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Fixed Point Theorem for Orthogonal (varphi,
psi1)-(Lambda, delta, Upsilon)-Admissible
Multivalued Contractive Mapping in Orthogonal
Metric Spaces

Gunasekaran Nallaselli and Arul Joseph Gnanaprakasam*

Abstract—In the current research, we represent a novel class
of multivalued contractive mappings that are cyclic orthogonal
(¢,%) — (A, 6, T)-admissible. In the framework of O-complete
metric spaces, we establish the fixed point results for these
new cyclic orthogonal (¢, %) — (A, §, T)-admissible contractive
mappings.

Index Terms—cyclic (,)-admissible mapping, cyclic or-
thogonal (¢, ¢)-admissible mapping, cyclic (¢, ) — (A,6,Y)-
admissible multivalued mapping, cyclic orthogonal (o,) —
(A, 06, T)-admissible multivalued mapping, fixed point, orthog-
onal metric space.

I. INTRODUCTION

ANY years ago, various fixed point findings were

obtained in the context of metric spaces. If (X,d)
is a complete metric space (abbreviated CMS) and f :
X — X is a contraction mapping (i.e.,d(f(x), f(y)) <
ad(z,y), V z,y € X, where 0 < o« < 1), then f has
a unique fixed point (abbreviated UFP). First, Kirk et al.
[8]] introduced the concept of cyclic contraction in the fixed
point theory. There has been a lot of research done on the
fixed points of multi-valued functions. A point x is said
to be a fixed point of a single-valued mapping f (multi-
valued mapping F) if f(z) = x(z € F(x)). Nadler [1]
examined the convergence of a sequence of the Banach
contraction multivalued fixed point results of a convergent
of multivalued contraction mappings of a CMS X into the
nonempty CL(X) in 1969. In 2014, Ali et al. [2] introduced
the concept of («, 1), &)-contractive multivalued mappings
and extended the notion of o — 1)-contractive mappings to
closed valued multi-functions, as well as providing fixed-
point theorems for (a1, &)-contractive multivalued map-
pings in CMS’s. Alizadeh et al. [3] introduced the concept
of cyclic («, 8) — (¢, ¢)-contractive mappings, and cyclic
rational weak o— 3—1p-contraction mappings. In the situation
of CMS’s, they demonstrated some new fixed point results for
such mappings. Hussain et al. [4] developed some fixed point
theorems for multi and single-valued mappings via a — -
contractive requirements in CMS in 2014. Samet et al. [5]
developed the ideas of o — v-contractive and a-admissible
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mappings in CMS’s in 2012 and established different fixed
point theorems for such mappings. Others have achieved
significant results in this prominent field recently, more
details see ([6], [7], [Ol, [10], [LI]).

Gordji et al. [12]] invented the concept of orthogonal
sets and metric spaces in 2017. They also established the
existence and uniqueness of fixed points for mappings on
a generalized orthogonal metric space (shortly, OMS). Fol-
lowing that, several authors proved many existing fixed point
theorems in various metric spaces (for example, [13]] - [21]).

In this paper, we combine the ideas of cyclic (p,)) —
(A, 0, T)-admissible multivalued mapping(shortly, A.M.M.)
and orthogonal concept of metric space and prove a fixed
point theorem in these cyclic orthogonal (¢,%) — (A, d,Y)-
admissible multivalued contraction mappings.

II. PRELIMINARIES

Several results in the present context is listed below.
Throughout this paper, we denote N and R™ by the set of
all positive integers and real numbers, R by (—oo, +00) and
R¢ by [0,00).

Definition 1. [5] Let S: £ — £ and ¢ : £ x £ — RJ be
Sfunctions. S is called p-admissible when 3,( € £ such that
(s.t.) 9(B,¢) 21 = ¢(38,3¢) = L

Definition 2. [3] Let ¢ : £ — CL(£) and p,v : £ - R*
be two functions.  is said to be a cyclic (p,1))-admissible
mapping if

(1) o(B) > 1 for some f € £ = P(IP) > 1,
(2) ¥(B) =1 for some € £ = o(3B) > 1.

Definition 3. /3] Let (£,0) be a CMS and S : £ — £ be a
cyclic (p,1)-admissible mapping. We say that S is a cyclic
(¢, ) — (A, T)-contractive mapping if for all 5, € £,

P(B)y(¢) =1
= A(O(SB,3¢)) < A(9(B,¢)) — T (9(B, <)),

where A : R$ — R is increasing and continuous function
and Y : R§ — R is a lower semi-continuous function with
T()=0 = ¢=0.

Theorem 1. [3] Let (£,0) be a CMS and S : £ — £
be a (p,v) — (A, Y)-admissible mapping. Assume that the
following axioms hold:

(1) there exists By € £ s.t. o(Bo) > 1 and ¥(By) > 1,

(2) S is continuous, or
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(3) if {B:} is a sequence in £ s.t. . — [ and
Y(B:) > 1, Ve €N, then ¥(8) > 1,

then S has a fixed point. Moreover, if o(8) > 1 and

() > 1,V B,( € F(S), then S has a UFP.

Definition 4. [2|] The family A of all functions
d: Rg — R+ satisfies the properties:

(1) 6 is continuous;

(2) 6 is nondereasing on R*;

(3) 6(0) =0 and 6(+) >0, V¢ € (0,00);
(4) ¢ is sub additive.

Lemma IL1. /2] Let (£, 0) be a metric space, let § € A and
& € CL(£). Suppose there exists 5 € £ s.t. 6(0(5,S)) >0
Then, there exists ( € S s.t.

6(0(8,¢)) < 06(0(8,3)),
where o > 1.

Definition 5. [I2]] Let £ # () and define a binary relation
1 C £ x £if L satisfy:

3506"67 (Vﬂef,ﬁlﬁo) or (Vﬂ€£,ﬁoj_ﬂ),

then, the pair (£,1) is known as orthogonal set (briefly
O-set).

Example 1. [I2] Let £ = [0,1). Suppose BLC if 5 < (.
(£,1) is an O-set.

Example 2. [I2] Let (£,0) be a metric space and

: £ = £ be a Picard operator, i.e., S has a UFP 3* € £
and hm 3¢(B) = 8%, V ¢ € £. We define the binary relation

J.onfby(l.ﬂif

lim 9(3,3°

E—00

Then, (£,1) is an O-set.

(€)) =0.

Example 3. Suppose that M(e) is the set of all € xe matrices
and Q is an invertible matrix. Define the relation 1 on M(e)
by KLE <= 3 £ € M(e) : K£ = E. It is easy to seen
that Q1E, ¥V £ € M(e).

Definition 6. [[[2] Let (£, L) be an O-set. A sequence {5.}
is called an orthogonal sequence (briefly, O-sequence) if

( Ve S N, 65+1L[35).

Definition 7. [I2]] Let (£,1,0) be an OMS. Then, a
mapping S : £ — £ is said to be orthogonally continuous
(or L-continuous) in § € £ if for each O-sequence {f:}
in £ with B = 8 as n — oo, we have (B:) — S(B) as
e — oo. Also,  is said to be 1-continuous on £ if & is
1 -continuous in each 3 € £.

(VeeN,BLlBeyr) or

Example 4. The continuity implies orthogonal continuity but
the converse is not true. If S : R — R is defined by

S(B) = 8], V B € R and the relation L C RXR is defined
by
. AN
ﬂLC lfﬁ?C €(1+3,1+ 3>,1620rﬁ20.

Then, ¥ is L-continuous while ¥ is discontinuous on R.

Example 5. Let £ = R. Suppose that 51 if and only if
B=0o0r0+#C¢e€ Q. It is easy to seen that (£, 1) is an
O-set. Define S : £ — £ by

fBeQ,

< _ L,
“w)_{o, if € Q.

Therefore, S is L-continuous at all rational numbers.

Definition 8. [I2)] Let (£, L,0) be an OMS. Then, £ is said
to be orthogonal complete (briefly, O-complete) if every O-
Cauchy sequence is convergent.

Example 6. The completeness of the metric space implies
O-completeness, but the converse is not true. We know that
£ = 1[0,1) with Euclidean metric O is not a CMS. If we
define the relation | C £ x £ by f1{ <= < (< % or
B =0, then (£,L1,0) is an O-complete.

Definition 9. [I2]] Let (£,L1) be an O-set. A mapping
S £ = £ is called L-preserving if SB1LS3C whenever
BLL Also S @ £ — £ is called weakly |-preserving if
(B)L3(Q) or I(C)LS(B) whenever SLC.

Example 7. Let £ = [0,1) and define a relation

Lc0,1)%[0,1) by
BLCIf BCe{B,¢} C[0,1).
Then, £ =1[0,1) is an O-set. Now, define a function

S: L CL(£) b

3(8) = { 5. 24,
o},

is a L-preserving mapping.

fpeQnd,
fpeQnt,

III. MAIN RESULTS

Now, we introduce the definition of a cyclic orthogonal
(¢, 0)—(A, 0, T)(abbreviated C.O.(p, ¥)—(A, d, T))-A MM
and prove a fixed point theorem on O-CMS.

Definition 10. Let S : £ — £ be a a self-mapping and
a function ¢ : £ x £ — R§. S is called orthogonal -
admissible when if 8,( € £ with 81 s.t. p(58,¢) > 1 then
we have o(S6,3¢) > 1.

Definition 11. Ler ¢ : £ — CL(£) be a mapping and
0, £ = RT be two functions. S is said to be a cyclic
orthogonal (,)-admissible mappingping if ¥V /3 with 313
(1) o(B) > 1 for some B € £ = (IP) > 1,
(2) ¥(B) > 1 for some € £ = »(SP) > L.

Definition 12. Let (£,0) be an O-CMS and S : £ — £ be
a C.0. (p,)-admissible mapping. We say that S is a C.O.
(p, ) — (A, T)-contractive mapping if ¥V 3,¢ € £ with SL¢

A(3B,3¢) > 0,0(B)y(¢) = 1
= AO(3B,3¢)) < A9(5,€)) — T(3(5,0)),
where A : RI — RJ is a continuous and increasing

Sfunction and T : RS‘ — RS’ is a lower semi-continuous
Sfunction with T(1) =0 = +=0.

Definition 13. Let (£, L,0) be an OMS and
S £ = CL(£) by cyclic (¢,v) admissible mapping. We
say that S is a C.O0.(p, ) — (A, 0, T)-A.M.M of type A if
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there exists o, : £ x £ > RI,A€E, € Aand YT € I
s.t. ¥ B,¢ € £ with 81C:

H(SIB,3¢) >0, ¢(B)(¢) > 1

= 0(H(SB,S¢)) < A(6(M(B,())) — T(M(B,()),
(D
where
—max{0(5.¢ 0(6.90),
L B
L 1005.90) + (¢ 5)1}.

Definition 14. Let (£, L, 0) be an OMS. The mapping

S £ —= CL(L) is said to be a C.0. (p,v)- A.M.M of type
B if there exists ¢, 1 £ X £ — R0+,A € =,0 € A and
TellstVp, (et with BL(:

H(SB,SC) > 0,0(8)Y(¢) > 1

= S(H(3B,3¢)) < AG(P(B,())) = T(P(5,¢) ()

where

P(3,¢) = max{aw,o,

[1+9(8,38)]0(¢, C) }
9(B.¢)+1
Theorem 2. Let (£, L,0) be an orthogonal CMS and
S: £ — CL(L) by C.O.(p,¢) — (A, 0, T)-AMM of
type A. Assume that the following postulations hold:
1) there exits By € £ and 51 € ISPy with [y LS s.t.

e(Bo) =21 = ¥(Sho) =¥(p1) = 1,

Y(Bo) 21 = ¢(Sho) =¢(B1) = 1,

2) if {Bc} is an O-sequence in £ with 3. — [ as
B—o0and () >1, Ve €N, then p(5) > 1

3) L-continuous,
4) | -preserving,

then S has a UFP.
Proof: Since (£, 1) is an O-set,

3boe £ (VBe L, fLBy) vV (VBEL Bolp).

It follows that 8y L3(By) or I(Bo)LSo.
Let

B =(Bo); B2 = (B1); -3 Ber1 = I(Be), VeeN.

By starting from Sy and 51 € ISPy with By LS in
axioms (1), we have

e(Bo) 21 = ¥(Sho) = ¢(B1) =
Y(Bo) 21 = ¢(Sho) = w(f1) 21

Therefore, ¢©(By) > 1 and 9(5;) > 1, equivalently,

©(Bo)¥(B1) > 1. If By = (1, we conclude that 8; € F(S)
and so the proof is completed. Now, taking 5y # (1 and

B1 ¢ SB1. From (), we have
6(0(B1,Sp1))

0<
< 0(H(SBo, Sp1))
<

AB(M(Bo, 1)) — T(M(Bo, b)), 3)

where

M(Boy B) = ax{a(ﬁoﬁﬁaa(ﬁo,sﬁo)’a(ﬁl,i?ﬂl%

[0(Bo, IB1) + OB, %ﬁo)}}

N | =

9(Bo, B1),0(Bo, B1), (81, SP1),

= Imax

—N

[awo,sﬁl)]}

DN | =

8(60751) (517%61)7

| |
f—/h\

0 (ﬁo,ﬂ1)+3(ﬁ1,%51)]}

l\')\»—l

:maX{a(ﬂOvﬁl)aa(ﬂlvgﬁl)}' (4)
From (@) and (@) and by using the properties of T, we get
0<d6(9(B1,S61))

< A(é(max{ﬁ(ﬂoﬁl)’whSﬂl)}))

-1 (max{otm. o0 00,900} ). ©

Assume that max{@(ﬂo,ﬂl),a(ﬁhgﬂﬂ} = 0(61,351),

then we obtain

0 < d(0(B1,361)) < A(6(0(B1,861))) —

A(6(0(B1, 1)),
which is a contradiction. Thus
max{@(ﬁo,ﬁl),a(ﬁl, %51)} = 9(fBo, B1)-
From (5), we obtain

0 < 6(0(81,381))

T(9(B1,3P1))

< A(6(0(Bo, 1)) — T (8(Bo, £1))

A(6(0(Bo, B1)))- (6)
For ¢ > 1 by Lemma [IL1] there exists 8, € 3 s.t.
0 < 6(0(B1,P2)) < 06(9(B1,3B1))- (7
From (6) and (7), we get
0 < 6(0(B1,B2)) < oA (6(9(Bo, B1)))- (®)

By applying A in (8), we have
0 < A(6(8(B1,82))) < A(eA(6(0(Bo, B1))))-  (9)
A(eA(6(0(bo, 1))))

R CICIEN))
Then p; > 1. From the Definition 11, condition (1)
and o € 51, we have

p(B1) > 1 = Y(SB1) =¢(B2) > 1,

Y(B1) > 1 = p(SP1) = ¢(B2) > 1.

So, ¢(B1) > 1, and ¥(B2) > 1. Equivalently,
e(B)Y(B2) > 1. If By € IPs, then By € F(S). So, we
assume that 8o ¢ SS32. From (), we conclude that
0 < 6(0(B2,362))
< O(H(SPB1,SP2))
< AQBM(Br, B2))) — T(M

(B1,52)), (10)
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where

M(Br. o) = max{awl,ﬁz), OB, 3B1), (B, Sa),
951, 382) + O, sm}

DN | =

_ max{awl,ffz), O(B, o), (o, SB),

N | =

o6, %)}
8(/817 62)5 8(527 sﬁQ)a

= Imax

—N

N | =

[0(B1, B2) + 3(52,352)]}
= max{a(ﬂl,ﬁz), (B2, 362)}.

If M(51,B2) = 9(B2,352) and by using properties of T,
we have

0 < 0(9(B2,3P2)) < A(6(0(B2,3B2))) —

A(6(9(B2, 3p2))),

which is a contradiction. Thus, if M (51, 82) = (51, B2),
we get

T(0(B2, 3p2))

0 < 6(9(B2,3p2))
< 6(H(SB1,3B2))
A(O(O(B1, B2))) —
A(6(9(B1, B2)))- (11)

For 91 > 1 by Lemma [[L.T] then there exists 85 € I3 s.t.

Y(9(B1, B2))

0 < 86(0(B2,B3)) < 010(9(B2,P2))- (12)
From (T1)) and (12), we obtain
0 < 9(B2,B3) < 01A(6(9(B2,32)))
= A(oA(6(0(Bo, B1))))- (13)

By applying A in (13), we have
0 < A(3(0(B2, B3))) < A?(eA(3(9(Bo, 1))))-

By continuing this procedure and since < is L-preserving,
form the O-sequence {S:} € £ s.t. Be11 # B € 3PB.. Since
S is a C.0. (p,1)-admissible mapping, we obtain

0(B) > 1 and ¥(B.) > 1, Ve € N.

(14)

This implies that

@(ﬁs)w(ﬁa+1) > 1,

and

0 < 6(9(Bz, Bet1)) A" (eA(6(0(Bo, £1)))), ¥V NU{0}.

Let 0, € N s.t. 0 > €. By the triangle inequality, we have

5((Bos Be)) <Za

<ZA[ L (oA(6

(Be, Beg1))

9(Bo, B1))))-

From the A

lim_8((B,. 5.))

we obtain lim 9(B,, f:) = 0. Thus {f.} is an O-Cauchy
£,0—00

sequence in (£, 1) s.t. B > fase =00,V e €N
For all ¢ € N, assume that axiom (2) hold. Hence

©(Be)(¢) > 1. From (I)), we have
S(H(SB:, 3¢)) < A(6(M(Be, €))) — T (M
for all £ € N. Where

max{a(ﬁs,C),a(%ﬁs,ﬂs)ﬁ(@%@a

properties,  this  implies  that
= 0 and from _L-continuity of &,

(B, ), (15)

L 0(5..5¢) + 9(¢. %‘Bs)]}-

Assume that 9(¢,S¢) # 0. Let e = M
Since 5. — ¢ as € — oo, Wecanﬁndgl €N s.t.

(¢, B:) < (4’2“0, Ve>a. (16)
Also, we get
8(B.,3C) < (fer C) + B(C, )
< 2639 1 (¢, 50)
= 38(42, %C), Ve> . 17)
Furthermore, we obtain
062 30:) < 06 o) < X5 vz ay
Using (T6) — (T8). we have
M(52€) = max{ 52,61, 03,52, (¢, 0).
510(6,30) + 0(¢, 35071}
=0(¢,3¢), Ve>¢={c,0,s} (19

For ¢ > ¢, from triangle inequality and equation (T3) and
the hypothesis of T, we obtain

3(9(¢,3C)) < 8(0(C, Bev1)) + 6(H(SB:, SC))

< 5(a(¢, ﬂgﬂ)) A(G(M(B:,€)))
T(M(BeC))

< 6(9(¢, ,6’8+1)) A(0(9(¢,3¢)))
T(9(¢,30))

<4(9 (C7ﬁs+1)) A(6(9(¢,3¢))),

taking € — oo in the above inequality, we get

5(9(¢, 3C)) < A(8(9(¢, 3¢))) < 6(0(¢,3¢)),

which is a contradiction. Thus, we have 9(¢, () = 0, that
is, ¢ € SC. Hence ( is a fixed point of .

To prove the uniqueness property of fixed point.

Let (* € £ be another fixed point of &. Then, we have
$°(¢*) = ¢* and 3°(¢) = ¢, ¥V e € N. By the choice of
in the first part of proof, we have

[Bo-L¢ and Bo L") or [(LBo and ¢*LpBo].
Since & is | -preserving, we have

[3°(B0) LS°(C) and 3°(Bo) L3°(¢)],
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or

[9°()L9%(Bo) and $°(C*) LS
Therefore, from (I3), we have
6(9(¢,¢7)) < O(H(S7(¢),3°(¢7)))

“(Bo)], Ve eN.

< ABM(CCT))) = T(M(C,¢T))

< A(S(9(¢,¢7))) = T((¢,¢7))

< A(6(0(¢,¢7)))

< 0(9(¢, ¢7))-
Hence, §(0(¢,¢")) < 6(H(S°(C), S°(C )) 5(9(¢,¢)),
which is a contradlctlon unless 9((,(*) =0 = (= ("
Therefore, & has a UFP. [ |

Corollary 1. Let (£, L,0) be an orthogonal CMS and
S £ = CL(L). There exists four functions
o £ —-RFAEE € Aand Y €1l sit.

B,¢ € £ with B1¢,H(SB,3¢) > 0,

(B)Y(C)6(H(SB,3C)) < A(6(M(B,())) — T (M
Assume that the following postulations hold:
1) 3 ﬂo € £, ﬁl S %60 S.1.

(Bo) =1 = P(SBo) =¥ (B1)

Y(Bo) 21 = p(SBo) = ¢(H1)

2) if {B:} is an O-sequence in £ with 5. — B €

as e = oo and Y(B:) > 1, V e €N, then ¥(53)
3) _L-continuous,
4) _L-preserving,
then § has a UFP.

Proof: Let o(8)1¥(¢) > 1 for every 8,¢ € £.
Then by equation @), we have:

S(H(38,30)) < e(B)()d(H (3B, 3())
< A(BM(B, () = T(M(B, (),

this provides that & C.O. (p, ) — (A, 6, T)-admissible mul-
tivalued mapping. Hence, So, by the proof of Theorem 2} we
reach the required result. ]

If we let A(t) = §(¢) = ¢ and Y(¢) = (1 —b)e in Theorem
we derive the following corollary.

Corollary 2. Let (£,1,0) be an O-CMS and
S £ — CL(L). There exists four functions
o, L —>RIANEZ,S€Aand Y €1l sit.

B,¢ € £ with L¢,H(SB,3¢) > 0,

(8,¢))-

£
>1

P(B)P(C) =21 = d(H(SB,3()) < hBM(B, (),

for b €10,1). Assume that the below axioms true:
1) 4 60 e £, ﬁl S %ﬂo S.1.

P(Bo) 21 = P(Sho) =9(B1) = 1

¥(Bo) 21 = »(SPo) = (1) 21
2) if {B} is an O-sequence in £ with B. — B € £
as e — 0o and Y(fe) > 1, Ve €N, then (5) > 1

3) _L-continuous,
4) | -preserving,

then § has a UFP.

Theorem 3. Let (£, 1,0) be an orthogonal CMS and
S: £ = CL(L) be a C.O.(p,¢) — (A, 0, T)-AMM of type
B. Suppose that the following assumptions hold:

1) for each By € £, 51 € IBy s.t.

(Bo) =1 = P(SBo) =¥ (B1)

Y(Bo) > 1 = »(Sho) = ¢(51)

2) if {B:} is an O-sequence in £ with 5. —

e —>ooand Y(B:) > 1,V e €N, then ¥(3)
3) _L-continuous,
4) 1 -preserving,
then & has a UFP.

>1
>1

€ £ as
>1

Proof: By similar way in Theorem |2} from Sy and
51 € By in condition (1), we have

©(Bo) =21 = ¥(IBo) = ¥(B1) >
Y(Bo) > 1 = p(SBo) = ¢(B1) > 1

Therefore, ¢(By) > 1 and v¥(51) > 1, equivalently,

©(Bo)(B1) = 1. If By = Bi1, we taking f; € F(J) and
so the proof is obvious. Now, suppose that 5, # (1 and

b1 € 61 implies 9(01,351) > 0. From (I)), we obtain
0<6(0(B1,361))
< 6(H(SBo,SB1))

< A(B(P(Bo, £1))) = T(P(Bo, £1)), (20)

where

PG, fr) = max{awo,ﬁl),

[14 9(Bo, SBo)0(B1, SB1)] }
9(Bo, B1) +1

[1+9(Bo, B1)0(B1, SB1)] }
9(Bo, 1) +1

= maX{a(BOaﬁl)7a(ﬂl7 %ﬁl)}

= max{a(60751)7

We will use the same procedure as in Theorem 2] to complete
the proof after the above pause. ]

Definition 15. Let (£ 1,0) be an O-CMS and

S: £ = CL(L). S is called an orthogonal (o, —A, 5, T)-
Meir-Keeler-Khan multivalued mapping if there exists
A= 6e€Aand Y €1l and p,v : [0,00) = R s.t.

H(SP,3C) > 0, [p(B)v(C) =

1 =

S(H(SB,5¢)) < ABIN(B,0))) — TN (B,0)], (1)
where
N(B.¢) = QB3B8 Q) +0(¢, 3O, 35)

V 8,¢ € £ with 81C.
Now, we will state our results in this section.

Theorem 4. Let & : £ — CL(£) be a C.O. (p,¢) —
(A, 0, T)-Meir-Keeler-Khan multivalued mapping on OMS
(£,L,0). Assume that the following axioms hold:

(1) there exists By € £ and (1 € SBo s.t.

©(Bo) =1 = ¥(SPo) = B(B1)

1’
Y(Bo) > 1 = p(Sho) = p(B1) > 1

2
>

)
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(2) L-continuous,
(3) L-preserving,
then ¥ has a fixed point.
Proof: Since (£, L) is an O-set,
3 ﬁ() et (V ﬁ S £, BJ_ﬁ()) \Y (V ﬁ S .,E, ﬂ()J_ﬁ)
It follows that By LS(By) or S(Bo)-LSo.
Let
Bi=S(Bo); B2 =S(B1);--; Ber1 = S(Be), Ve eN.
By starting from [y and B; € S8 with Sy LS5 in
axioms (1), we have
©(Bo) =21 = ¥(IPo)
P(Bo) =21 = (Sbo) = p(B1) > 1

Therefore, ¢(8y) > 1 and (5;) > 1, equivalently,

©(Bo)¥(B1) > 1. If By = B1, we conclude that 8; € F(S)
and so the proof is completed. Now, taking 5y # (7 and

B1 ¢ SB1. From 1), we have 3y € £ and 51 € S0y s.t.
0 < 9(B1,3B1) < I(H(SBo, Sb1))
A(S(N(Bo, 1)) = TV

=9(f1) > 1,

<ﬁ07 Bl))a
(22)

where

N(/B()vﬂl)
_ 0(Bo, 3P0)0(Bo, IP1) +
9(Bo,IP1) + 3@17350)

= 0(Bo, f1). (23)
From (22) and (23) and using the properties of T, we get

0 < 6(0(Br,3B1))

A(6(0(Bo, 1)) — L(9(bo, B1))

A(6(0(Bo, B1)))- (24)
For ¢ > 1, by Lemma there exists 8y € I3 s.t.
0 < 6(9(B1, B2)) < a6(0(Br, 3b1))- (25)
From (24) and (23), we get
0 <6(9(B1, B2)) < AMaA(8(8(Bo, B1))))-  (26)

Since S is a cyclic (¢, )-admissible mapping, from condi-

tion (1) and B2 € &B2, we have
e(B1) > 1 = P(Sh1)
Y(P1) =21 = o(Sb1)

So, ¢(f1) > 1 and ¥(B2) > 1.

Equivalently, o(81)1¥(82) > 1. If B3 € 3f, then

B2 € F(J). So, we assume that 8y ¢ 352,

that is 9(B2, 3B2) > 0. From 1), we deduce

0 < 6(9(B2,SB2)) < 6(H(SP1,SB2))
AN (B1, B2))) — TNV

= ¥(f2)

1,
= 90(52) 1

>
2

(B1,B2));
27)

where

N (B, B2)
_ 0(B1,361)0(B1,3P2) +
0(B1,3B2) +

(B2, IP2)0(B2, 3pb1)
0(B2,pP1)

= 9(f1, B2)- (28)

Using properties of T, we have

0 < 6(9(B2,SB2)) < 6(H(SB1, I62))

A(S(9(Br, B2)))- (29)
For o1 > 1 by Lemma [[I.T] there exists B3 € Sf; s.t.
0 < 6(9(B2,P3)) < 010(9(B2,3pB2))- (30)
From (29) and (30), we obtain
0 < 6(9(B1,B2)) < A*(eA(6(0(Bo, $1)))-  (BD)

By continuing in this way, we construct the O-sequence
{Bc} C £ st Beyy # Be € S8, again, since S is a C.O.
(¢, 1)-admissible mapping, we have

©(Be) > 1and ¥(B) > 1, Ve eN.

This implies that

@(Bs)w(ﬁaJrl) > 1,

0 < 0(0(Be, Pet1)) < A°(eA(6(9(Bo, 1)), ¥ NU{0}.
(32)

Let 0, € N s.t. 0 > €. By the triangle inequality, we get

(B, B-)) <Z6
<ZA€ LA (s

Since A € = and § is L-continuous, we have

lim 9(p,,B:) = 0.

€,0—00

Thus, {f.} is O-Cauchy sequence in (£, L,d). By the O-
completeness of (£, L, d), there exists §* € £ s.t. S — 5*
as ¢ — 0o. Since & is L -continuous, we get

O(5*,96") = Jim (B.11,96") < lim H(S6.,96") =0

Therefore, we have g* € 35*.

To prove the uniqueness property of fixed point. Let (* € £
be another fixed point of . Then, we have 3(¢*) = ¢* and
3¢(¢) = ¢, V e € N. By the choice of [y in the first part
of proof, we have

[BoL¢ and BoLC*] or [CLBy and (*LB].
Since & is L-preserving, we have
[S*(Bo) LS (¢) and 3°(By) L

or

B[v B@-l—l

9(Bo, B1))))- (33)

S,

[S°(Q)LSF(Bo) and I°(¢) L
Therefore, from @), we have
6(9(¢,¢7)) < O(H(S (

%6(/80)]5 VeeN.

< A(( (€, ¢)
SA(5(3(C,C*))) T(a(C,C*))
< A(B(0(¢,¢)))

< 6(9(¢,¢Y))
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Hence, 6(9(¢,¢")) < 0(H(3°(C), 3°(¢7))) < 6(9(¢,¢7))s
which is a contradiction, unless 9((,(*) =0 = (= (*.
Therefore, & has a UFP. [ |

Example 8. Let £ =R{ and 0 : £ x £ — R be defined

by 9(8,¢) = |B = (| for all B, € £ with BL(. Define a
relation 1 on £ by

BLC = B e{B,(} C £.

Thus, (£,L,0) is an OCMS.

Define S : £ — £ and o, : £—>R+ by
5, ifBe(01]
B — ) 3 ’
Jﬁ_{3& if B € (1,00).
S ifpelo
_ 2
@w>{0, if B € (1,00).
B+8
) 5 ifBelo],
W){o, i€ (1,00).

Now, we prove that the existence of fixed point of the Theorem
of . Firstly, we want to show that S is a C.0. (p,v)-
admissible mapping.

For B,¢ € £, we have

p(B) =21 = pel01]

— yep) =w(5) = 2,
and
B 21 = selnl
— w35 =p(5) =52 21

Next, we prove that S is a C.O. (p, 1 — A, §, Y)-multivalued
contractive mapping. Define functions A, Y : Ra' — RS’ by

8 3
A(y) = 3%5@) =7 and T(y) = TN RS

If {Bc} is an O-sequence in £ s.tp(Be) > 1 and B — B
as € = 00. So, B € [0,1]. Hence, i.e, ¥(3) > 1

Let p(B)6(8) > 1. Then B, € [0,1] and 6(7) = 7.
Therefore, we have

1
S(H(36,30)) = 516~ |
8
< HW — (|
- 205.0)
1Y
< SM(B.Q)

:8<f’1 M(B,Q)) ~ T(M(5,0))
(8.0))) -

3
A(O(M T(M(B,())-

So, all the axioms of Theorem [2] hold, which imply that
S has fixed point.

IV. APPLICATION TO FRACTIONAL DIFFERENTIAL
EQUATIONS

Let A ={w € Cp1,w(c) >0V ce[0,1]}.
Define an orthogonal relation L on A as follows:

a.Lc = q(c)(c) = a(e) or a(e)s(c) = <(c), V ¢ € 0, 1],

Let Cp,1 be the space of continuous functions
w : [0,1] = (—00,00). Define the metric
0: CO,l X C071 — [0700) by

- §(C)|,

V q,5 € Cyp1 with gqLls. Then the space (Co1,L,0) is an
O-complete metric space. Let f: Co1 X Co,1 — [0,00) be a
mapping defined by

f(q,¢) = ellatell>=,

for q,¢ € Cop1. Let K1 : [0,1] x (—00,00) — (—00,00)
be a | -continuous mapping. We will investigate the Caputo
fractional differential equations

“D7q(c) = Ki(e,q(c))

B) =1l =¢|lee =
(9,6) = |lg =< crg[gﬁ]lq(c)

(34)
with boundary conditions

9(0) = 0,Zq(1) = q (0).
Here D? denotes the CFD of order 3 defined by

1 ‘ T—B=1f T
m/O(C—W) g KT (n)on,

where 7 — 1 < B < 7 and 7 = [8] + 1, and ZPK; is given
by

C'DBICl(C) =

TPK.(c) = L/ (¢ —n)P~1K1(n)dn, with 8 > 0.
0

I(8)
Then equation (34) can be modified to

q<c>=%/c<c— 1K 1. 9(n) O
2c / / — )P (u, q(u))Oudn.

Now, we show that R is L-preserving. For each q,¢ € Co 1
with q_L¢ and ¢ € [0, 1], we have
1

R = 15 | (e = m)P=1 K (. a(m)

2¢

(8) /o /On(” = )77 1 (u, q(u))dudn > 1.
Accordingly, we have [R(q(¢))][R(s(c))] > R(g(c)), and thus
R(q(c))LR(s(c)). Then, R is L-preserving.

Theorem IV.1.
provided that:

(1) 3 9(a,¢) >

Equation (34) admits a solution in Cy

0 such that for all q,5 € Co1 with qLg,

we have
K1(n,a(n) = Ki(n,5(n))
—09(q,5)
< T D ) — o)

(6 = min{f(q,<)|q,s € Co.1}),
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(II) 3 qo € Coq such that for all ¢ € [0,1], we have
1 c
0le) < 575 | (€= K)o
2 [ [ v aotwpouin

Proof: According to the newly introduced notations,
we define the mapping R : Cp 1 — Cp,1 by

R(q(c»:ﬁ / (e = m)P1K (. a(m) O

// (1 — )11 (, 9()) .

By (D)3 qq € CO,l such that g, = R™(qo). The L-continuity
of the mapping Ky leads to the _L-continuity of the mapping
R on Cy,;. It is easy to verify the assumptions of Theorem
Let us verify the contractive conditions of Theorem

R(a(6)) - R(<(0)
\/ (e = 0K (1, ()

= / / (n— w11 (u, q(w))Oudn

—F—/ (e = m)" = K (.5 (n))

/ / — w7 (1,6 (u ))81181)‘

S‘(F(ﬁ) / (¢ = )P4 (1, ()
—1/C<c— 0 Kas(a) )0

AL

- —(n—u)ﬁ 1, (00) ) o

— w7 K (u,q(w))

I'(B)
—9(a,s) ¢
= r(lﬁ) — 4F6(B = /0 (¢ =m)" " (a(n) — <(n)on
92 ¢—9@ax) T(3+1)
i F(ﬂ 45
/0 o W)’ (s(n) — a(n))oudn
1 ¢ 9@ T(3+1) . B
=T) 45 9(a,5) ; (c—mn)f~ton
2 e*O(Q’C)F(ﬁ)F(ﬂ_’_ 1)
TTB)  WrErE ) (s, q)
/ / —u)’ " dudn
e Y@IT(B)L(B + 1)
B 45F(5) </3+ 2@
—Olas LT (B+1)
+9¢ 90, )8(5 +1, 1)W8(q,g)
e 00 ¢=0(0.5)
< 5 9@ <) + —55—0(a.q)
e*a(q,c)
<5 9@q).

Define the mapping A(6(9(q,¢))) = In(d(q,s)) and
Y(0(q,5)) = In(e=2(9)) for q,¢ € Cp1. Then the last
inequality can be written as

6(0(R(q), R(5))) < A(6(8(a,¢))) — T(I(q,5))-

By Theorem [2} the self-mapping R admits a fixed point, and
hence equation has a solution. ]

V. CONCLUSION

In this paper, we proved fixed point theorems on O-
complete metric space using C.O. (p,%) — (A,0,7Y)-
admissible multivalued mapping. Furthermore, we presented
example to strengthen our main results. Also, we provided
an application to the fractional differential equations.
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