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On a Fractional Model in Magneto-Elastic
Interactions

Mohamed EL IDRISSI,

Abstract—The aim of this research paper is to study the
global existence of weak solution of magneto elastic interac-
tions, which is modeled by a three-dimensional mathematical
framework. A fractional generalization of the harmonic map
heat flow is coupled to an evolution equation for displacement
to characterize the model. Faedo-Galerkin method with some
commutator is used to estimate and prove global existence of
weak solutions for the proposed model.

Key words: Ferromagnets, fractional derivative, Landau-Lifshitz equation,
elasticity, weak solution, commutator estimates.
AMS subject classifications: 78A25, 35Q60, 35B40, 35K55, 65M12

I. INTRODUCTION

Here is an interconnection among magnetic and elastic
properties of ferromagnetic materials. The different
couplings among these properties are known as magnetoe-
lastic effects. This latter can be classified into two main
classes, direct effects and their inverse effects. The crucial
direct effect is magnetostriction that basically represents
the phenomenon whereby a ferromagnetic sample deforms
thanks to magnetic interactions that could be either within the
sample itself ( spontaneous magnetostriction ) or the result
of an external magnetic field ( forced magnetostriction).This
magnetostriction leads to a state of constraints( even in the
absence of any external stress) which is responsible for the
rearrangement of the fields and other phenomena as well.
The magnetization in the magnetoelastic model results from
non-mechanical external forces and is not influenced by
the material’s mechanical state. The aim of this research
is to propose a model for the theoretical study of the
interaction between the elastic and magnetic processes. The
magnetoelastic dynamics in © = (0,7") x D (D is a bounded
open set of R% d > 1 and 9D its boundary) are described
by the nonlinear parabolic hyperbolic coupled system (see

[22]):
Zt =vZ x Heff — MZ X (Z X Heff). (1)

P Wt — le(S(u) + %ﬁ(Z)) =0. 2)

The equation (1) is the equation of Landau-Lifshitz and
the equation (2) represent the displacement’s evolution. The
unknown Z is the magnetization vector,which is a map from
D to S? (the unit sphere of R?) and Z, is its derivative
with respect to time. Let X denotes the vector cross product
in R3. In addition, we designate by m;,i = 1,2,3 the Z
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components. And v € R, and p > 0 are two physical
constants and p is a positive parameter called the Gilbert
damping parameter. the effective field is denoted by Heg,
and in this work we have

Heff = _AQQZ - E(Z7 ll) (3)

Where A = (—A)? indicates the Laplacian’s square root.
It can be defined trough Fourier transformation [20],[24].
Throughout this work, for repeated indices, we use the
Einstein summation convention, and we are focused on the
case o € (1, 3).

The vector £(Z,u) and the tensors £(Z) , S(u) are given
by these following equations

b = GijriZier(u),

Ly = CijriZ; Z; and Sg; = o4jki€i5 ().

i=1,23.

Here

eij(u) = 5(diu;j + dju;)

refer to the components of the linearized strain tensor e,
Gijkt = C104581 + (2045081 + (3(0ik0j1 + 0itdjx),

Oijkt = T1(0ijir — 030k + 0ir0j1) + 20450k

Oije =1ifi=5=k=1,
with

0ijkt = 0 otherwise.

where 0 = (0y;11) is the elasticity tensor. It is assumed to
satisfy these two following assumptions :

Oijkl = Oklij = Ojikl (symmetry property)

and
(Cijri€ijert) > 52 leji]? 4
holds for some/3 > 0.

In the case where the effective field H.s is reduced to
—A2%9Z, the equation (1) will be rewritten as

Z, = —vZ x N**Z + pZ x (Z x A**Z). (5)

Note that when oo = 1, equation (5) conforms to the standard
Landau-Lifshitz equation. This equation is proposed in 1935
by Landau and Lifshitz, and it has been widely studied in the
past decades (we quote some references here [1], [2], [10],
[23]). Also, when v = 0 and « = 1, the equation (5) is called
the heat flow of harmonic maps to the unit sphere which also
was widely studied in the past decades [16]. The authors in
[17], have studied the equation (5) for v = 0 (generalization
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of the harmonic map heat flow to the fractional order)
d

under these two conditions o € (0,1) and o > §. In the
general case, several works have been carried out on the
fractional Landau-Lifshitz equation we refer, for instance to
[11] that ”Guo and Zeng” have proven the existence of weak
solutions for equation of a simplified model for thin-film
micromagnetics under periodical boundary condition. The
paper [18] have considered the fractional Landau-Lifshitz
equation’s well-posedness without Gilbert damping appears
to be main purpose. Vanishing viscosity method proves the
global existence of weak solutions. For magneto-elasticity
coupling we refer, for instance in [22] where the authors
managed to establish the weak solution’s existence basing
their study on a three-dimensional case. For a reduced
model, in [4], the authors demonstrate both the existence and
uniqueness of the solutions and in [3], tackled the problem
of a one dimensional penalty and studied the gradient flow of
the associated type Ginzburg-Landau functional. A classical
solution, whose existence and uniqueness are demonstrated,
tends asymptotically for subsequences towards a stationary
point of the energy functional. In a recent work [7], the au-
thors proved the global existence of weak solutions to a one-
dimensional mathematical model describing magneto elastic
interactions by using Faedo-Galerkin/Penalty method. In [8],
and also based on the F.G.P method, the authors establish
the existence of weak solutions for a magneto-viscoelastic
model but without taking into account the external forces
acting on the system. Our aim here is to study a fractional
model arising in magneto elasticity, but this time in higher
dimension more precisely when d = 3 and in the more general
case in which mechanical external force act on the system.

Throughout the whole document, we put to use the sub-
sequent notations. Let D be an open-bounded domain of R?,
for p € N* L?(D) = (LP(D))? and H'(D) = (H*(D))?
are the classical Hilbert spaces equipped with the usual
norm denoted by ||.|[L»(p) and [|.||gr(py (generally, the X
symbolizes the product functional spaces (X)? ). For all
s > 0, W#*P designates the usual Sobolev space consisting
of all g such that

lgllwer == I F2 (141 %) (Fg) ()llze < 00

where F and F—! denote, respectively, the Fourier transform
and its inverse. Having WP denotes the corresponding
homogeneous Sobolev space, when p = 2, W*P conforms
to the usual Sobolev space H?® and in this case we have

191l s = 1A%l 2

The following parts of this paper are structured as follows.
Section 2 Introduces the model on which we are going to
work, and it gives a preliminary result. Section 3 presents our
main results which will be proving in section 5. In Section 4
we propose some lemmas which are beneficial to the work
in the rest of the paper. Section 6 concludes the paper.

II. MODEL AND PRELIMINARY RESULTS

The objective of this research is to prove the global
existence of weak solutions for the magnetization vector in
the spatial domain D = (0, 27)¢ with periodic boundary con-
ditions. Consider d = 3 and assume that the gyromagnetic

ratio v # 0 and p > 0. The © = (x1,z2,23) denotes the
generic point of D. We consider the following system,

Zt =vZ x Heff — /LZ X (Z X Heff)

. ©6)
Py — div(S(u) n 5z:(Z)) —0,

where Hegr is given by (3) and h is a given external force.
For initial conditions let

Z(,O) = Z07 |Z0‘ = 17 (7)

u(-,0) =ug, w(-,0)=muy, in D,

where the boundary conditions for the displacement vector
are

u=0 on X:=0Dx (0,T). (8)

The major difficulty in the first equation of (6) is the double
vector product. To overcome this difficulty, the equation (6)
is equivalent to Gilbert equation

v+ p?
v

Z, = ZxHy— L2 %12, ©)
14

According to [4], we replace the first equation of (6) by

the quasi linear parabolic equation (Ginzburg-Landau type

equation).

N ‘ZE‘Q -1

Z: —nZ x Ly +yN**ZF + yE(ZF uf)
3

Z° =0.

. (10)
where n = . v = z :“ , the parameter ¢ is positive and
Z7 :D x Rt — R3. The e-penalization in the equation (10)
replaces the magnitude constraint |Z| = 1.

III. MAIN RESULTS

The aim of the present section is to define the weak
solution of the problem (6)-(7)-(8).

Definition IIL.1. Given Zy € H*(D),|Zy| = 1 ae., u €
H{(D), u; € L?*(D) and h € L?(©). The pair (Z,u) is
said to be a weak solution of the problem (6)-(7)-(8) if:

o for al T > 0, Z € L*(0,T;H*D)),Z; €
L?(0,T;L%(D)), |Z| = 1 ae, u € L?(0,T;H}(D))
and u; € L*(0,T; L*(D));

e for all p € C*(O) and 1p € H{(O), we have:

/(thZ)~<pdxdt—17/Zt-<pdxdt
e )
+7/A“Z-A"‘(Z><cp) dzdt
e
+7/(£(Z,u)><Z)~gadxdt:O
e
—p/ u; - P, dxdt+/h~¢ dadt
e e

+/® (S(u) + %c(z>) - e(tp) dadt = 0;

o Z(0,x) = Zo(z) and u(0,x) = ug(x) in the trace
sense;
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o forall T >0, we have:

1/|A“Z(T)|2 dz +/ |Z¢|? dadt
2Jp 5

2 [ [ (T))? dz +2 [ |Va(T)? do

gl/\A“Z(ﬂ2 d:v—i—ﬁ/|u1|2 dz
2Jp 2 Jp

+5 Jp [Vuol* dz + C(D, 5.¢,7,h),
where C(D, 8,(,v,h) > 0.

(1)

The paper’s main result is as follows.

Theorem IIL.2. Consider a€(1,3), Zoc H*(D) such that
|Zo| = 1 a.e, ugp € H}(D), u; € L%(D) and h € L?(O).
Hence there exists a weak solution of the problem (6)-(7)-
(8) in the sense the Definition II1.1.

Proof: See section 5.

IV. A FEW TECHNICAL LEMMAS

This section is dedicated to introduce a few lemmas which
are going to be used in the rest of this paper.

Lemma IV.1. Assume these three spaces E,F et G are
Banach and satisfy E C F C G where the injections are
continuous with compact embedding E — F' and E,G are
reflexive. Denote

du
dt

where T is finite and 1 < k; < oo, i = 0,1. Then H,
equipped with the norm

H:= {u|u € L¥*(0,T; E),u; = = € I*(0,T; G)}

ull ko 0,1 ) + luel| o1 (0,756)5

is a Banach space and the embedding H — L*0(0,T; F) is
compact.

Proof: (see[15], (page 57)).

Lemma IV.2. For a bounded open set of RS x R, Q. y,, and
yin L¥(Q),1 < k < 0o so that vy, satisfies ynllLr @) <
C,yn — y a.e. in Q, then y,, — y weakly in L¥(Q).

Proof: (see [15], page 12)

Lemma IV.3. (Commutator estimates). Assume that | > 0
and k € (1,400). If u,v € S (the Schwartz class) therefore

||Al(uv) — 'LLAZ’U”Lk (12)
< O(IFull g [Flhprorio + s ol )
and
[A" (wv)| e (13)

< C(llulpon Wl + el loll e )
with ko, ks € (1,4+00) such that % = le + 712 =% T
Proof: (see [5], [12], [13])

Lemma IV4. Suppose that k > j > 1 and + + L = %
Assume that N'h € LI, then h € L* and there exist a
constant C > 0 such that

Ihllze < ClIA R s

Proof: (see [20],[25])
we conclude this section by this lemma.

H22 (D) :=

per

Lemma IV.S. If u and v belong to
L?*(D)/A**u € L*(D)}, then

/AQO‘u-vdm:/Ao‘u-Ao‘vdx.
D D

Proof: (see[11])

{u €

V. GLOBAL EXISTENCE OF WEAK SOLUTIONS

In this section, we are going to use the Faedo-
Galerkin/Penalty method to demonstrate the previous the-
orem IIL.2 .

A. Penalty problem

For a fixed parameter, ¢ > 0. We consider the following
penalty problem

Z; — 27 X L + YA L + (27 uf)

+|ZE‘2 -1
3

=0 (14)

1
pu, — div(S(uf) + §£(ZE)> th=0,

in © =D x (0,7, with initial and boundary conditions are
as follows.

Z€(~,O) = Zo, ‘Z0| =1 a.e,

u®(-,0) =ug, u;(-,0)=wy, in D,

uw=0 on X.

Applying Faedo-Galerkin method: consider an orthonormal
basis {g; }ien of L?(D) consisting of all the eigenfunctions
for the operator A2® ( [21], Ch.II proves the existence of
such orthonormal basis)

A2agi = ;9;,1=1,2, ...

under periodic boundary conditions, and an orthonormal
basis {fi}ien of L?(D) consisting of all the eigenfunctions
for the operator —A

“Afy=8ifi,i=1,2,..

fi=0 on OD.
We obtain the next approximate problem in © = D x (0,7)
20N — 2N < 29N + A2 ZEN (25N uE )

+|Z5’N|2 —1
9

zoN =0

1
p i —div(S@ ) + SLZY)) +BY =0,
5)
where the initial and boundary conditions are as follow:

u&N(UO) = uN('7O)a u?N(WO) = lliv(-,O),
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N (-,0) =Z"(-,0), in D,
V=0 on T=0Dx(0,7).
and
/uN (2,0)fi(x dx:/uo(x)fi(x) dz
D D
[t se- oo
ul (@,0)fi(2) do = [ wi(a)fi(o) da,
D D
2V (2,0)gi(z) dz = [ Z i(z) dz.
A |zl

and the vector h"V satisfies
/hN(x,t)fi(x) dz = / h(z,t)f;(z) dz
D D

We are interested to find the approximate solutions
(25N ju=N) of (15) under the following form

N
a;(t)gi(z) N:;bi(t)fi(x)’

where a; and b; are R3-valued vectors.

N

Zs,N _ Z

i=1

Multiplying each scalar of the first and second equations
of (15) by g; and f; respectively, and then integrating in D
we obtain a system of ordinary differential equations where
the unknowns are (a;(t),b;(¢)),i = 1,2,...,N. Based on
standard ordinary differential equations theory, we can easily
prove the existence of local solutions of the problem. This
latter can be extended on [0, 7] by using a priori estimates.
Therefore, multiplying the first and the second equations of
(15) by Zf’N and ¢, N; respectively, and integrating in D,
we obtain

/|Z§’N|2da¢ + W/AMZE’N 25N dx
D D
+ =N Ny Zp N da

1d
— ZE,N2_12d =0
e JJE - s

1
i e = [ (SY) + 3220w s
oD 2

2dt

1
+ / (S@™) + 2£z)) - VuiVaa
D 2

N
u; ' dz =0

+ Jph™

where n is the outer unit normal at the boundary 0D. On the
other hand (note that (;jr; = Cjir)

’y/ K(ZE’N,uE’N) ~Zf’N dx

D

= 7/ GjmZ; " 25N e () da
D

-1 / Cim(ZN 22N 4+ 22N 7N ) (w0 da
D

th/ Cijrl Z, ENZEN p(usN)dz

/kalZa, ZEN ( EN)dx)

and since both tensor & and £ are symmetric, we have

/D (S@N) 4 SL2)) - e(wi ™) da

:/ (S(uE’N) + 1ﬁ(ZE»N)) vue de,
D 2

and

/Gijkleij(u N)Ekl(uf N) dx
D

1d
= 5&/Do’ijkleij(lla’N)Ekl(llg’N) dx.

By using the Lemma IV.5, we can write

ZE,N 2 d 77/ AazsN 2 d
[P s 35 [ ez a

th/CZJkZZEstN (5N)d

/kalZE, ZEN ( EN) dl‘

1d

sN2 2
[ ’ —]_ d fr—
+%&/a 2 1) de =0

d €,
2dt/|“ *da 2&/%“%( e (u™) da

1
+*/Ciijf’NZ] Nepus™) dx—i—/hN

Mutiplying second equation by ~ and make sum with the
first equation, we obtain

/|Z6N|2 derf—/ |ACZ5N)? da

2
2dt/‘ N dz

d
+%a/Uijkleij(ue’N)Ekz(us’N) dz

+7

Ndz =0

1d
4+

ZE,N2_1 2
T (\ F-1)7d

2dt/ G2 25 eia(u) da

+’y/hN~uEN
D

dz = 0.
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2 2
Then, integrating in time, < X (|Z|2 — 1)2dx + 2 Fyvol(D)
-~ B B
/ Z2 N dedt + 1/ ACZEN(T))? de
o 2 D /Z'Ekl | dx
iz fp(1Z°N(T)P 1) da o
9202 2 22
/‘u T de <X (|Z|2 - 1) dz + 22 pol(D)
B Jb
, N
+3 Jp oijrici; (N e (SN (T) da +%/ oijki€ij(0)eg (w)da.
D
v N e, N e,N
+§/D<ijklZi€ Z7 e (ueT)(T) dz (16) by using (4). Now, for & < % we have
N e,N agN 2
= — us N de + 2 A*Z7 (0)]* dx .
v Jh g 3ol 0) %\ / GijrmZiZjex (u)dz|
1 / N2 Ik ’
i [0 -1 do+ Y [ ) ar , e
4e Jp <= (|Z|2 - 1) dr + 2 2 ol(D)
8e D 5

+%/Uijkl€ij(u]v)6kl( M)(0) dz

~
+- i5k1€ij dz.
ConZ 2 e (w™)(0) da. 1 /DO' jki€ij(w)eg (u)da
D

Which implies
Hence, we denote the left-hand side and the right-hand side

of (16) by A=Y (T') and AN (0) respectively. o %/ i Z3 Z ey (™) (0)dw
Assuming there exist a positive parameter, ¢, satisfies 9 > P
. . ) . . . . . 1 2
suk1l>|gljkl| by using Young’s inequality, omitting superscripts, <= (‘ZN(0)|2 B 1) da
g/e have 8
7.7 < X701z 2¢%y Y N N
CijniZiZ e (0)] < j\ illZ;]lexi(m)] + 3 vol(D) + 1 / oijri€i (U )erg (u™ ) (0)da,
D
2 and
< é<%|zi‘2|zj|2+%kkl(u”z)- 1 ) 52
. - (\ZE’N(T)P - 1) da — = Lvol(D)
rom where 8 Jb B
%:IKW”ZiZje“(“” —%/Uijkzﬁij(“E’N)Ekz(lls’N)(T)dx
17 D
y e,N rpe,N e,N
2¢ /9 9 < = ikl 2 2 S)(T)dex.
< 2 (5XzPEIZ P + LY Jeutw) Sy e A )
i j kl

Based on the definition of A%~ (T) and AV (0) we have

:2((2(2]2\ 4€_Z|ekl ) /|Z8N|2 daedt + = /|A“Z€N( ))? da

1 &N (T P e,N 2
=2+ DS e FE bl )M+2AM e
6 2 ki E’N)Ekl(uE’N)(T) dz

Therefore, according to the idea introduced in [22] we have _2¢? ywl (D) < A° N(T),
%\ /D CiinZiZ;er(0)dz] and
AV (0) < —~ /hN N de + 1/ IASZN (0)[? da
S}

- f\/ZQJMZZeM )dz| 5
ijkl f/(|ZN(0)|2 24z + 22 /|ut (0)]? dz

+7 Jp oijmes;(u

+

8¢ D
<= /%Kuklzz%l u)|dx +?jf/naijkleij(uN)em( NY(0) dz + Cﬂ%oz( ).

2 Since A=N(T) = AN (0), we have
< Q/ |Z|4dx+%/2|ekl(u)|2dz -
B Jo D / 152 dxdt+§/ |A“Z=N(T)? dz
S D

¢y 2 1
= 7\/ <|Z‘ 71+1 dm+ /Z|Ekl | dx +— (|Ze N( )| 1)2 dx—l—ﬁ/ \ui’N(T)\Q dz
D 8¢ 2 Jo
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+%/O'ijkle,;j(UE’N)EM(UE’NXT) da
D

< ’Y/hN

ui¥do+ ] [ 14020 do
D

3 vp
3 [ zNor -1 det 22 / Y (0)? da
8¢ Jb 2 /b
3 4¢2
+%/Uijkleij(uN)ekl(uN)(O) dz + QI-B,YUOZ(D).
D

Now, we define the functional
BN (T)

Y arge,N 2
:/ Ve dxdt+7/|A 25N ()2 da
(S]

L L (2N @) 1) dat 2P / sy

+38 [ |VusN2(T) de,

) dz

then
B=N(0)
=3 [ 1wz Op ot & [z O -1 da
8 Jp
/| (0)|? dz + B/Wug’N\z(O) dz
D
Moreover

N VP, e,N Y
—y 0w < P e + o)

/D U (1) dr < / Sleulu (1),

and under the assumption o €;;(0)eg (u) < 7|Vul?

(for a positive constant 7), we have

[ 122N dwar+ / AZEN (T2 da
(S]
+81—€/(|Z5’N( dx+w/\u
/|VuEN 2(T) dz < 1 /|A"‘ZN( )2 da
3 N 2
+§ (1Z™ (0))? - d:ch \ut )|* da

3T
e ¥ ey + /|v

which implies

T)|? dz (17)

4¢%y

() dz + vol(D),

BE,N(T)

4¢%y

T
< / BN (1) dt+3B€=N(o)+%\|hN||iz(@)+7voz(D),
0

Based on Gronwall lemma, we obtain

4C%y
5 ——vol(D)).

Since ug € Hy(D), u; € L*(D) and Z; € H*(D) which
is embedded into L*(D) for 1 < o < £ the right hand side
is uniformly bounded. Therefore, for constants Cy, Cs, Cs,
C4 and C'(h) independent of N

BEN(T) < 7357 (0) + 0V, +

Jz¥ o) - 12 do
D
:/|ZN(O)\4 dx—2/ 1ZY (0)2 dz + vol(D)

<||1Z™ (0)||s y + vol(D)
< C1[|ZY(0)] 4o (py + C2

< C?n

/\Vu (0))? dx—/|Vu
<2 [ [vu¥(0) -

< 2[[u™(0) — w51 iy + 2//uo| I )

< 047

— Vug + VI10|2 dz

Vllo|2 dIJrQ/ |Vu0\2 dz
D

and
WY |[2(0) = (MY —h +h|[
< 20N — h[{2 (o) + 2[h][f2) < C(h),

thanks to the strong convergences Z (.,0) — Z, in H*(D),
uV(.,0) = up in H{(D) and hY — h in L?*(Q). For the

other term (u}” (0)), the estimate can be achieved in a simi-

larly way using course the strong convergence ul¥ (.,0) — u;

in L?(D). Additionally, (for C' being a constant which does
not depend on € and N)

b D
1
< 2/(|ZENI2 1)? do +C.
Hence, for the fixed £ > 0 we have
(Zg’N)N is bounded in L% (0, T; H*(D)),
(Z5N)x is bounded in L2(0,T;L%(D)),
(‘ZE,N|2 _ ) D))
(u>N)y is bounded in L*(0,T;H}(D)), (%)
(ui"™)x is bounded in L?(0,T;L?(D)

)
is bounded in L (0, T; L*(
)
)-

Notice that, (18) is owing to the Poincaré lemma. Addition-
ally, Based on the classical compactness results, we obtain

the next convergences to a two subsequences further notes
(ZE’N) and (us?)

75N ~Z° L?*(0,T; HY(D)),
L?*(e),

Z5N — ZF strongly in  L?(0,T,H? (D))

weakly in
;N ~7F  weakly in
(19)

and ae. for 0 < B <«

|Z5N|2 -1 —~¢  weakly in  L?(0),
N —~wu® weaklyin L*(0,T;Hj(D)),
us N _ u;  weakly in L2(@),
N s w®  strongly in  L?*(O©).
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The convergence (19) is concluded owing to Lemma IV.1.
Due to Lemma IV.2, we can reach that £ = |Z°|?>—1. Based
on the Sobolev embedding H%(0) < L*(0), since 1 < a <

g , the following compactness results are obtained.
e,N r&,N . 2
277707 — Z;Z5 strongly in L5(©), (20)

and
Z2N ¢, — ZE¢; strongly in L(©).

According to the previous estimation, we can pass to the
limit as N — oo and to reach the sought-after outcomes.
therefore, consider the variational formulation of (15)

/ 5N - ¢ dadt — n/ (25N x 22N - ¢ dzdt
S S
+7fo AYZ5N - A% dadt

JW/ CijkzZ;’Nw(uE’N)(bi dadt
o

|Z5,N|2 -1
+Jo -

—p/UfN
(]

25N ¢ dadt =0

b, dadt + / oirei; (05N )er () dodt

1)
for all ¢ € L?(0,T; H*(D)) and + € H}(O). Taking N —
o0 in (21), we get

/ Zf-d)dmdt—n/(ls X Z3) - ¢ dxdt
e )
+7 Jo AYZ7 - A% dadt

+7/ Gijki 25 epr(0®)gp; dxdt
o

|Z5|2—1
—7F pdzdt =0
Jrf@ E ¢ dx

—p /llf-’l,bt dxdt—i—/ aijkleij(ue)ekl(v,b) dzdt
(] (]

1
+§/ CijklZfzifkl(¢) dxdt +/ h - dxdt =0,
o e @)

for all ¢ € L?(0,T;H*(D)) and + € H;(0). We proved
the next proposition.

Proposition V.1. Given Zo € H*(D) such that |Zy| = 1 a.e.,
uy € H} (D) and u; € L?(D). Then there exists a solution
Z¢, for any positive € small enough and any fixed time T, to
the problem (14) in the sense of distributions. Additionally,
we obtain the energy estimate below.

/ 1Z2 2 dxdt—i—l/ IACZE(T))? dz

(S]

+i/<\zs<:r>|
8

22 [ v

+ﬂ/lu1|2 dx+£/ Vol e+ 27 or(D)+C ().
2 Jp 4 Jp B

2 qp + 22 /|t )12 dz (23)

)de < = /|AaZ |? da

/Q]MZENZE New () dmdt+/ hY -y dzdt = 0,
(C]

Remark V.2. We can easly get (23) by taking the lower
semicontinuous limit in (17).

B. Convergence of approximate solutions
In this subsection, our goal is to pass to the limit in €
(e = 0). According to the estimate (23) we get

(Z7). is bounded in L*°(0,T;H*(D)),

(Z5). is bounded in L?(0,T;L*(D)),

(|Z°|* — 1) is bounded in L*>(0,T; L*(D)),

(u®). is bounded in L?(0,T;H} (D))

D)).

)

ut). is bounded in L%(0,7;L?*(D
t

There exist two subsequences further noted (Z°) and (u®)
such that the next convergences hold

ZF ~7 weakly in  L?(0,T;H*(D)),
Z: ~7, weaklyin L?*(0,T;L*(D)),
75N — ZF strongly in  L?(0,T,H’ (D))
and a.e. for 0 < (B <«
1Z°> =1 -0 strongly in L?(©) and a.e. (24)
u® —~u weaklyin  L?*(0,7T;H}(D)),
u —u; weaklyin  L2*(0),
u® —u strongly in L%(0).

|Z| = 1 a.e. is a consequence of the convergence (24). To
pass to the limit € — 0 in (22) , consider ¢ = Z° x ¢ where
p € C>®(O). As ¢ is in L*(0,T; H*(D)), there holds

/Zi-(nggo) dxdt—n/(Zexlf)-(Zex
© ©

+7 o AYZE - AV (ZF x

v) dadt

p) dadt
+7/ CijmiZ5 e (0)(Z° x p); dedt =0
e

—p / u; - Y, dxdt—|—/ oijri€ij(U)er () dadt
© ©

1
+§/ CijklZfZ;Ekl('l,b) dzdt +/ h- ’l,b dzdt = 0.
© ©
(25)

Recent convergences that we have established and a result
like the one in (20),Allows us to pass to the limit in (25) as
€ — 0 (except for the second and the third term of the first
equation).

For the first equation’s second term,

we set U, = [ (Z° X Z7) - (Z° X @) dudt.

we have

\pgz/ |Z§|2Z§-gpdxdt—/(l‘f-<p)(ls Z7) dadt,
(S} ©
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On the one hand
/ |ZF|?Z5 - o dadt
e

:/(|Z€|2—1)Zf~(pdxdt+/ Z; - p dzxdt.
© ©

— / Z, - p dadt.
©

/at \Z7)> - 1)Z
1[/(W‘) ~<Pdfvh

-3 [0z P oz

Now choose ¢ so that ¢ =0 in ¢t = 0 and ¢t = T'. thereafter

On the other hand
[ @ oz
<)

) dzdt = - dzdt.

[\

) dzdt.

T

[z -z de

71/(|ZE\271)6t(Z5~<p) dadt.
2 Je

=0
Thus,

/ (Z°-)(Z°-Z5) dudt =
(€]

1
= 5/(|Z5|271)&5Z6-cp dadt
(S]
1 €2 €
—3 (|1Z5|* — 1)Z° - Oy dadt.
©

—0

Hence
U, %/ Z, - p dzxdt.
<)

Now for the third term of the first equation, the convergence
is not obvious since we encounter nonlocal operators A“ and
in this case the classical methods are not applied anymore.
However, commutator estimates (Lemma [V.3) provide us
proper tools, to which the success in the following owes a
lot. We start firstly by showing that A®(Z° x ) € L?(0),
therefore using the multiplicative estimates (13) in Lemma
IV3 1o Z° and ¢ (for | = a,k = 2,k = 23— ko =
%, ks = 2 and k4 = oo) for C being a constant which does
not depend on ¢, we find

[A*(Z° % @)Lz ()
< C 12 s ) Il 22 oy + 12 i oy e o))

= (12 s oy 1A @l s ) + A2 iy pllioe ) )

In Lemma V.4, we take h = Z°,j = 2,1 = o, k = ky then
1Z5 | ks 0y < C1l|[AZE| L2 (p). Therefore,

[A*(Z° % ¢)]|L2(D)
< C(CoIAZ ey A @llusa o)+ IAZ 2yl o) )

< ClAZ ey (CalIA@lus ) + o))
<O

where the constants C'y, Cs and C' are independent of ¢.

In the following, we are interested in studying the conver-
gence of the term

Je = / AYZE - AY(ZF X ) dxdt.
e

Let J := [ A®Z - A%(Z x ¢) dzdt. We will show that

e . .
J. — J as € — 0. For this, we introduce the commutator
(see [17])

T, (Z) = A%(Z x ) —

in the first place, notice that I',(Z) € L*(Q). therefore,

using (12) with k1 = o0, ke = 2,k3 = % and k4 = dfgﬁ

with § = o — 1 (note that we have Hﬁ(D) — LM (Q)
the choice of k4 ), we find

1T (Z) |2 (D)

@ x A*Z

< C1(IIV @l ) 12l g5 gy + 1l 23 oy | Z s )
<Ci (HVSDHLOC(D) HZ||H/3(D) + CQ”QOHW“JCS(D) ”ZHHf’(D)>

< CllZllge ) IVl ) + [[#llyyers
(D)

< C'|Z|ys -

Once again
ITo(Z° = Z)|I2p) < ClIZ° = Z|wo ()
Therefore
oL — L)[[12e) = — Ll L2(0,7;H5 (D))-
T (Z° = Z)| <0z -1

Finally, since A“Z - (A®Z x ¢) = 0 we have

J. = f AOZE T, (Z°) dadt

/AO‘Z I',(Z) dzdt.
©

and

Then

= |/ AYZE T
(S
= \/OAO“ZETLP(Z&

3 = 7]

(Z°) dadt — / A°Z T (Z) dadt]
(]

~Z) dadt+ / A (25 ~Z) T (Z) dadt]
(]

< / |ACZE T (25 —Z)| dwdt+] / A (ZF—Z) T, (Z) dadt]
(S] e

< O (Z — Z)lliro) + | / A(Z T(Z) dudt

SC/HZE—ZHLQ(O’T;HB(D))—H/@AQ(ZE—Z)T‘(P(Z) dzdt|

— 0
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Let ¢ — 0 in (25) , we obtain

/Zt~(Z><Lp) dxdtfn/Zt'gadxdt.
e )

+7Jo AYZ - A*(Z x @) dxdt
+’Y/ CijkleEkl(ll)(Z X 90)1 dzdt =0
S}

—p / llt-’l,bt dxdt—i—/ aijkleij(u)ekl(d;) dxdt
(C] (C]

1
+§/ CijklZiZjekl<'¢’) dxdt—i—/ h- dzdt =0,
(C] (]

for all ¢ € C™(O) and ¥ € H(O). Note that ,
(11) can be easily get from (23). Then the Theorem III.2 is
proved.

VI. CONCLUDING REMARKS

In this study, a three-dimensional mathematical model
is proposed to describe the magneto elastic interactions in
order to obtain the global existence of weak solutions. A
fractional generalization of the harmonic map heat flow
and an evolution equation for the displacement are used to
describe the model. Due to the non-local collinearities in
the model and the special structure of the magnetization
equation, we employed the commutator estimate and
some calculus inequalities of fractional order to prove the
convergence of the approximate solutions. We intend to
pursue our investigation by studying this problem with a
fractional in time derivative and to establish an existing
result.
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