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Abstract—This paper aims to study the combined effect
of surface roughness and magnetohydrodynamic (MHD) on
triangular plates with squeeze film characteristics. Using Chris-
tensen’s theory, the modified stochastic Reynold’s equation
for the one-dimensional structure of the azimuthal and radial
roughness patterns is obtained. Micropolar fluid is used as
the lubricant for the considered case. The solution is obtained
analytically for mean squeeze film pressure and workload.
The results obtained by comparing the MHD with non-MHD
situations shows that the presence of MHD enhances the
pressure and workload. Further, it is seen that as the roughness
parameter increases, the pressure and workload increase with
distance and height, respectively. An increase in the values of
coupling number, Hartmann number and roughness parameter
increase the squeeze time of the lubricant.

Index Terms—Micropolar fluid, MHD, porosity, surface
roughness, triangular plates.

I. INTRODUCTION

SQUEEZE film technology has several applications in var-
ious industries, from very small parts of the machinery

that involve disc clutches to huge power plants that employ
turbo machinery, all of which may have specific rotating
devices where the lubricant is squeezed into the system to
lubricate the rotating parts. With the advancement of modern
machine tools, the application of non-Newtonian fluids has
increased. The outcome of a recent experiment reveals that
when the base oil is combined with long-chained additives,
it enhances the lubricating capabilities of the system, further
decreasing friction and intern the damage caused to the
surface of interaction. The rheological characteristics of non-
Newtonian fluids have been analyzed using several micro
continuum theory models. The micro-rotational and inertia
due to the rotation of the microparticles makes micropolar
fluid (MPF) stand out as a unique non-Newtonian fluid.
Erigen [5] laid down the basis for MPF’s micro continuum
theory. Numerous studies applying this theory have analyzed
the squeezing flow in various geometric structures. Prakash
and Sinha [15] studied the effect of MPF on parallel plates.
Sinha and Singh [21] studied the impact of MPF on hemi-
spherical bearings. Siddangouda [20] analyzed the same for
parallel stepped plates. These works bring out the fact that
the application of the MPF as a lubricant increases the load
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capacity.
The movement of an object when acted upon by force is
referred to as dynamics. When this movement is considered
for a fluid particle in the presence of a magnetic fluid, the
concept is referred to as magnetohydrodynamics (MHD).
Hartmann first took up the initial work on MHD flow and
its characteristics, where a magnetic field of strength B0 was
applied in a direction normal to the fluid flow. He studied
its effect theoretically and experimentally when applied to
an incompressible fluid between parallel planes. Thus the
flow of such kind is referred to as Hartmann flow. A lot
of theoretical and analytical research work has been carried
out in recent years based on MHD flows theory have been
published in recent years Anncy et al. [1], Salah et al. [19],
Elniel et al. [4], Nayak [12], Cowling [3], M. Hamza [7],
Kuzma [11], Sujatha and Sundarammal [22], Toloian et al.
[23], Fathima et al. [6], Patel et al. [16] and many more
found that the electromagnetic forces due to the application
of MHD made the load carrying capacity much better than
the non-magnetic case.
As the machines operate longer, the interaction of the ad-
ditives in the lubricant, which adds additives to enhance
the lubricating properties, converts a Newtonian fluid into
a non-Newtonian liquid. This constant interaction leads to
chemical and physical changes to the surface which comes
into contact with the fluid. When these changes are neglected,
they may cause more significant damage to the machine
parts due to wear and tear. Researchers have started focusing
on this subject to investigate the lubricant’s impact on a
surface texture. Christensen [2] developed a stochastic model
to examine the impact of roughness on bearing performance.
Prakash and Tonder [17], Naduvinamani and Siddangouda
[13], Vadher [24], Rao et al. [18], Hanumagowda et al. [8]
made a detailed study on the effect caused by the wearing
of the machine parts due to the interaction of the lubricant
with the surface of various geometrical structures. Much
research has been done on MHD lubrication for smooth and
rough bearing surfaces. Halambi et al. [9] analyzed with
rough, porous elliptic plates, Hanumagowda [10] studied the
impacts on a rough flat plate and curved annular plates,
Naduvinamani [14] analyzed with porous circular stepped
plates. According to their conclusions, MHD and surface
roughness significantly improve the load-carrying capacity.
The motivation for this article was drawn from wet clutches,
which are used to cool the clutch pack over which the
lubricant flows through. These wet clutches have grooves
on their surface, which are triangular in form. The squeeze
film action between triangular plate can also be found in
other machinery actions. This inspired to take up the work on
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squeeze film lubrication between triangular plate by applying
an external magnetic field when lubricated with MPF. The
impact of surface roughness on such a surface kindled the
interest in investigating this model.

II. GEOMETRY OF THE BEARING

Fig. 1: Geometry of the Bearing

Fig. 1 depicts the geometry of the triangular plates that are
lubricated with micropolar fluid. The gap between the upper
and the lower plate is filled with the micropolar fluid. The
thickness of this fluid is considered as h. The bottom plate
is oriented towards the x axis and remains fixed. The upper
plate moves towards the lower plate with a normal velocity
v = d(2h)

dt . The lower plate is considered to be porous with
thickness δ and it is supported below by a solid backing.
Also, the lower surface is assumed to be rough, which adds
to the surface roughness asperities, which can be expressed
mathematically by the form,

H = h (t) + hs(x, y, ζ)

The first part of the above expression represents the de-
terministic part of the film thickness and the second part
represents the random part of the film thickness. ζ is the
index parameter that determines the exact roughness pattern.

The expectancy operator E(⋆) is given by

E (⋆) =

∫ ∞

−∞
(⋆)f(hs)ds

where f(hs) is the probability density function of the
stochastic variable hs and is expressed as,

f(hs) =

{
35

32c7 (c
2 − h2

s)
3, −c < hs < c.

0, otherwise.

III. MATHEMATICAL FORMULATION

The basic assumptions of thin film lubrication for a
micropolar fluid as described by Eringen [1] is assumed to
hold true for the case discussed here. The following equations
are considered for deriving the expression for velocity.(

µ+
χ

2

) ∂2u

∂y2
+ χ

∂v2
∂y

− σB2
0u = −∂p

∂x
(1)

γ
∂2v2
∂y2

− 2χv2 − χ
∂u

∂y
= 0 (2)

∂p

∂y
= 0 (3)

∂u

∂x
+

∂v

∂y
= 0 (4)

Equation (1), (2) and (4) represents conservation of linear
momentum, conservation of angular momentum and conser-
vation of mass, respectively. (u, v) represents velocity com-
ponents in the directions (x, y). v2 represents the velocity
component of micro-rotation, p represents film pressure, σ
represents electrical conductivity of the fluid, γ denotes the
viscosity co-efficient of micropolar fluid, χ denotes the spin
viscosity, µ indicates the Newtonian viscosity and B0 denotes
the magnetic field strength.

The boundary conditions (B.C) applicable for the above
situation are;

For the upper plate (y = h)

u=v2= 0, v=
d(2h)

dt
(5)

For the lower plate (y = −h)

u=v2= 0, v=v⋆ (6)

By solving equations (1) and (2) and applying B.C’s (5) and
(6), the expression for the velocity component u is given by

u = −

∂p
∂x

[
ω2sinh(r2h)[cosh(r1h)− cosh(r1y)]

− ω1sinh(r1h)[cosh(r2h)− cosh(r2y)]

]
σB2

0

[
ω2sinh(r2h)cosh(r1h)−

ω1sinh(r1h)cosh(r2h)

]
(7)

The nature of the flow of fluid through the porous medium
was first described by Darcy who gave the expression for the
velocity component (q⋆) in the porous medium as

q⋆=− k

(µ+ χ)
▽p⋆ (8)

Here p⋆ denotes the pressure in porous region and k rep-
resents permeability. The continuity equation in the porous
region is given by

∂2p⋆

∂x2
+

∂2p⋆

∂y2
= 0 (9)

The component of velocity v⋆ at y=− h (lower surface) is
obtained as,

(v⋆)y=−h=

(
kδ

µ+ χ

)(
∂2p

∂x2

)
(10)

The continuity equation (4) along with B.C’s (5) and (6)
leads to the modified Reynold’s equation which is given by

∂2p

∂x2

[
R(h,M,L,N) +

kδ

(µ+ χ)

]
=− 12

dh

dt
(11)

where

R(h,M,L,N) =
(Υ1 −Υ2)

σB2
0r1r2(Υ3)

(12)

Υ1 = r2ω2sinh(r2h)[cosh(r1h)r1 − sinh(r1h)]

Υ2 = r1ω1sinh(r1h)[cosh(r2h)r2 − sinh(r2h)]

Υ3 = ω2sinh(r2h)cosh(r1h)− ω1sinh(r1h)cosh(r2h)

IAENG International Journal of Applied Mathematics, 53:4, IJAM_53_4_12

Volume 53, Issue 4: December 2023

 
______________________________________________________________________________________ 



r1 =

(
λ1 +

√
λ2
1 − 4λ2

2

)1/2

, r2 =

(
λ1 −

√
λ2
1 − 4λ2

2

)1/2

ω1 =
2σB2

0 − (2µ+ χ)r21
2χr1

, ω2 =
2σB2

0 − (2µ+ χ)r22
2χr2

,

λ1 =
4µχ+ 2γσB2

0

γ(2µ+ χ)
, λ2 =

4χσB2
0

γ(2µ+ χ)

Dimensionless form of the modified Reynold’s equation is
given by

∂2p

∂x2
[R⋆(H⋆,M,L,N,Ψ)]=− 12 (13)

The stochastic average of equation (13) is obtained by
applying expectation operation on both sides of (13) with
respect to f(hs), which takes the form

∂2E(p)

∂x2
[E(R⋆(H⋆,M,L,N,Ψ))]=− 12 (14)

Equation (14) represents the average modified Reynolds
equation for radial roughness pattern.

∂2E(p)

∂x2

 1

E
(

1
R⋆(H⋆,M,L,N,Ψ)

)
 = −12 (15)

Equation (15) represents the average modified Reynolds
equation for azimuthal roughness pattern.

Both the roughness patterns, namely radial and azimuthal,
are generally oriented in the direction of x and y,
respectively. In this article, radial roughness is considered
to be a one-dimensional roughness structure. The values
for the azimuthal roughness can be obtained similar to the
radial roughness by rotating the coordinate axes suitably.

Here

R⋆(H⋆,M,L,N,Ψ) =

24(G1 −G2)

σB2
0 r̃1r̃2(G3 −G4) +

(
12Ψ

(
1−N2

1+N2

))
G1 = r̃2Φ2sinh(0.5r̃2H

⋆)

[cosh(0.5r̃1H
⋆)0.5r̃1H

⋆ − sinh(0.5r̃1H
⋆)]

G2 = r̃1Φ1sinh(0.5r̃1H
⋆)

[cosh(0.5r̃2H
⋆)0.5r̃2H

⋆ − sinh(0.5r̃2H
⋆)]

G3 = Φ2sinh(0.5r̃2H
⋆)cosh(0.5r̃1H

⋆)

G4 = Φ1sinh(0.5r̃1H
⋆)cosh(0.5r̃2H

⋆)

r̃1 = r1H0 =

λ1
⋆ +

√
λ1

⋆2 − 4λ⋆
2

2

1/2

,

r̃2 = r2H0 =

λ1
⋆ −

√
λ1

⋆2 − 4λ⋆
2

2

1/2

,

λ⋆
1=λ1H

2
0=

N2 +M2(1−N2)L2

L2
, λ⋆

2=λ2H
2
0=

N2M2

L2
,

ω⋆
1=ω1H0=

M2(1−N2)− r̃21

2N2r̃21
,

ω⋆
2=ω2H0=

M2(1−N2)− r̃22

2N2r̃22
,

N=

(
χ

2µ+ χ

) 1
2

, L=

(
χ
4µ

) 1
2

H0
, M=B0H0

(
σ

µ

) 1
2

Where the dimensionless variables are used in the above
expressions are

x⋆=
x

A
, H⋆ = h⋆+hs, h

⋆=
h

h0
=
2h

H0
, λ⋆

1=λ1H
2
0 , λ

⋆
2=λ2H

4
0 ,

r⋆1=r1H0, r⋆2=r2H0, ω⋆
1=ω1H0, ω⋆

2=ω2H0, Ψ=
kδ

H3
0

Combining equation (14) and equation (15) gives

∂2E(p)

∂x2
[S(H⋆,M,L,N,Ψ, c)] =− 12 (16)

where

S(H⋆,M,L,N,Ψ, c) =

{
E (R⋆ (H⋆,M,L,N,Ψ))

E
(

1
R⋆(H⋆,M,L,N,Ψ)

)−1

The pressure boundary conditions for a triangular plate are
as follows p(x′, y′) = 0
where

(x′ − a)(x′ −
√
3y′ + 2a)(x′ +

√
3y′ + 2a) = 0

a is the length of the equilateral triangle whose equation is

(x− a)
(
x−

√
3y + 2a

)(
x+

√
3y + 2a

)
= 0.

The pressure in the dimensionless form is obtained as

P ⋆ =
4

3
√
3

 (1− x)
(
1−

√
3y
2 + x

2

)(
1 +

√
3y
2 + x

2

)
S(H⋆,M,L,N,Ψ, c)


(17)

The expected workload is obtained by

E (w) =

∫ a

−2a

∫ 2a+x√
3

−2a+x√
3

E(p)dydx

The workload in the non-dimensionless form is given by,

W ⋆ =
E(w)h3

0

27µh0a2
=

√
3

5

[
1

S(H⋆,M,L,N,Ψ, c)

]
(18)

The expression for the time-height relation in the dimension-
less form is given by,

T ⋆ = −E(w)h2
0dt

27µa2
=

√
3

5

∫ 1

H⋆
1

dH∗

S(H⋆,M,L,N,Ψ, c)
(19)
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IV. RESULTS AND DISCUSSION

This article studies about a pair of triangular plates that
squeezes out the micropolar fluid present between them as
they approach each other in the presence of MHD. The ef-
fects of porosity and surface roughness are given due interest
while analyzing the effects of MHD. The coupling number
N and length L, which characterize the contact between
fluid clearance, are two dimensionless characteristics that
describes the nature of the micropolar fluid. Comparison is
made between the effect created by the presence and the
absence of magnetic field M . The effect of porosity Ψ and
the surface roughness parameter c on the triangular plates are
also analyzed and discussed below. The effect produced by
the presence and absence of MHD and roughness has been
brought out both using graphs and tables.
Instead of carrying out the research work for analyzing the
MHD effect separately and roughness effect separately, as
usually done by researches, this paper aims to consider
both these effects together. The interdependence of these
two effects in pressure, workload and time height has been
brought out by the graphs and tables. Hence an ideal situation
of working of the bearing is considered for the analysis and
the results are etched.

A. Squeeze Pressure
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Fig. 2: Plot of pressure of with distance for coupling number
N

Fig. 2 shows a plot of pressure versus distance for different
values of N with fixed values of M= 5, L= 0.15, c= 0.3 and
Ψ= 0.001. The graph demonstrates that a non-Newtonian
micropolar fluid creates additional resistance to the lubricant
flow, leading to a significant increase in the pressure distribu-
tion within the fluid film region. Fig. 3 illustrates the variation
of pressure with distance for different Hartmann numbers
(M ) with N= 0.5, L= 0.15, Ψ= 0.001 and c= 0.3. The
graph clearly shows that pressure increases with increasing
values of M .
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Fig. 3: Plot of pressure of with x⋆ for Hartmann number M .

Fig. 4 plots the variation of pressure with height for
L= 0.15, M= 5, N= 0.5, and Ψ= 0.001, where the graph
indicates that pressure rises with increasing values of c.
These results highlight the significant role played by surface
roughness and an externally applied magnetic field. The
surface roughness and magnetic field which is applied affects
the micro rotational effect of fluid particles and slows down
its motion. This drop in fluid velocity allows the lubricant to
stay between the plates and also in the ridges of the rough
surface for prolonged time. This in turn causes a uniform rise
in the pressure distribution between the plates whose change
with respect to M and c have been brought out through Fig.
3 and Fig. 4.
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Fig. 4: Plot of pressure of with distance for roughness c

B. Workload

Fig. 5 depicts a plot of workload vs. height for various
values of coupling number N with the following parameters:
M= 5, L= 0.15, c= 0.3 and Ψ= 0.001. The graph demon-
strates that the amount of workload rises as the coupling
number N rises.
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Fig. 5: Plot of workload with height for coupling number N
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Fig. 6: A variation of workload with height for Hartmann
number M

Fig. 6 depicts the workload variations with height for
different values of the Hartmann constant M , when L= 0.15,
Ψ= 0.001, N= 0.5. It is clear from the graph that when
M is increased, so does the workload. Fig. 7 depicts the
relationship between workload and height for different val-
ues of c when M= 5, N= 0.5 and Ψ= 0.01. Magnetic
and non-magnetic cases with varied roughness parameters
(c = 0.1, 0.2 and 0.3) are compared. For identical values
of c, the magnetic case has a higher load bearing than the
non-magnetic case in the same scenario. The rise in pressure
between the plates over the entire fluid region creates a
balanced load carrying capacity which increases with the
related parameters of observation.
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Fig. 7: A plot of workload with height for roughness param-
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Fig. 8: A variation of workload with height for Ψ

Fig. 8 displays a plot of workload vs. height for varying
values of Ψ for the parameters N= 0.5, M= 5, c= 0.3,
L= 0.15, making it evident that the porosity of the material
greatly reduces the workload of the bearing in contrast to
the solid case. This is because porosity reduces pressure due
to the pores on the porous surface acting as a pathway for
lubricant flow, which decreases the amount of lubricant in
the film region. Consequently, pressure build-up decreases,
resulting in a decrease in the load-carrying capacity. A
suitable selection of micro-structure additives added to the
lubricant can overcome this adverse effect of the porosity. A
plot of workload with height for different values of L with
N= 0.5, M= 5, c= 0.3, Ψ = 0.001 is shown in figure 9.
The graph shows that the workload increases with an increase
in L.
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TABLE I: Work load with and without surface roughness
and MHD with N = 0.5, L= 0.15 and Ψ= 0.001.

Work Load
With RoughnessWithout

Rough Azimuthal RadialWith and
Without MHD c=0 c=0.1 c=0.2 c=0.3 c=0.1 c=0.2 c=0.3

14.296 14.938 15.108 15.405 14.876 14.856 14.822
12.000 12.526 12.636 12.826 12.488 12.478 12.463
10.308 10.741 10.814 10.941 10.715 10.711 10.704
9.021 9.379 9.43 9.518 9.362 9.36 9.357

M=5

8.016 8.313 8.35 8.412 8.301 8.301 8.3
6.801 6.849 6.993 7.249 6.778 6.706 6.591
5.084 5.113 5.203 5.359 5.069 5.025 4.952
3.893 3.912 3.970 4.070 3.884 3.855 3.807
3.043 3.056 3.094 3.160 3.037 3.017 2.986

M=0

2.421 2.430 2.456 2.501 2.417 2.403 2.381

Table I shows the variation of workload with height, com-
paring the presence and absence of MHD (M ) and surface
roughness (c). The data reveals that the presence of MHD
and surface roughness enhances the workload compared to
the absence of MHD and roughness.

TABLE II: Work load with presence and absence of surface
roughness and porosity with N = 0.5, L= 0.15 and M= 5.

Surface roughness Ψ= 0 Ψ= 0.001 Ψ= 0.01
Azimuthal Radial Azimuthal Radial Azimuthal Radial

c=0.3

16.368 15.714 15.405 14.822 10.006 9.753
14.804 14.296 14.009 13.552 9.395 9.184
13.491 13.091 12.826 12.463 8.845 8.667
12.378 12.059 11.814 11.522 8.348 8.199
11.424 11.167 10.941 10.704 7.9 7.773

c=0

15.781 14.883 9.782
14.341 13.593 9.205
13.121 12.491 8.683
12.079 11.541 8.21
11.18 10.717 7.781

Table II presents workload data against height for various
values of Ψ, clearly demonstrating that the presence of poros-
ity significantly diminishes the bearing’s workload when
compared to a solid case. This reduction occurs because
porosity facilitates the reduction of pressure through the
pores on the porous surface, acting as a pathway for lubricant
flow. As a result, the quantity of lubricant in the film region
decreases, leading to a decrease in pressure build-up and
ultimately a reduction in load-carrying capacity.

C. Squeeze film time
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Fig. 10: A plot of time-height with H⋆
1 for roughness

parameter c

The relationship between the squeeze film time and H⋆
1

for different values of c is depicted in Fig. 10. The graph
illustrates the comparison when N= 0.5 and Ψ= 0.01 in
the presence and absence of MHD, with M= 5 and M= 0
respectively. From the graph, it is observed that the presence
of MHD enhances the squeeze film time compared to the
non-MHD case. The fluid settles in the ridges and valleys
of the rough surface of the plate, providing an increased
cushioning effect to the lubricant. Hence compared with
the smooth surfaces, the rough surfaces provides a longer
squeeze time. Fig. 10 brings out this result.
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Fig. 11: Plot of time-height with H⋆
1 for coupling number

N

Fig. 11 depicts a plot of squeeze time vs. H⋆
1 for various

values of coupling number N with the following parameters:
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M= 5, L= 0.15, c= 0.3 and Ψ= 0.001. The viscosity of the
fluid increase the time taken by the lubricant to get squeeze
out the thickness the lubricant the longer the time of squeeze.
This is clearly depicted by the Fig. 11.
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Fig. 12: A variation of squeeze time with H⋆
1 for Hartmann

number M

Fig. 12 is the plot of time-height with H⋆
1 for differ-

ent values of the Hartmann constant M with L= 0.15,
Ψ= 0.001, N= 0.5. The magnetic force applied externally
helps the particles of the lubricant to retain its position for
an extended period of time. This increase the squeeze time
of the lubricant. This is brought out by Fig. 12. Fig. 13 is
the plot of time-height vs. H⋆

1 for distinct values of L with
M= 5, N= 0.5, c= 0.3 and Ψ= 0.001. An increase in the
clearance length(L) causes an increase in squeeze time as
the extra length provided by the clearance takes a little extra
time to squeeze out the lubricant present between them. This
is brought out through Fig. 13.

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

H
1

*

0

1

2

3

4

5

6

7

8

T
*

L=0.05

L=0.1

L=0.15

L=0.05

L=0.1

L=0.15

Azimuthal

Radial

L=0.15

L=0.15

L=0.1

L=0.1

L=0.05

L=0.05

Fig. 13: A variation of squeeze time with H⋆
1 for L

Fig. 14 illustrates graphs that reveal the influence of
porosity, represented by the parameter Ψ, on the squeezing
duration. It is evident from the graphs that an increase in the

permeability parameter Ψ leads to a reduction in the squeez-
ing duration. Furthermore, as the permeability parameter Ψ
increases, the squeezing time consistently decreases.
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TABLE III: Squeeze film time with and without surface
roughness and MHD with N = 0.5, L= 0.15 and Ψ= 0.001.

Time height

With and
Without MHD

Without
Rough

With Roughness
Azimuthal Radial

c=0 c=0.1 c=0.2 c=0.3 c=0.1 c=0.2 c=0.3

M=5

5.880 5.983 6.324 7.018 5.844 5.739 5.575
4.356 4.420 4.630 5.044 4.335 4.273 4.176
3.230 3.270 3.400 3.649 3.217 3.182 3.124
2.389 2.414 2.494 2.646 2.382 2.361 2.328
1.753 1.769 1.819 1.911 1.749 1.737 1.718

M=0

1.693 1.737 1.882 2.191 1.672 1.611 1.518
1.162 1.187 1.270 1.437 1.150 1.114 1.059
0.803 0.818 0.866 0.960 0.796 0.775 0.742
0.556 0.565 0.593 0.647 0.552 0.539 0.519
0.383 0.388 0.405 0.436 0.380 0.373 0.360

Table III displays the relationship between time height
and H⋆

1 , along with a comparison of scenarios involving the
presence and absence of MHD (M ) and surface roughness
(c). The data unequivocally shows that the combination of
MHD and surface roughness leads to an increase in squeeze
film time compared to the cases where MHD and roughness
are absent.

TABLE IV: Squeeze film time with and without surface
roughness and porosity with N = 0.5, L= 0.15 and M= 5.

Surface roughness Ψ= 0 Ψ= 0.001 Ψ= 0.01
Azimuthal Radial Azimuthal Radial Azimuthal Radial

c=0.3

9.67 7.127 7.017 5.574 1.951 1.824
6.453 5.099 5.043 4.175 1.645 1.543
4.436 3.686 3.648 3.124 1.363 1.284
3.102 2.675 2.645 2.327 1.109 1.05
2.181 1.935 1.91 1.718 0.883 0.839

c=0

7.629 5.879 1.855
5.367 4.355 1.566
3.832 3.229 1.302
2.755 2.388 1.062
1.979 1.753 0.848

The data in Table IV reveal that with an increase in
film height, the duration of the squeezing process decreases.
Additionally, it is noted that the presence of roughness,
characterized by the parameter c, prolongs the squeezing
process duration compared to the smooth case (where c = 0).
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The permeability parameter has the effect of reducing the
squeezing duration for both rough and smooth surfaces.
Furthermore, as the permeability parameter (Ψ) increases,
the squeezing time consistently decreases.

D. Estimation of relative percentage of workload RW and
RT squeeze film time

The relative percentage of RW and RT is defined as
RW = {Wwithroughness−Wwithoutroughness

Wwithoutroughness
× 100} and

RT = {Twithroughness−Twithoutroughness

Twithoutroughness
× 100}.

TABLE V: Variation of RW and RT for different values of
c with N = 0.5, M= 5, L= 0.15 and Ψ= 0.001

Roughness
Parameter

RW RT

Azimuthal Radial Azimuthal Radial
c = 0.1 4.49 4.05 1.75 -0.61
c = 0.2 5.67 3.91 7.55 -2.39
c = 0.3 7.75 3.67 19.35 -5.18

The data presented in Table V indicates with the rise in
the value of roughness parameter (c), the azimuthal values
of RW and RT rises considerably. On the other hand the
values of radial roughness drops for a similar situation. This
variation of rise and drop in the roughness pattern can be
attributed to the following physical appearance. For the case
of azimuthal roughness pattern, the rough striations take the
shape of ridges and valleys oriented along the y-direction.
This configuration obstructs the lubricant flow. Conversely,
the radial roughness pattern features rough striations forming
ridges and valleys along the x-direction, allowing the lubri-
cant to escape more effortlessly. This leads to the rise and fall
of the data in azimuthal and radial directions respectively.

V. CONCLUSION

The influence of squeezing action on micropolar fluid
in the presence of an externally applied magnetic field is
considered in this article. The basic for this fluid model was
developed by Eringen, which is applied to the considered
geometry of triangular plates, which are rough in nature and
are backed by a porous facing at the lower surface. The pres-
sure distribution is obtained by solving the Reynolds equation
and the load-carrying capacity is obtained by integrating the
pressure over the film region. The workload is intensified by
the application of MPF as a lubricant, which is characterized
by the coupling number N and the fluid clearance gap L. The
induced magnetic field enhances the workload in contrast
to the non-magnetic scenario of a similar situation. The
presence of porosity reduces the workload, while the effect
of surface roughness increases the workload compared to the
smooth case by 7.75%, as illustrated in Table V. Additionally,
it is observed that the squeeze time increases with higher
values of the coupling number N , clearance gap L, Hartmann
number M , in comparison to the non-magnetic case, and with
the roughness parameter c, in comparison to the smooth case,
by 19.35%. By considering the above observations an ideal
bearing lubricant can maximize the performance of the plate.

REFERENCES

[1] S. M. Anncy, T. Joseph, and S. Pranesh, “Linear and non-linear
analyses of double diffusive chandrasekhar convection with heat and
concentration source in micropolar fluid with saturated porous media
under gravity modulation,” IAENG International Journal of Applied
Mathematics, vol. 50, no. 2, pp 342-358, 2020.

[2] H. Christensen and K. Tonder, Parametric Study and Comparison of
Lubrication Models, SINTEF, 1969.

[3] T. G. Cowling, “Magnetohydrodynamics,”Crane, Russak and Com-
pany, Inc., New York, 1976.

[4] F. M. Elniel, S. Mustafa, A. Bahar, Z. A. Aziz, and F. Salah, “Effects of
shear stress on magnetohydrodynamic (mhd) powell eyring fluid over
a porous plate: A lift and drainage problem,” IAENG International
Journal of Applied Mathematics, vol. 51, no. 4, pp 851-860, 2021.

[5] A. C. Eringen, “Theory of micropolar fluids,” Journal of mathematics
and Mechanics, pp 1-18, 1966.

[6] S. T. Fathima, N. Naduvinamani, B. Hanumagowda, and J. S. Kumar,
“Modified reynolds equation for different types of finite plates with the
combined effect of mhd and couple stresses,” Tribology Transactions
, vol. 58, no. 4, pp 660–667, 2015.

[7] E. Hamza, “The magnetohydrodynamic squeeze film,” International
Centre for Theoretical Physics, Tech. Rep., 1987.

[8] B. Hanumagowda, B. Raju, J. Santhosh Kumar, and K. Vasanth, “Com-
bined effect of surface roughness and pressure-dependent viscosity
over couple-stress squeeze film lubrication between circular stepped
plates,” Proceedings of the Institution of Mechanical Engineers, Part J:
Journal of Engineering Tribology, vol. 232, no. 5, pp 525-534, 2018.

[9] B. Halambi and H. BN, “Micropolar squeeze film lubrication analysis
between rough porous elliptical plates and surface roughness effects
under the MHD,” Ilkogretim Online, vol. 20, no. 4, 2021.

[10] B. Hanumagowda, N. Chaithra, H. Doreswamy, and A. Salma, “Com-
bined effect of surface roughness and micropolar fluids on squeeze
film characteristics between rough flat plate and curved annular plates,”
Malaya Journal of Matematik (MJM), vol. 8, no.2, pp 570-575, 2020.

[11] D. C. Kuzma, “Magnetohydrodynamic squeeze films,” 1964.
[12] I. Nayak, “Numerical study of mhd flow and heat transfer of an un

steady third grade fluid with viscous dissipation,” IAENG International
Journal of Applied Mathematics, vol. 49, no. 2, pp 245-252, 2019.

[13] N. Naduvinamani and A. Siddangouda, “Combined effects of surface
roughness and couple stresses on squeeze film lubrication between
porous circular stepped plates,” Proceedings of the Institution of
Mechanical Engineers, Part J: Journal of Engineering Tribology, vol.
221, no. 4, pp 525-534, 2007.

[14] N. Naduvinamani, B. Hanumagowda, and S. T. Fathima, “Combined
effects of mhd and surface roughness on couple-stress squeeze film
lubrication between porous circular stepped plates,” Tribology inter
national, vol. 56, pp 19-29, 2012.

[15] J. Prakash and P. Sinha, “Squeeze film theory for micropolar fluids,”
ASME-AMER SOC MECHANICAL ENG, 1975.

[16] R. Patel, G. Deheri, and P. Vadher, “Performance of a magnetic
fluid based squeeze film between transversely rough triangular plates,”
Tribology in industry, vol. 32, no. 1, p 33, 2010.

[17] J. Prakash and K. Tonder, “Roughness effects in circular squeeze
plates,” ASLE TRANSACTIONS, vol. 20, no. 3, pp 257-263, 1977.

[18] P. S. Rao, B. Murmu, and S. Agarwal, “Effects of surface roughness
and non-newtonian micropolar fluid squeeze film between truncated
conical bearings,” Journal of Nanofluids, vol. 8, no. 6, pp 1338-1344,
2019.

[19] F. Salah and M. H. Elhafian, “Numerical solution for heat transfer
of non-newtonian second-grade fluid flow over stretching sheet via
successive linearization method,” IAENG International Journal of
Applied Mathematics, vol. 49, no. 4, pp 505-512, 2019.

[20] A. Siddangouda, “Squeezing film characteristics for micropolar fluid
between porous parallel stepped plates,” Tribology in Industry, vol. 37,
no. 1, p 97, 2015.

[21] P. Sinha and C. Singh, “Micropolar squeeze films in porous hemispher
ical bearings,” International Journal of Mechanical Sciences, vol. 24,
no. 8, pp 509-518, 1982.

[22] E. Sujatha, Sundarammal kesavan, “Combined effect of magneto
hydrodynamics (MHD) and viscosity variation on triangular plates
with couple stress fluid,” International Journal of Civil Engineering
and Technology, vol. 9, no. 6, 2018.

[23] A. Toloian, M. Daliri, and N. Javani, “The performance of squeeze
film between parallel triangular plates with a ferro-fluid couple stress
lubricant,” Advances in Tribology, pp 1-8, 2020.

[24] P. A. Vadher, G. Deheri, and R. M. Patel, “Effect of transverse surface
roughness on the performance of hydromagnetic squeeze film between
conducting truncated conical plates,” Journal of Marine Science and
Technology, vol. 19, no. 6, p 12, 2011.

IAENG International Journal of Applied Mathematics, 53:4, IJAM_53_4_12

Volume 53, Issue 4: December 2023

 
______________________________________________________________________________________ 




