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Abstract—In this paper, we consider the aeroelastic flutter
problem (AEFP) in terms of matrix equations. We provide a
general framework on the spectral theory of three parameter
AEFP in tensor product space under the auspices of the
techniques of multiparameter eigenvalue problems (MEP) in
matrix form. It is to noted that, the AEFP of an undamped
system can be converted to a linear singular two parameter
eigenvalue problem (2PEP) in double dimension and by quasi-
linearization technique it can be converted to a linear three
parameter eigenvalue problem (3PEP) of the same dimension.
The de-facto way to find the numeric of MEP is by solving
associated joint generalised eigenvalue problem (GEP) using
conventional numerical method, provided the problem being
nonsingular. Since the transformed version of AEFP in matrix
form is singular, so the usual solution techniques for MEP can
not be applied to address AEFP and it necessitates to adopt
alternate numerical techniques for the same. In the current
paper, it is intended to address singular AEFP under certain
assumptions. The paper also serves as a report on the Kronecker
product method, so called Delta method developed by Atkinson
for finding finite eigenvalues of singular three parameter AEFP.

Index Terms—Aeroelasticity, Aeroelastic flutter problem,
three parameter eigenvalue problems, Kronecker Product, gen-
eralized eigenvalue problems.

I. INTRODUCTION

AEROELASTIC flutter is a phenomenon that can occur
in aircraft and other structures when the interaction

between aerodynamic forces and structural dynamics
causes self-sustained oscillations [5], [6], [30]. These
oscillations can potentially lead to structural failure if not
properly managed. The flutter problem arises when elastic
deformation of structure couples with the aerodynamic
forces acting on it. As the airflow passes over the structure,
it induces vibrations that can become self-amplifying and
unstable. This can cause the structure to vibrate violently
or even break up. In the general study of fluid-structure
interaction, Aeroelasticity is being seen as a subfield
that is primarily concerned with the working fluid in air.
Moreover, aeroelasticity is a field that combines the fields
of aerodynamics with structural dynamics [12]. It is worth
mentioning that, aeroelastic flutter problem is a critical
design consideration in the aerospace sector. Understanding
and managing this problem is extremely important to ensure
the safety and performance of aircraft and other structures
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exposed to aerodynamic forces. The capacity to forecast
and manage aeroelastic instability is one of the fundamental
goals of modern aeroelasticity. In this case, instability
is the event in which the structure in question becomes
self-exiting, flutter in dynamic way (an-oscillatory) and
divergence in static way (a nonoscillatory). Divergence is
the subsidiary form of flutter, and we will use flutter to
refer to instability. The term dynamic flutter will be used to
describe flutter in oscillatory instability.

In linear aeroelastic system, the term flutter or divergence
can be formulated for the stability criterion as

Im(χ) > 0, for stability (1)

where, χ are the time-eigenvalues of the system, transformed
according to the fourier transform h(t) = h̄eiχt, for the sys-
tem coordinate h. The eigenvalues in the top half plane of the
argand plane are stable, whereas those in the lower half plane
are unstable. When the system characteristics (airspeed, air
density, and so on) are on the point of transitioning from
stability to instability or vice versa, then flutter occurs i.e,
when

Im(χ) = 0 (2)

In a given system, there are multiple flutter points, each of
which is characterized by a modal frequency and air value,
with the air density and other parameters being fixed. Flutter
points are always ordered as air speed increases, with the
first flutter point occurring at the lowest (positive) air speed
value. As a result, dynamic flutter and divergence points are
ordered individually, which either occur at negative air speed
or irrelevant to frequency. Only the first flutter point and the
first divergence point are commonly used in the industrial
field. The generalised laplase transform method [4] can be
used to find flutter points and for stability analysis of AEFP
pseudospectral continuation approach is found in [8]. The
solution method for nonlinear MEP which yields during the
analysis of aeroelastic flutter are available in [7].

The current paper combines the theory of numerical linear
algebra and aeroelastic stability analysis, and it offers a feasi-
ble ways to calculate useful aeroelastic stability parameters.
It considers a multiparameter spectral theory-based approach
for locating and assessing stability boundaries in parametric
systems. The paper is organized as follows: Section II con-
tains some basic definitions, which will be used in the section
to follow. Section III contains the general framework of
AEFP in terms of matrix equations. Similarly, in section IV
linearization of AEFP are considered. In section V the
structure of Singular 3-parameter AEFP is discussed and its
numerical illustration is presented in section VI. Finally, in
section VII a conclusion is drawn on the whole works.
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II. PRELIMINARIES

The notations and basic definitions presented in this sec-
tion will be used throughout the paper. The set of real
numbers and set of complex numbers will be denoted by R
and C, respectively. Th symbol ⊗ stands for usual Kronecker
product.
Definition 1: [15] The Kronecker Product (⊗) for two
matrices A and B is defined by A ⊗ B = aijB, where aij
are the elements of A in ith row and jth column.
Definition 2: [28] For any scalar λ ∈ C and nonzero vector
x, the GEP is to find the pair (λ, x) that satisfy the matrix
equation Ax = λBx, where A and B are the square matrices
of same size over C.
Definition 3: [19] The linear multiparameter eigenvalue
problem is to find the scalars λi ∈ C and the corresponding
non zero vectors wi ∈ Cni form set of k coupled equations
such that

(Ai −
k∑

j=1

λjAij)wi = 0 (3)

where Ai, Aij ∈ Cni×ni ; i, j = 1, . . . , k. The pair
(λ1, . . . , λk) is called eigenvalue, if for some λi the system
(3) has a solution for 0 ̸= wi; i = 1, . . . , k. Then, the
corresponding tensor product w = w1 ⊗ w2 ⊗ . . . ,⊗wk is
called the eigenvector (right). Linear 2PEP and 3PEP are
particular case of the system (3) when k = 1 and k = 2
respectively.

III. AEFP IN MATRIX FORM

Pons et al., [5] transformed AEFP in the frequency domain
into a 2PEP of the form given by

A(χ, p)x = 0 (4)

Ā(χ, p)x̄ = 0 (5)

where, χ ∈ C is a structural eigenvalue parameter, p ∈ R
is aerodynamic parameter and x ∈ C is eigenvector and P
is a matrix of order n × n matrix over the complex field
C. The problem is to find the p such that the imaginary
part of eigenvalues χ being zero. The equivalent condition
of the equation (2) is to exist solution under χ ∈ R on
the stability of the boundary. As the parameters χ, p are
unaffected by the conjugation, this operation enforces these
conditions. This procedure has been utilized in the analysis of
delay differential equations [17], Hopf bifurcation prediction
[18] and in aeroelastic or other structural stability problems
[6]. Here section model form [5], [6] with Theodorsen aero-
dynamics is considered as an initial trial system for numerical
experiments. This model has two degrees of freedom (2DOF)
plunge h and twist θ. In time domain, its governing equations
are

mḧ+ dhḣ+ khh−mxθ θ̈ = −L(t) (6)

IP θ̈ + dθ θ̇ + kθθ −mxθḧ = M(t) (7)

where dh and dθ denotes section plunge and twist damping
coefficients respectively. Similarly kh and kθ represents
section plunge and twist stiffnesses respectively. m and IP
denotes section mass and polar moment of inertia and xθ

is the section’s static imbalance. Taking Fourier transform,

TABLE I: Value of dimensionless parameters

Sl.No. Parameters Value

1 Mass ratio - µ +20

2 Radius of gyration - r +0.4899

3 Bending damping - ςh +1.4105

4 Torsional damping - ςθ +2.3508

5 Bending nat. frequency - wh +0.5642 rad/s

6 Torsional nat. frequency - wθ +1.4105 rad/s

7 Static imbalance - rθ −0.1

8 Pivot point location - a −0.2

[h(t), θ(t)] = [ĥ, θ̂]eiχt of this model yields the following
equations

(−mχ2 + idhχ+ kh)ĥ+mxθχ
2θ̂ = L(χ, ĥ, θ̂) (8)

mxθχ
2ĥ+ (−Ipχ

2 + ldθχ+ kθ)θ̂ = M(χ, ĥ, θ̂) (9)

In the environment of frequency domain, Theodorsen’s un-
steady aerodynamic theory [12] is used to model the aero-
dynamic loads

L = −χ2(Lhĥ+ Lθ θ̂) (10)

M = χ2(Mhĥ+Mθ θ̂) (11)

where Lh,Mh, Lθ,Mθ are aerodynamic coefficients, which
are complex functions of the reduced frequency k. Here k is
an aerodynamic parameter related to the airspeed U and b is
airfoil semichord given by

k :=
bχ

U

Nondimensionalising (8) and (9), the flutter problem takes
the following form [5].((

M0 +G0 +G1
1

k
+G2

1

k2

)
χ2 −D0χ−K0

)
x = 0

(12)
where,

G0 = 1
µ

(
1 a
a ( 18 + a2)

)
G1 = 1

µ

(
−2i 2i(1− a)

−i(1 + 2a) ia(1− 2a)

)
G2 = 1

µ

(
0 2
0 1 + 2a

)
;M0 =

(
1 −rθ

−rθ r2

)
D0 =

(
2iςhωh 0

0 2ir2ςθωθ

)
;K0 =

(
ω2
h 0
0 r2ω2

θ

)
For the section model, the value of dimensionless parameters
µ, r, ςh, ςθ, wh wθ, rθ and a are given in the Table III.

Equation (12) can be rearranged in terms of polynomial
forms by introducing new eigenvalue parameters such as
γ := U

b , τ := 1
k and λ := 1

χ . In γ − χ, this form becomes(
(M0 +G0)χ

2 +G1γχ+G2γ
2 −D0χ−K0

)
x = 0

(13)
In τ − λ form it becomes(

(M0 +G0) +G1τ +G2τ
2 −D0λ−K0λ

2
)
x = 0 (14)

For undamped system D0 = 0(
(M0 +G0) +G1τ +G2τ

2 −K0Λ
)
x = 0 (15)

where, Λ = λ2.
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IV. LINEARIZATION

Together with conjugate of the initial equation (15), the
following system is considered.

{(M0 +G0) + τG1 + τ2G2 − ΛK0}x = 0 (16)

{
(
M̄0 + Ḡ0

)
+ τḠ1 + τ2Ḡ2 − ΛK̄0}x̄ = 0 (17)

which are all two parameter nonlinear eigenvalue problems.
Such a problem consisting of several parameters can be
converted to a linear one by various linearization process
developed in [2]. After linearization, the system represented
by the equations (16)-(17) results the following system

[A1 + τA11 + ΛA12]

(
x
τx

)
= 0 (18)

[A2 + τA21 + ΛA22]

(
x̄
τ̄ x̄

)
= 0 (19)

where, A1 =

(
M0 +G0 0

0 −In

)
,

A11 =

(
G1 G2

In 0

)
, A12 =

(
−K0 0
0 0

)
,

A2 =

(
M̄0 + Ḡ0 0

0 −In

)
, A21 =

(
Ḡ1 Ḡ2

In 0

)
,

A22 =

(
−K̄0 0
0 0

)
The system (16)-(17) represents a linear 2-PEP of double

dimension. This system can also be linearized to the same
dimension using quasi-linearization approaches developed by
Muhic el. al., [2], but this results in a 3-PEP. For that, we
need to define a new eigenvalue parameter β satisfying the
equation β = τ2, then the system (16)-(17) reduces to

{(M0 +G0) + τG1 + βG2 − ΛK0}x = 0 (20)

{
(
M̄0 + Ḡ0

)
+ τḠ1 + βḠ2 − ΛK̄0}x̄ = 0 (21)

It is a linear 3-PEP having two linear equations only. A
third equation, which can be derived from the nonlinear
relation β − τ2 = 0, is necessary to convert it into a typical
3-PEP. In matrix form this relation reduces to

det

(
β τ
τ 1

)
= 0 (22)

Combining it with the system (16), AEFP of undamped
system can be recast as

E1(λ)x = 0 (23)

E2(λ)x̄ = 0 (24)

E3(λ)x1 = 0 (25)

where,
E1(λ) = (M0 +G0) + τG1 + βG2 − ΛK0

E2(λ) = (M0 +G0) + τG1 + βG2 − ΛK0

E3(λ) =

(
0 0
0 1

)
+ τ

(
0 1
1 0

)
+ β

(
1 0
0 0

)
Here, the problem is to find the 3-tuple λ = (τ, β,Λ) and
is called eigenvalue and the corresponding tensor product
z = x⊗x̄⊗x1 is called right eigenvector. Similarly, y⊗ȳ⊗y1
is the left eigenvector of the system (23)-(25) if 0 ̸= y, ȳ, y1,
y∗E1(λ) = 0, ȳ∗E2(λ) = 0 and y∗1E3(λ) = 0. The standard
results of the problem of such kind are reported in the works

of [1], [10], [11], [13], [19], [24], and the references therein.
Numerical solutions of the problem are found in the works of
[9], [16]. Converting the problem into joint GEPs in tensor
product space of the form is the de facto way, known as Delta
method [14] for spectral analysis of the problem (23)-(25)
and is given by

∆1z = τ∆0z (26)

∆2z = β∆0z (27)

∆3z = Λ∆0z (28)

where z = x ⊗ x̄ ⊗ x1 is decomposable tensor and each
operator matrices ∆i, i=0,1,2,3 is defined as follows

∆0 =

∣∣∣∣∣∣∣∣
G1 G2 −K0

Ḡ1 Ḡ2
¯−K0(

0 1
1 0

) (
1 0
0 0

) (
0 0
0 0

)
∣∣∣∣∣∣∣∣
⊗

(29)

∆1 =

∣∣∣∣∣∣∣∣
M0 +G0 G2 −K0

M̄0 + Ḡ0 Ḡ2
¯−K0(

0 0
0 1

) (
1 0
0 0

) (
0 0
0 0

)
∣∣∣∣∣∣∣∣
⊗

(30)

∆2 =

∣∣∣∣∣∣∣∣
G1 M0 +G0 −K0

Ḡ1 M̄0 + Ḡ0
¯−K0(

0 1
1 0

) (
0 0
0 1

) (
0 0
0 0

)
∣∣∣∣∣∣∣∣
⊗

(31)

∆3 =

∣∣∣∣∣∣∣∣
G1 G2 M0 +G0

Ḡ1 Ḡ2 M̄0 + Ḡ0(
0 1
1 0

) (
1 0
0 0

) (
0 0
0 1

)
∣∣∣∣∣∣∣∣
⊗

(32)

The system is referred as singular or nonsingular
according as the operator matrix ∆0 specified in equation
(29) is singular or nonsingular. The operator matrices
∆−1

0 ∆i for i = 1, 2, 3 commute for nonsingular problem
and the eigenvalues of the system (23)-(25) agree with the
eigenvalues of joint GEPs of the types (26)-(28). Using
the conventional numerical method available for GEPs
[20], we can find the numerical solution for nonsingular
problems using this relation. However, solving the problem
with low-order matrices is more convenient. The major
computational drawbacks are the cost of computing the
operator matrices ∆i, i = 0, 1, 2, 3 of size 8× 8. Thus, it is
necessary to adopt numerical algorithm to find the solution
of the problem. The works [22], [23], [25], [26] contains
more information on the numerical solutions of 3PEP.

While addressing aircraft aeroelasticity, the corresponding
linear flutter problems are singular. Such a problem cannot be
solved by transforming it into the corresponding joint GEPs.
For the singular case, there are infinitely many eigenvalues
that satisfy the equivalent systems of joint GEPs of the type
(26)-(28), which makes computing appropriate eigenvalues
of the problems challenging. The relationship between equa-
tions (23)-(25) and the joint GEP specified in equations (26)-
(28) is less investigated for singular problems. In the extant
literature, there are numerical techniques for computing some
of the eigenvalues for singular problems, although they are
mostly for the two-parameter case. Muhic and Plestenjak, [3]

IAENG International Journal of Applied Mathematics, 53:4, IJAM_53_4_19

Volume 53, Issue 4: December 2023

 
______________________________________________________________________________________ 



proposed a method for solving singular 2PEP by computing
common regular eigenvalues of the appropriate system of
two singular GEPs. In this case, if the eigenvalues of
the system (23)-(25) are simple, then they agree with the
finite regular eigenvalues of the system (26)-(28). Kosir and
Plestenjak, [27] extended this link to general singular 2-PEPs
with potentially many eigenvalues, allowing characteristic
polynomials to have a nontrivial common factor. Muhic and
Plestenjak, [2] also reported a numerical technique for singu-
lar 2PEPs, which included the linearization of the quadratic
2PEP and was based on Dooren’s staircase algorithm [29]
for computing the common regular component of 2PEPs and
extracting the finite regular eigenvalues. However, for large-
order matrices, this strategy is computationally inefficient.
Hochstenbachet et. al., [21] provide another algorithm, which
extends the Jacobi-Davidson type methods presented in their
previous work [20] to the regular singular problem.

V. SINGULAR 3-PARAMETER AEFP

The system (23) defines a 3-parameter AEFP that is
singular. As a result of the lack of a spectral theory for
singular problems, extracting all eigenvalues of the problem
becomes challenging. However, under certain assumptions, a
linear substitution of parameters τ, β,Λ can change a singular
problem into a nonsingular one [2]. Let ρi, i = 0, 1, 2, 3 be
any scalars. Consider the homogeneous formulation of the
problem

{η0 (M0 +G0) + η1G1 + η2G2 − η3K0}x = 0 (33)

{η0 (M0 +G0) + η1G1 + η2G2 − η3K0} x̄ = 0 (34){
η0

(
0 0
0 1

)
+ η1

(
0 1
1 0

)
+ η2

(
1 0
0 0

) }
x1 = 0

(35)
such that (η0, η1, η2, η3) ̸= (0, 0, 0, 0). Then the system
(33) is nonsingular if there exists linear combination
∆ = ρ0∆0 + ρ1∆1 + ρ2∆2 + ρ3∆3 such that det(∆) ̸= 0
for all ηi, i=0,1,2,3 are the eigenvalues of the joint GEPs

∆0z = η0∆z,∆1z = η1∆z,∆2z = η2∆z,∆3z = η3∆z
(36)

and the eigenvalues (η0, η1, η2, η3) gives finite eigenvalues
(τ, β,Λ) = (η1

η0
, η2

η0
, η3

η0
) of 3-parameter AEFP provided η0 ̸=

0.

VI. NUMERICAL ILLUSTRATIONS

Consider the undamped section model presented in [6] of
the system (16)-(17). Substituting the value of dimensionless
parameters as per Table 1, the system (23)-(25) reduces it to
the system (37)-(39).

E1(λ) =

(
1.05 0.09
0.09 0.2483

)
+ τ

(
−0.1i 0.12i
−0.03i −0.014i

)
+

β

(
0 0.1
0 0.03

)
+ Λ

(
−0.3183 0

0 −0.1354

)
(37)

E2(λ) =

(
1.05 0.09
0.09 0.2483

)
+ τ

(
0.1i −0.12i
0.03i 0.014i

)
+

β

(
0 0.1
0 0.03

)
+ Λ

(
−0.3183 0

0 −0.1354

)
(38)

TABLE II: Eigenvalues and their corresponding eigenvectors

(η0, η1, η2, η3) (τ, β,Λ)

(0.0597 + 0.0273i,−0.0522 − 0.2646i, (−2.3994 − 3.3349i,−5.3637+

−0.7573 + 0.8094i,−0.0131 + 0.0059i) 16.0105i,−0.1441 + 0.1647i)

(0.0597 − 0.0273i,−0.0522 + 0.2646i, (−2.3994 + 3.3349i,−5.3637−
−0.7573 − 0.8094i,−0.0131 − 0.0059i) 16.0105i,−0.1441 − 0.1647i)

(−0.0559,−0.1709,−0.5218,−0.0108) (3.0572, 9.3345, 0.1932)

(−0.1914,−0.2383,−0.2968,−0.0898) (1.2450, 1.5507, 0.4692)

(−0.1809, 0.0076,−0.0003,−0.6017) (−0.0420, 0.0017, 3.326)

(59.1967, 0, 0, 29.0984) (0, 0, 0.4916)

(0, 0,−1, 0) infinite

(−0.1769, 0, 0,−0.5884) (0, 0, 3.3262)

TABLE III: Values of parameters λ and τ

Sl.No. λ τ

1 −0.1933− 0.4260i −2.3994− 3.3349i

2 −0.1933 + 0.4260i −0.7573− 0.8094i

3 0.4395 + 0.0000i +3.05725 + 0.0000i

4 0.6850 + 0.0000i +1.2450 + 0.0000i

5 1.8237 + 0.0000i −0.0420 + 0.0000i

6 0.7011 + 0.0000i 0

7 1.8238 + 0.0000i 0

Fig. 1: λ-τ curve of undamped section model

E3(λ) =

(
0 0
0 1

)
+ τ

(
0 1
1 0

)
+ β

(
1 0
0 0

)
(39)

All the computations are performed in the environment
of MATLAB R2013a with Windows 8.1 operation
system, Intel(R). Here, the calculated ∆0 defined in
(40) is a complex matrix of size 8 × 8 and is singular.
Thus, the 3-parameter AEFP has 8 eigenvalues. Consider
ρ0 = 1, ρ1 = −3, ρ2 = 1, ρ3 = −2. Then the corresponding
∆ matrix involved in (36) is nonsingular.

∆0 =


−0.0637i 0 0.0382i 0.0318 0.0382i −0.0318 0 0
0 0 0.0318 0 −0.0318 0 0 0

−0.0096i 0 −0.0180i 0.0095 0 0 0.0162i −0.0135
0 0 0.0096 0 0 0 −0.0135 0

−0.0096i 0 0 −0.0180i −0.0096 0.0162i 0.0135
0 0 0 0 −0.0096 0 0.0135 0
0 0 −0.0041 0 −0.0041 0 −0.0038i 0
0 0 0 0 0 0 0 0


(40)

VII. CONCLUSION

In this paper, a general framework for 3-parameter AEFP
has been presented and analysed the stability boundaries in
parametric system using the spectral theory of MEP. Because
the problem is singular, the general Delta approach adopted
by Atkinson [14] cannot be used to solve it. Only finite eigen-
values have been calculated by transforming the problem into
a nonsingular one and then a nonsingular linear combination
is used to find the solution of the problem. Furthermore,
finding general solutions for the singular problem opens up
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new possibilities for developing new direct ways to address
the singular k-parameter problem. This could be viewed as a
promising future direction of research in the study of general
k-parameter eigenvalue problem.
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