
2c

Γ(β)

∫ 1

0

∫ η

0

(η − u)β−1K1(u, q0(u))∂u∂η.

Proof: According to the newly introduced notations,
we define the mapping R : C0,1 → C0,1 by

R(q(c)) =
1

Γ(β)

∫ c

0

(c− η)β−1K1(η, q(η))∂η

+
2c

Γ(β)

∫ 1

0

∫ η

0

(η − u)β−1K1(u, q(u))∂u∂η.

By (II) ∃ q0 ∈ C0,1 such that qπ = Rπ(q0). The ⊥-continuity
of the mapping K1 leads to the ⊥-continuity of the mapping
R on C0,1. It is easy to verify the assumptions of Theorem
2. Let us verify the contractive conditions of Theorem 2.

|R(q(c))− R(ς(c))|

=

∣∣∣∣ 1

Γ(β)

∫ c

0

(c− η)β−1K1(η, q(η))∂η

+
2c

Γ(β)

∫ 1

0

∫ η

0

(η − u)β−1K1(u, q(u))∂u∂η

− 1

Γ(β)

∫ c

0

(c− η)β−1K1(η, ς(η))∂η

− 2c

Γ(β)

∫ 1

0

∫ η

0

(η − u)β−1K1(u, ς(u))∂u∂η

∣∣∣∣
≤
∣∣∣∣( 1

Γ(β)

∫ c

0

(c− η)β−1K1(η, q(η))

− 1

Γ(β)

∫ c

0

(c− η)β−1K1(η, ς(η))

)
∂η

∣∣∣∣
+

∣∣∣∣ ∫ 1

0

∫ η

0

(
2

Γ(β)
(η − u)β−1K1(u, q(u))

− 2

Γ(β)
(η − u)β−1K1(u, ς(u))

)
∂u∂η

∣∣∣∣
≤ 1

Γ(β)

e−∂(q,ς)Γ(β + 1)

4δ

∫ c

0

(c− η)β−1(q(η)− ς(η))∂η

+
2

Γ(β)

e−∂(q,ς)Γ(β + 1)

4δ∫ 1

0

∫ η

0

(η − u)β−1(ς(η)− q(η))∂u∂η

≤ 1

Γ(β)

e−∂(q,ς)Γ(β + 1)

4δ
∂(q, ς)

∫ c

0

(c− η)β−1∂η

+
2

Γ(β)

e−∂(q,ς)Γ(β)Γ(β + 1)

4δΓ(s)Γ(β + 1)
∂(ς, q)∫ 1

0

∫ η

0

(η − u)β−1∂u∂η

≤ e−∂(q,ς)Γ(β)Γ(β + 1)

4δΓ(β)Γ(β + 1)
∂(q, ς)

+ 2e−∂(q,ς)B(β + 1, 1)
Γ(β)Γ(β + 1)

4δΓ(β)Γ(β + 1)
∂(q, ς)

≤ e−∂(q,ς)

4δ
∂(q, ς) +

e−∂(q,ς)

2δ
∂(q, ς)

<
e−∂(q,ς)

δ
∂(q, ς).

Define the mapping Λ(δ(∂(q, ς))) = ln(∂(q, ς)) and
Υ(∂(q, ς)) = ln(e−∂(q,ς)) for q, ς ∈ C0,1. Then the last
inequality can be written as

δ(∂(R(q),R(ς))) ≤ Λ(δ(∂(q, ς)))−Υ(∂(q, ς)).

By Theorem 2, the self-mapping R admits a fixed point, and
hence equation (34) has a solution.

V. CONCLUSION

In this paper, we proved fixed point theorems on O-
complete metric space using C.O. (φ,ψ) − (Λ, δ,Υ)-
admissible multivalued mapping. Furthermore, we presented
example to strengthen our main results. Also, we provided
an application to the fractional differential equations.
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