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Abstract—In this study, we demonstrate the fixed point theo-
rem for rational contractive mapping on a complete G−metric
space. Furthermore, we provide an application of a first-order
boundary value problem solution (abbreviated as FOBVP sol.)
and an example of a binary relation in a Euclidean metric space.
Additionally, we include a numerical case study to demonstrate
the effectiveness of this new approach.

Index Terms—rational contractive mapping, fixed point, G-
Cauchy sequence, complete G-metric space.

I. INTRODUCTION

THE classical Banach contraction principle [1] yielded
various results in 1922, one of which was the existence

of fixed points for contractive mappings. In various metric
space settings, the Banach contraction principle has been
extended and established. One of the expanded variants of
the standard metric space is characterized by a proposed
relationship between continuity, contraction and complete-
ness, as suggested by Alam and Imdad [2], [3]. Further-
more, the fixed-point theorems of Ahmadullah et al. [4] and
Boyd-Wong [5] have been extended to nonlinear contraction
mappings. Additionally, several authors, including Senapati
and Dey [6], have developed the concept of w-distance in
relational metric spaces with arbitrary binary relations.

A new class of generalized metric spaces, known as G-
metric spaces, was first established by Mustafa and Sims
[7] in 2006 as a generalization of metric spaces. Subse-
quently, several fixed-point results on these spaces have
emerged (as seen in [8]–[12]). Ali, Imdad and Sessa [13]
demonstrated fixed-point theorems in R⃝-complete regular
symmetric spaces. The concept of fixed-point theorems
for nonexpansive mappings under binary relations was in-
troduced and demonstrated by Alam, George, Imdad and
Hasanuzzaman [14]. Fixed-point theorems on R⃝-complete
metric spaces were proven by Javed, Arshad, Baazeem
and Nabil [15]. Faruk et al. [16] demonstrated fixed-point
theorems for generalized nonlinear contractions in a new
metric space, utilizing a locally finitely T-transitive binary
relation and auxiliary functions. The study by Samet et al.
[17] focuses on metric fixed-point results in the context of
Kannan contractions and introduces a novel concept called α-
admissible mappings. Consequently, numerous authors have
extended and refined a significant number of conclusions
in metric fixed points for these mappings (as observed, for
example, in [18]–[21]).
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Since then, numerous mathematicians have developed gen-
eralizations of the contraction mapping principle, leading
to a wealth of fixed-point theorems in metric spaces that
continue to be explored to this day. Gopi Prasad [22] in-
vestigated fixed points in relational metric spaces of Kannan
contractive mappings. Gopi Prasad [23] discussed fixed-point
theorems with applications to boundary value problems in
relational metric spaces. Over the years, researchers have
been exploring metric spaces to discover new perspectives
and extensions of the extensively studied boundary value
problem. Throughout several years, numerous researchers
have focused on various metric spaces (as evident in [24]–
[35]). The objective of this study is to establish a fixed-point
theorem for rational contractive mappings in a complete G-
metric spaces.

II. PRELIMINARIES

Let us begin this article with a few fundamental defini-
tions, propositions and relevant theorems on G-metric spaces.
Mustafa and Sims introduced a new class of generalized
metric spaces, called G-metric spaces, in 2006 (see [7]).
These spaces extend the notion of standard metric spaces
(X, d) and since then, several fixed-point theorems have been
established for them (refer to [8]–[12]). This paper presents
the essential definitions and results of G-metric spaces that
are relevant to the subsequent sections of the article. For
more detailed information, we recommend referring to [7].

Definition 1. [7] Let Λ be a non empty set and let G :
Λ × Λ × Λ → [0,∞) be a function satisfying the following
conditions:

(1) G(ϖ, υ, ϱ) = 0 if ϖ = υ = ϱ,
(2) G(ϖ, υ, υ) > 0; for all ϖ, υ ∈ Λ with ϖ ̸= υ,
(3) G(ϖ, υ, υ) ≤ G(ϖ, υ, ϱ) for all ϖ, υ, ϱ ∈ Λ with

υ ̸= ϱ,
(4) G(ϖ, υ, ϱ) = G(ϖ, ϱ, υ) = G(ϱ,ϖ, υ) = ...

(symmetry in all three variables),
(5) G(ϖ, υ, ϱ) ≤ G(ϖ,ϑ, ϑ) + G(ϑ, υ, ϱ)

for all ϖ, υ, ϱ, ϑ ∈ Λ (rectangle inequality).

Then the function G is called a generalized metric or
more specially, a G-metric on Λand (Λ, G) is called a G-
metric space.

Definition 2. [7] Let (Λ, G) be a G-metric space.

(i) The sequence {ϖσ} G-convergent to ϖ ∈ Λ if and only
if lim

σ,ϱ→∞
G(ϖσ, ϖϱ, ϖ) = 0.

(ii) The sequence {ϖσ} G-Cauchy sequence if and only if
lim

ϖ,ϱ,ζ→∞
G(ϖσ, ϖϱ, ϖζ) = 0.

(iii) (Λ, G) is G-complete if and only if every G-Cauchy
sequence in Λ is G-convergent.
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Definition 3. [7] A G− metric space (Λ, G) is called sym-
metric if

G(ϖ, υ, υ) = G(υ,ϖ,ϖ) for all ϖ, υ ∈ Λ.

In this case, N represents the set of natural numbers, N0

represents the set of whole numbers and G denotes a non-
empty binary relation (BR, in short).

Definition 4. Suppose Λ is a non-empty set under G , defined
as a subset of Λ × Λ × Λ. Consequently, we refer to ϖ as
related to υ if and only if (ϖ, υ, υ) ∈ G under G .

Definition 5. A binary relation G on a non-empty set Λ is
defined such that two elements ϖ, υ ∈ Λ are G-comparative
if either (ϖ, υ, υ) ∈ G or (υ,ϖ,ϖ) ∈ G , which can be
written as [ϖ, υ, υ] ∈ G .

Definition 6. A binary relation G on a non-empty set Λ
and two elements ϖ, υ ∈ Λ, a sequence {ϖσ} in G is G

-preserving if (ϖσ, ϖσ+1, ϖσ+1) ∈ G for all σ ∈ N0.

Definition 7. A self-mapping ∆ on a non-empty set Λ
induces a ∆-closed binary relation G on Λ if for all ϖ, υ ∈ Λ
such that (ϖ, υ, υ) ∈ G , then (∆ϖ,∆υ,∆υ) ∈ G .

Definition 8. Assume that Λ is a non-empty set under G on
Λ and ∆ is a self-mapping on Λ, if G is ∆-closed, then G
is also ∆σ-closed for all σ ∈ N0, where ∆σ represents the
nth iteration of ∆.

Definition 9. A G-metric space (Λ, G) with a binary relation
G on Λ is said to be G-complete if any G-preserving G-Cauchy
sequence in Λ is G-convergent.

Definition 10. Let (Λ, G) be a G-metric space, G a binary
relation on Λ and ϖ ∈ Λ. A self mapping ∆ on Λ is called
G-continuous at ϖ if for any G-preserving sequence {ϖσ}
such that ϖσ

G−→ ϖ, we have ∆(ϖσ)
G−→ ∆(ϖ). Moreover,

∆ is called G-continuous if it is G-continuous at each point
of Λ.

Definition 11. Assume that (Λ, G,G ) is a G−metric space
under G , let E be a subset of Λ. E is said to be G-connected
if there is a path in G from ϖ to υ for every ϖ, υ ∈ E.

III. MAIN RESULTS

Theorem 1. Let the mapping ∆ : Λ → Λ and (Λ, G) be a
complete G− metric space such that

(a) Λ(∆,G ) is non-empty set;
(b) ∆ is G-continuous;
(c) G is ∆-closed;
(d) There exists p, q, r ∈ [0, 1) such that

G(∆ϖ,∆υ,∆ϖ) ≤ pG(ϖ, υ,ϖ)

+ q
G(ϖ,∆ϖ,∆ϖ) · G(υ,∆υ,∆υ)

1 + G(ϖ,∆ϖ,∆ϖ)

+ r
G(υ,∆ϖ,∆ϖ) · G(ϖ,∆υ,∆υ)

1 + G(ϖ,∆ϖ,∆ϖ)
,

(1)

for all ϖ, υ ∈ Λ with (ϖ, υ,ϖ) ∈ G and 0 ≤ p+ q+ r < 1.
Then, there exists ϖ ∈ Λ such that ϖ ∈ Λϖ.

Proof: Assume that (a) and let us take ϖ0 as arbitrary
element of Λ(∆,G ).
Formulate a sequence {ϖσ} that is

ϖσ = Λσ(ϖ0) for all σ ∈ N0.

Because (ϖ0,∆ϖ0,∆ϖ0) ∈ G and G is Λ-closed, we can
apply Theorem 1 to obtain

(∆1ϖ0,∆
2ϖ0,∆

2ϖ0),(∆
2ϖ0,∆

3ϖ0,∆
3ϖ0),

...., (∆σϖ0,∆
σ+1ϖ0,∆

σ+1ϖ0) ∈ G

so that

(ϖσ, ϖσ+1, ϖσ+1) ∈ G for all σ ∈ N0.

Then, the sequence {ϖσ} is G- preserving.
By applying the contractive condition (d), we obtain

G( ϖσ, ϖσ+1, ϖσ+1) = G(∆ϖσ−1,∆ϖσ,∆ϖσ)

≤ pG(ϖσ−1, ϖσ, ϖσ)

+ q
G(ϖσ−1,∆ϖσ−1,∆ϖσ−1) · G(ϖσ,∆ϖσ,∆ϖσ)

1 + G(ϖσ−1,∆ϖσ−1,∆ϖσ−1)

+ r
G(ϖσ,∆ϖσ−1,∆ϖσ−1) · G(ϖσ−1,∆ϖσ,∆ϖσ)

1 + G(ϖσ−1,∆ϖσ−1,∆ϖσ−1)

≤ pG(ϖσ−1, ϖσ, ϖσ)

+ q
G(ϖσ−1, ϖσ, ϖσ) · G(ϖσ, ϖσ+1, ϖσ+1)

1 + G(ϖσ−1, ϖσ, ϖσ)

+ r
G(ϖσ, ϖσ, ϖσ) · G(ϖσ−1, ϖσ+1, ϖσ+1)

1 + G(ϖσ−1, ϖσ, ϖσ)

≤ pG(ϖσ−1, ϖσ, ϖσ)

+ q
G(ϖσ−1, ϖσ, ϖσ) · G(ϖσ, ϖσ+1, ϖσ+1)

1 + G(ϖσ−1, ϖσ, ϖσ)

+ r
G(ϖσ, ϖσ, ϖσ) · G(ϖσ−1, ϖσ+1, ϖσ+1)

1 + G(ϖσ−1, ϖσ, ϖσ)

G(ϖσ, ϖσ+1, ϖσ+1) ≤ pG(ϖσ−1, ϖσ, ϖσ)

+ qG(ϖσ−1, ϖσ, ϖσ)

G(ϖσ, ϖσ+1, ϖσ+1) ≤ (p+ q)G(ϖσ−1, ϖσ, ϖσ)

By induction, we have

G(ϖσ, ϖσ+1, ϖσ+1) ≤
(
p+ q

)σ

G(ϖ0, ϖ1, ϖ1)

For any positive integers σ, ϱ satisfying the condition σ < ϱ,
we have

G(ϖσ, ϖϱ, ϖϱ)

≤ G(ϖσ, ϖσ+1, ϖσ+1) + ....+ G(ϖϱ−1, ϖϱ, ϖϱ)

≤
(
δσ + ....+ δϱ−1

)
G(ϖ0, ϖ1, ϖ1)

≤ δσ

1− δ
G(ϖ0, ϖ1, ϖ1), where δ = p+ q

Taking limit as σ, ϱ→ ∞, we get

lim
σ,ϱ→∞

G(ϖσ, ϖϱ, ϖϱ) = 0. (2)

To prove: {ϖσ} is a G-Cauchy sequence.

G(ϖσ, ϖϱ, ϖζ) ≤ G(ϖσ, ϖϱ, ϖϱ) + G(ϖϱ, ϖϱ, ϖζ)

Taking limit as σ, ϱ, ζ → ∞, we get

lim
σ,ϱ,ζ→∞

G(ϖσ, ϖϱ, ϖζ) = 0. (3)

Therefore, {ϖσ} is a G-Cauchy sequence and since (Λ, G) is
a complete G-metric space, there exists an element ϖ ∈ Λ.
As a result, we have

lim
σ→∞

ϖσ = ϖ.
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Since ∆ is G-continuous, then ϖσ+1 = ∆ϖσ
G−→ ∆ϖ.

Therefore, ∆ϖ = ϖ.
Hence, ϖ is a fixed point of ∆.
Let ϖ and υ be two fixed points of ∆. Then, we obtain
(ϖ, υ, υ) ∈ G (or) (υ,ϖ,ϖ) ∈ G .
For (ϖ, υ, υ) ∈ G , we have

G(ϖ, υ, υ) = G(∆ϖ,∆υ,∆υ)

≤ pG(ϖ, υ, υ)

+ q
G(ϖ,∆ϖ,∆ϖ) · G(υ,∆υ,∆υ)

1 + G(ϖ,∆ϖ,∆ϖ)

+ r
G(υ,∆ϖ,∆ϖ) · G(ϖ,∆υ,∆υ)

1 + G(ϖ,∆ϖ,∆ϖ)

≤ pG(ϖ, υ, υ) + rG(ϖ, υ, υ)

≤ (p+ r)G(ϖ, υ, υ)

< G(ϖ, υ, υ)

which is a contradiction. Hence, we must have ϖ = υ.
Similarly, for (υ,ϖ,ϖ) ∈ G , we have υ = ϖ. Hence, ∆
has a unique fixed point.

Corollary 1. Let the mapping ∆ : Λ → Λ and (Λ, G) be a
complete G− metric space such that

(a) Λ(∆,G ) is non-empty set;
(b) ∆ is G- continuous;
(c) G is ∆-closed;
(d) There exists p, q, r ∈ [0, 1) such that

G(∆ϖ,∆υ,∆ϑ)

≤ pG(ϖ, υ, ϑ)

+ q
G(ϖ,∆ϖ,∆ϖ) · G(υ,∆υ,∆υ) · G(ϑ,∆ϑ,∆ϑ)

1 + G(ϖ,∆ϖ,∆ϖ)

+ r
G(υ,∆ϖ,∆ϑ) · G(ϖ,∆υ,∆ϑ) · G(ϑ,∆ϖ,∆υ)

1 + G(ϖ,∆ϖ,∆ϖ)
, (4)

for all ϖ, υ, ϑ ∈ Λ with (ϖ, υ, ϑ) ∈ G and 0 ≤ p+q+r < 1.
Then, there exists ϖ ∈ Λ such that ϖ ∈ Λϖ.

Proof: It follows from the fact that (4) implies (1).

Example 1. Let the binary relation be defined on the interval
Λ = [0, 5], G =

{
(0, 0, 0), (0, 12 , 0), (

1
2 , 1,

1
2 ), (1, 1, 1),

(1, 32 , 1), (
3
2 , 2,

3
2 ), (2, 2, 2), (2,

5
2 , 2), (

5
2 , 3,

5
2 ), (3, 3, 3),

(3, 72 , 3), (
7
2 , 4,

7
2 ), (4, 4, 4), (4,

9
2 , 4), (

9
2 , 5,

9
2 )
}

and Euclidean metric G3; defined by

G
(
(ϖ1, ϖ2,ϖ3), (υ1, υ2, υ3), (υ1, υ2, υ3)

)
=
√
(ϖ1 − υ1)2 + (ϖ2 − υ2)2 + (ϖ3 − υ3)2

then Λ is a complete G-metric space. Define the function
∆ : Λ → Λ as follows

∆(ϖ1, ϖ2, ϖ3) =

{
(ϖ1, 0, ϖ3) if ϖ3 ≥ ϖ1 ≥ ϖ2

(0, ϖ2, 0) if ϖ3 ≤ ϖ1 < ϖ2

We notice that

G(∆ϖ,∆υ,∆ϖ) ≤ pG(ϖ, υ,ϖ)

+ q
G(ϖ,∆ϖ,∆ϖ) · G(υ,∆υ,∆υ)

1 + G(ϖ,∆ϖ,∆ϖ)

+ r
G(υ,∆ϖ,∆ϖ) · G(ϖ,∆υ,∆υ)

1 + G(ϖ,∆ϖ,∆ϖ)

is not valid if (ϖ, υ,ϖ) ∈
{
(0, 2, 0), (1, 0, 1), (0, 2, 0)

}
.

As any given p, q, r ∈ [0, 1), we have

G
(
∆(

3

2
, 2,

3

2
),∆(1, 1, 1),∆(

3

2
, 2,

3

2
)
)

< pG
(
(
3

2
, 2,

3

2
), (1, 1, 1), (

3

2
, 2,

3

2
)
)

+ q

{
G
(
( 32 , 2,

3
2 ),∆( 32 , 2,

3
2 ),∆( 32 , 2,

3
2 )
)

1 + G
(
( 32 , 2,

3
2 ),∆( 32 , 2,

3
2 ),∆( 32 , 2,

3
2 )
)

· G
(
(1, 1, 1),∆(1, 1, 1),∆(1, 1, 1)

)}

+ r

{
G
(
(1, 1, 1),∆( 32 , 2,

3
2 ),∆( 32 , 2,

3
2 )
)

1 + G
(
( 32 , 2,

3
2 ),∆( 32 , 2,

3
2 ),∆( 32 , 2,

3
2 )
)

· G
(
(
3

2
, 2,

3

2
),∆(1, 1, 1),∆(1, 1, 1)

)}

G
(
(0, 2, 0), (1, 0, 1), (0, 2, 0)

)
< pG

(
(
3

2
, 2,

3

2
), (1, 1, 1), (

3

2
, 2,

3

2
)
)

+ q

{
G
(
( 32 , 2,

3
2 ), (0, 2, 0), (0, 2, 0)

)
1 + G

(
( 32 , 2,

3
2 ), (0, 2, 0), (0, 2, 0)

)
· G
(
(1, 1, 1), (1, 0, 1), (2, 0, 2)

)}

+ r

{
G
(
(1, 1, 1), (0, 2, 0), (0, 2, 0)

)
1 + G

(
( 32 , 2,

3
2 ), (0, 2, 0), (0, 2, 0)

)
· G
(
(
3

2
, 2,

3

2
), (1, 0, 1), (1, 0, 1)

)}
√
6 < p

√
6

2
+ q

3√
2 + 3

+ r
3√
2 + 3

Therefore, the map ∆ does not possess a fixed point in Λ .
Then, for all ϖ, υ ∈ Λ, the triplet (ϖ, υ,ϖ) ∈ G satisfies
our contraction condition. Similarly, the G-continuity of ∆ is
easily verifiable.

Thus, by satisfying all of the conditions of the above
Theorem 1, ∆ possesses a unique fixed point at (0, 0, 0).

Theorem 2. Let ∆ : Λ → Λ be a mapping and (Λ, G) be a
complete G−metric space such that

(a) Λ(∆,G ) is non-empty set;
(b) ∆ is G-continuous;
(c) G is ∆-closed;
(d) There exists p, q, r ∈ [0, 1) such that

G(∆ϖ,∆υ,∆υ) ≤ pG(ϖ, υ, υ)

+ q
[
G(ϖ,∆ϖ,∆ϖ) + G(υ,∆υ,∆υ)

]
+ r
[
G(ϖ,∆υ,∆υ) + G(υ,∆ϖ,∆ϖ)

]
(5)

for all ϖ, υ ∈ Λ with (ϖ, υ, υ) ∈ G and 0 ≤ p+ q+ r < 1.
Then, ∆ has a fixed point.
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Proof: Assume that (a) and let us take ϖ0 as arbitrary
element of Λ(∆,G ).
Formulate a sequence {ϖσ} that is

ϖσ = Λσ(ϖ0) for all σ ∈ N0.

Because (ϖ0,∆ϖ0,∆ϖ0) ∈ G and G is Λ-closed, we can
apply Theorem 1 to obtain

(∆1ϖ0,∆
2ϖ0, ∆

2ϖ0), (∆
2ϖ0,∆

3ϖ0,∆
3ϖ0),

...., (∆σϖ0,∆
σ+1ϖ0,∆

σ+1ϖ0) ∈ G

so that

(ϖσ, ϖσ+1, ϖσ+1) ∈ G for all σ ∈ N0.

Then, the sequence {ϖσ} is G- preserving.
By applying the contractive condition (d), we obtain

G(ϖσ, ϖσ+1, ϖσ+1) = G(∆ϖσ−1,∆ϖσ,∆ϖσ)

≤ pG(ϖσ−1, ϖσ, ϖσ)

+ q
[
G(ϖσ−1,∆ϖσ−1,∆ϖσ−1) + G(ϖσ,∆ϖσ,∆ϖσ)

]
+ r
[
G(ϖσ,∆ϖσ−1,∆ϖσ−1) + G(ϖσ−1,∆ϖσ,∆ϖσ)

]
G(ϖσ, ϖσ+1, ϖσ+1) ≤ pG(ϖσ−1, ϖσ, ϖσ)

+ q
[
G(ϖσ−1, ϖσ, ϖσ) + G(ϖσ, ϖσ+1, ϖσ+1)

]
+ r
[
G(ϖσ, ϖσ, ϖσ) + G(ϖσ−1, ϖσ+1, ϖσ+1)

]
≤ pG(ϖσ−1, ϖσ, ϖσ) + qG(ϖσ−1, ϖσ, ϖσ)

+ qG(ϖσ, ϖσ+1, ϖσ+1) + rG(ϖσ, ϖσ+1, ϖσ+1)

(1− q− r)G(ϖσ, ϖσ+1, ϖσ+1) ≤ (p+ q)G(ϖσ−1, ϖσ, ϖσ)

G(ϖσ, ϖσ+1, ϖσ+1) ≤
(

p+ q

1− q− r

)
G(ϖσ−1, ϖσ, ϖσ)

By induction, we have

G(ϖσ, ϖσ+1, ϖσ+1) ≤
(

p+ q

1− q− r

)σ

G(ϖ0, ϖ1, ϖ1)

for all σ ∈ N0. For any positive integers σ, ϱ satisfying the
condition σ < ϱ, we have

G(ϖσ, ϖϱ, ϖϱ)

≤ G(ϖσ, ϖσ+1, ϖσ+1) + ....+ G(ϖϱ−1, ϖϱ, ϖϱ)

≤
(
δσ + ....+ δϱ−1

)
G(ϖ0, ϖ1, ϖ1)

≤ δσ

1− δ
G(ϖ0, ϖ1, ϖ1), where δ =

p+ q

1− q− r

Taking limit as σ, ϱ→ ∞, we get

lim
σ,ϱ→∞

G(ϖσ, ϖϱ, ϖϱ) = 0. (6)

To prove: {ϖσ} is a G-Cauchy sequence.

G(ϖσ, ϖϱ, ϖζ) ≤ G(ϖσ, ϖϱ, ϖϱ) + G(ϖϱ, ϖϱ, ϖζ)

Taking limit as σ, ϱ, ζ → ∞, we get

lim
σ,ϱ,ζ→∞

G(ϖσ, ϖϱ, ϖζ) = 0. (7)

Therefore, {ϖσ} is a G-Cauchy sequence and since (Λ, G) is
a complete G-metric space, there exists an element ϖ ∈ Λ.
As a result, we have

lim
σ→∞

ϖσ = ϖ.

Since Λ is G- continuous, then

ϖσ+1 = Λϖσ
G−→ ∆ϖ.

Therefore, ∆ϖ = ϖ.
Hence, ϖ is a fixed point of ∆.

Theorem 3. If ∆(Λ) is Gκ-connected in addition to the
conditions of Theorem 2, then there exists a unique fixed
point of ∆.

Proof: Suppose ϖ and µ are fixed points of the function
∆ and belong to the set F (∆) then for all σ ∈ N0, we have

∆σϖ = ϖ, ∆σµ = µ. (8)

Given our assumption, there is a finite length path l (denoted
by κ0, κ1, ...., κl) in the Gκ such that it connects ϖ to µ.

κ0 = ϖ, κl = µ and
[
κi, κi+1

]
∈ G (9)

As a consequence of the mapping being ∆-closed, it satisfies
both the properties of G-completeness and G-continuity

(∆σκi,∆
σκi+1,∆

σκi+1) ∈ G , for all i (0 ≤ i ≤ l − 1)
(10)

By applying the contractive condition (d), we obtain

G(∆σκi,∆
σκi+1, ∆

σκi+1)

≤ pG(∆σ−1κi,∆
σ−1κi+1,∆

σ−1κi+1)

+ q

[
G(∆σ−1κi,∆

σκi,∆
σκi)

+ G(∆σ−1κi+1,∆
σκi+1,∆

σκi+1)

]
+ r

[
G(∆σ−1κi+1,∆

σκi,∆
σκi)

+ G(∆σ−1κi,∆
σκi+1,∆

σκi+1)

]
G(∆σκi,∆

σκi+1, ∆
σκi+1)

≤ pG(∆σ−1κi,∆
σ−1κi+1,∆

σ−1κi+1)

+ q

[
G(∆σ−1κi,∆

σκi,∆
σκi)

+ G(∆σ−1κi+1,∆
σκi+1,∆

σκi+1)

]
+ r

[
G(∆σ−1κi+1,∆

σκi,∆
σκi)

+ G(∆σ−1κi,∆
σκi+1,∆

σκi+1)

]
G(∆σκi,∆

σκi+1,∆
σκi+1)

≤ pG(∆σ−1κi,∆
σ−1κi+1,∆

σ−1κi+1)

+ q

[
G(∆σ−1κi,∆

σ−1κi+1,∆
σ−1κi+1)

+ G(∆σ−1κi+1,∆
σκi,∆

σκi)

+ G(∆σ−1κi+1,∆
σκi+1,∆

σκi+1)

]
+ r

[
G(∆σ−1κi+1,∆

σκi,∆
σκi)

+ G(∆σ−1κi,∆
σ−1κi+1,∆

σ−1κi+1)

+ G(∆σ−1κi+1,∆
σκi+1,∆

σκi+1)

]
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G(∆σκi,∆
σκi+1,∆

σκi+1)

≤ pG(∆σ−1κi,∆
σ−1κi+1,∆

σ−1κi+1)

+ q

[
G(∆σ−1κi,∆

σ−1κi+1,∆
σ−1κi+1)

+ G(∆σκi,∆
σ−1κi+1,∆

σ−1κi+1)

+ G(∆σ−1κi+1,∆
σκi+1,∆

σκi+1)

]
+ r

[
G(∆σκi,∆

σ−1κi+1,∆
σ−1κi+1)

+ G(∆σ−1κi+1,∆
σκi+1,∆

σκi+1)

+ G(∆σ−1κi,∆
σ−1κi+1,∆

σ−1κi+1)

]

G(∆σκi,∆
σκi+1,∆

σκi+1)

≤ pG(∆σ−1κi,∆
σ−1κi+1,∆

σ−1κi+1)

+ q

[
G(∆σ−1κi,∆

σ−1κi+1,∆
σ−1κi+1)

+ G(∆σκi,∆
σκi+1,∆

σκi+1)

]
+ r

[
G(∆σκi,∆

σκi+1,∆
σκi+1)

+ G(∆σ−1κi,∆
σ−1κi+1,∆

σ−1κi+1)

(1− q− r)G(∆σκi,∆
σκi+1,∆

σκi+1)

≤ (p+ q+ r)G(∆σ−1κi,∆
σ−1κi+1,∆

σ−1κi+1)

G(∆σκi,∆
σκi+1,∆

σκi+1)

≤
(
p+ q+ r

1− q− r

)
G(∆σ−1κi,∆

σ−1κi+1,∆
σ−1κi+1)

We introduce the notation Giσ = G(∆σκi,∆
σκi+1,∆

σκi+1).
From this definition, we can deduce the following results:

Giσ ≤
(
p+ q+ r

1− q− r

)
Giσ−1, for each i (0 ≤ i ≤ l − 1) (11)

By induction, we have

Giσ ≤
(
p+ q+ r

1− q− r

)
Giσ−1

≤
(
p+ q+ r

1− q− r

)2

Giσ−2

≤
(
p+ q+ r

1− q− r

)3

Giσ−3

.

.

.

≤
(
p+ q+ r

1− q− r

)σ

Gi0

so that

Giσ ≤
(
p+ q+ r

1− q− r

)σ

Gi0 (12)

Taking limit as σ → ∞ in the above inequality, we have

lim
σ→∞

Giσ = 0 for each i (0 ≤ i ≤ l − 1) (13)

From the definition of rectangular inequality in (11), we
obtain

G(ϖ, υ, υ) = G(∆σκ0,∆
σκl,∆

σκl)

≤ G0σ + G1σ + ....+ Gl−1
σ → 0 as σ → ∞.

Hence, ∆ has a unique fixed point.

Corollary 2. Let ∆ : Λ → Λ be a mapping and (Λ, G) be a
complete G−metric space such that

(a) Λ(∆,G ) is non-empty set;
(b) ∆ is G-continuous;
(c) G is ∆-closed;
(d) There exists p, q, r ∈ [0, 1) such that

G(∆ϖ,∆υ,∆ϑ)

≤ pG(ϖ, υ, ϑ)

+ q
[
G(ϖ,∆ϖ,∆ϖ) + G(υ,∆υ,∆υ) + G(ϑ,∆ϑ,∆ϑ)

]
+ r
[
G(ϖ,∆υ,∆ϑ) + G(υ,∆ϖ,∆ϑ) + G(ϑ,∆ϖ,∆υ)

]
(14)

for all ϖ, υ, ϑ ∈ Λ with (ϖ, υ, ϑ) ∈ G and 0 ≤ p+q+r < 1.
Then, ∆ has a fixed point.

Proof: Assume that (a) and let us take ϖ0 as arbitrary
element of Λ(∆,G ).
Formulate a sequence {ϖσ} that is

ϖσ = Λσ(ϖ0) for all σ ∈ N0.

Because (ϖ0,∆ϖ0,∆ϖ0) ∈ G and G is Λ-closed, we can
apply Theorem 1 to obtain

(∆1ϖ0,∆
2ϖ0, ∆

2ϖ0), (∆
2ϖ0,∆

3ϖ0,∆
3ϖ0),

...., (∆σϖ0,∆
σ+1ϖ0,∆

σ+1ϖ0) ∈ G

so that

(ϖσ, ϖσ+1, ϖσ+1) ∈ G for all σ ∈ N0.

Then, the sequence {ϖσ} is G- preserving.
By applying the contractive condition (d), we obtain

G(ϖσ, ϖσ+1, ϖσ+1) = G(∆ϖσ−1,∆ϖσ,∆ϖσ)

≤ pG(ϖσ−1, ϖσ, ϖσ)

+ q
[
G(ϖσ−1,∆ϖσ−1,∆ϖσ−1) + 2G(ϖσ,∆ϖσ,∆ϖσ)

]
+ r
[
2G(ϖσ,∆ϖσ−1,∆ϖσ−1) + G(ϖσ−1,∆ϖσ,∆ϖσ)

]
G(ϖσ, ϖσ+1, ϖσ+1) ≤ pG(ϖσ−1, ϖσ, ϖσ)

+ q
[
G(ϖσ−1, ϖσ, ϖσ) + 2G(ϖσ, ϖσ+1, ϖσ+1)

]
+ r
[
2G(ϖσ, ϖσ, ϖσ) + G(ϖσ−1, ϖσ+1, ϖσ+1)

]
≤ pG(ϖσ−1, ϖσ, ϖσ) + qG(ϖσ−1, ϖσ, ϖσ)

+ 2qG(ϖσ, ϖσ+1, ϖσ+1) + rG(ϖσ, ϖσ+1, ϖσ+1)

(1− 2q− r)G(ϖσ, ϖσ+1, ϖσ+1)

≤ (p+ q)G(ϖσ−1, ϖσ, ϖσ)

G(ϖσ, ϖσ+1, ϖσ+1) ≤
(

p+ q

1− 2q− r

)
G(ϖσ−1, ϖσ, ϖσ)
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By induction, we have

G(ϖσ, ϖσ+1, ϖσ+1) ≤
(

p+ q

1− 2q− r

)σ

G(ϖ0, ϖ1, ϖ1)

for all σ ∈ N0. For any positive integers σ, ϱ satisfying the
condition σ < ϱ, we have

G(ϖσ, ϖϱ, ϖϱ)

≤ G(ϖσ, ϖσ+1, ϖσ+1) + ....+ G(ϖϱ−1, ϖϱ, ϖϱ)

≤
(
δσ + ....+ δϱ−1

)
G(ϖ0, ϖ1, ϖ1)

≤ δσ

1− δ
G(ϖ0, ϖ1, ϖ1), where δ =

p+ q

1− 2q− r

Taking limit as σ, ϱ→ ∞, we get

lim
σ,ϱ→∞

G(ϖσ, ϖϱ, ϖϱ) = 0. (15)

To prove: {ϖσ} is a G-Cauchy sequence.

G(ϖσ, ϖϱ, ϖζ) ≤ G(ϖσ, ϖϱ, ϖϱ) + G(ϖϱ, ϖϱ, ϖζ)

Taking limit as σ, ϱ, ζ → ∞, we get

lim
σ,ϱ,ζ→∞

G(ϖσ, ϖϱ, ϖζ) = 0. (16)

Therefore, {ϖσ} is a G-Cauchy sequence and since (Λ, G) is
a complete G-metric space, there exists an element ϖ ∈ Λ.
As a result, we have

lim
σ→∞

ϖσ = ϖ.

Since Λ is G- continuous, then

ϖσ+1 = Λϖσ
G−→ ∆ϖ.

Therefore, ∆ϖ = ϖ.
Hence, ϖ is a fixed point of ∆.

Corollary 3. If ∆(Λ) is Gκ-connected in addition to the
conditions of Corollary 2, then there exists a unique fixed
point of ∆.

Proof: It follows from the fact that Corollary 3 implies
Corollary 2.

Example 2. Let the binary relation be defined on the interval
Λ = [0, 5], G =

{
(0, 0, 0), (0, 12 , 0), (

1
2 , 1,

1
2 ), (1, 1, 1),

(1, 32 , 1), (
3
2 , 2,

3
2 ), (2, 2, 2), (2,

5
2 , 2), (

5
2 , 3,

5
2 ), (3, 3, 3),

(3, 72 , 3), (
7
2 , 4,

7
2 ), (4, 4, 4), (4,

9
2 , 4), (

9
2 , 5,

9
2 )
}

and Euclidean metric G3; defined by

G
(
(ϖ1, ϖ2,ϖ3), (υ1, υ2, υ3), (υ1, υ2, υ3)

)
=
√
(ϖ1 − υ1)2 + (ϖ2 − υ2)2 + (ϖ3 − υ3)2

then Λ is a complete G- metric space.
Define the function ∆ : Λ → Λ as follows

∆(ϖ1, ϖ2, ϖ3) =

{
(ϖ1, 0, ϖ3) if ϖ3 ≥ ϖ1 ≥ ϖ2

(0, ϖ2, 0) if ϖ3 ≤ ϖ1 < ϖ2

We notice that

G(∆ϖ,∆υ,∆υ) ≤ pG(ϖ, υ, υ)

+ q
[
G(ϖ,∆ϖ,∆ϖ) + G(υ,∆υ,∆υ)

]
+ r
[
G(ϖ,∆υ,∆υ) + rG(υ,∆ϖ,∆ϖ)

]

is not valid if (ϖ, υ,ϖ) ∈
{
(0, 2, 0), (1, 0, 1), (1, 0, 1)

}
.

As any given p, q, r ∈ [0, 1), we have

G
(
∆(

3

2
, 2,

3

2
),∆(1, 1, 1),∆(1, 1, 1)

)
< pG

(
(
3

2
, 2,

3

2
), (1, 1, 1), (1, 1, 1)

)
+ q

{
G
(
(
3

2
, 2,

3

2
),∆(

3

2
, 2,

3

2
),∆(

3

2
, 2,

3

2
)
)

+ G
(
(1, 1, 1),∆(1, 1, 1),∆(1, 1, 1)

)}

+ r

{
G
(
(1, 1, 1),∆(

3

2
, 2,

3

2
),∆(

3

2
, 2,

3

2
)
)

+ G
(
(
3

2
, 2,

3

2
),∆(1, 1, 1),∆(1, 1, 1)

)}

G
(
(0, 2, 0),(1, 0, 1), (1, 0, 1)

)
< pG

(
(
3

2
, 2,

3

2
), (1, 1, 1), (1, 1, 1)

)
+ q

{
G
(
(
3

2
, 2,

3

2
), (0, 2, 0), (0, 2, 0)

)
+ G
(
(1, 1, 1), (1, 0, 1), (1, 0, 1)

)}

+ r

{
G
(
(1, 1, 1), (0, 2, 0), (0, 2, 0)

)
+ G
(
(
3

2
, 2,

3

2
), (1, 0, 1), (1, 0, 1)

)}

√
6 < p

√
6

2
+ q

3
√
2 + 2

2
+ r

3
√
2 + 2

√
3

2
Therefore, the map ∆ does not possess a fixed point in Λ .
Then, for all ϖ, υ ∈ Λ, the triplet (ϖ, υ,ϖ) ∈ G satisfies
our contraction condition. Similarly, the G-continuity and
∆(Λ)is Gκ-connected of ∆ is easily verifiable.

Thus, by satisfying all of the conditions of the above
Theorem 2 and 3, ∆ possesses a unique fixed point at
(0, 0, 0).

IV. AN APPLICATION

In order to apply our main findings, an example of the
FOBVP sol. that incorporates a binary relation is given to
illustrate its application. The problem is expressed as:

ϖ′(θ) = f(θ,ϖ(θ)); θ ∈ I = [0,∆];ϖ(0) = ϖ(∆). (17)

Assuming ∆ > 0, the function f : Λ×G → G is continuous.

Definition 12. A function λ ∈ ϖ1(Λ) is referred to as a
lower solution of (17) if the following holds true:

ϖ(0) ≤ ϖ(∆)

λ′(θ) ≤ f(θ, λ(θ)), θ ∈ Λ.
(18)

Definition 13. A function λ ∈ ϖ1(Λ) is referred to as a
upper solution of (17) if the following holds true:

ϖ(0) ≥ ϖ(∆)

λ′(θ) ≥ f(θ, λ(θ)), θ ∈ Λ.
(19)
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Theorem 4. Given the FOBVP of (17), there exists a
constant ϖ > 0 that is applicable to all ϖ, υ ∈ Λ such
that ϖ ≤ υ

0 ≤
[
(q+ r)f(θ, υ) + pυ

]
−
[
(q+ r)f(θ,ϖ) + pϖ

]
≤ p
[
f(υ −ϖ)

]
+ q
[
f(∆ϖ −ϖ) + f(∆υ − υ)

]
+ r
[
f(∆ϖ − υ) + f(∆υ −ϖ)

] (20)

Then, ∆ has a unique solution.
Proof: The equation can be seen as a result of a

FOBVP

rf
(
ϖ(θ), υσ(θ)

)
+ qϖ′(θ) + pϖ(θ) = rf

(
ϖ(θ), υσ(θ)

)
+ qf

(
ϖ(θ), ϖσ(θ)

)
+ pϖ(θ) (21)

where, θ ∈ I = [0,∆] and ϖ(0) = ϖ(∆).
The integral equation is equivalent to the equation, as
derived from the above problem.

ϖ(θ) =

∫ ∆

0

G(θ,κ)
[
rf
(
ϖ(θ), υσ(θ)

)]
ψκ

+

∫ ∆

0

G(θ,κ)
[
qf
(
ϖ(θ), ϖσ(θ)

)
+ pϖ(θ)

]
ψκ

where

G(θ,κ) =



ep(∆+κ−θ)

e−pθ − 1
if 0 ≤ κ < θ ≤ ∆

eq(κ−θ)

e−qθ − 1
if 0 ≤ θ < κ ≤ ∆

er(κ−θ)

e−rθ − 1
if 0 ≤ θ < κ ≤ ∆

we can define a mapping ∆ : λ(Λ) → λ(Λ) and binary
relation using the following expression

ϖ(θ) =

∫ ∆

0

G(θ,κ)
[
rf
(
ϖ(θ), υσ(θ)

)]
ψκ

+

∫ ∆

0

G(θ,κ)
[
qf
(
ϖ(θ), ϖσ(θ)

)
+ pϖ(θ)

]
ψκ

G =
{
(ϖ, υ, υ) ∈ λ(Λ)× λ(Λ)× λ(Λ)

: ϖ(θ) ≤ υ(θ) for all θ ∈ Λ
}

(i) G(ϖ, υ, υ) = 2 sup
θ ∈ Λ

∣∣ϖ(θ) − υ(θ)
∣∣ is the sup G−metric

with λ(Λ) and the complete G−metric space is ϖ, υ, υ ∈
λ(Λ) and hence (λ(Λ), G) is G-complete.
(ii) By choosing a sequence {ϖσ} that is G-preserving such
that ϖσ

G−→ ϖ, for all θ ∈ Λ, then

ϖ0(θ) ≤ ϖ1(θ) ≤ .... ≤ ϖσ(θ) ≤ ϖσ+1 ≤ ....

and convergent to ϖ(θ) which implies ϖσ(θ) ≤ υ(θ) for
all θ ∈ Λ, σ ∈ N0, which implies

[
ϖσ, υ, υ

]
∈ G for all

σ ∈ N0.
Hence, G-continuous.
(iii) Consider a lower solution α ∈ λ1(Λ) of (18), then

rf
(
ϖ(θ),υσ(θ)

)
+ qϖ′(θ) + pϖ(θ)

= rf
(
ϖ(θ), υσ(θ)

)
+ qf

(
ϖ(θ), ϖσ(θ)

)
+ pϖ(θ)

for all θ ∈ Λ.
Multiplying by epθ+qθ+rθ, we have(
ϖ(θ)e(p+q+r)θ

)′
≤
[
qf
(
ϖ(θ), ϖσ(θ)

)
+ pϖ(θ)

]
e(p+q+r)θ

+ r
[
f
(
ϖ(θ), υσ(θ)

)]
e(p+q+r)θ ∀ θ ∈ Λ,

it follows that

ϖ(θ)e(p+q+r)θ ≤ ϖ(0)

+

∫ θ

0

r
[
f
(
ϖ(κ), υσ(κ)

)]
e(p+q+r)κψκ

+

∫ θ

0

[
qf
(
ϖ(κ), ϖσ(κ)

)
+ pϖ(κ)

]
e(p+q+r)κψκ

As ϖ(0) ≤ ϖ(∆),

ϖ(0)e(p+q+r) ≤ ϖ(∆)e(p+q+r)

≤ ϖ(0) +

∫ ∆

0

r
[
f
(
ϖ(κ), υσ(κ)

)]
e(p+q+r)κψκ

+

∫ ∆

0

[
qf
(
ϖ(κ), ϖσ(κ)

)
+ pϖ(κ)

]
e(p+q+r)κψκ

Thus,

ϖ(0) ≤
∫ ∆

0

e(p+q+r)κ

e(p+q+r) − 1
r
[
f
(
ϖ(κ), υσ(κ)

)]
ψκ

+

∫ ∆

0

e(p+q+r)κ

e(p+q+r) − 1

[
qf
(
ϖ(κ), ϖσ(κ)

)
+ pϖ(κ)

]
ψκ

ϖ(θ)e(p+q+r)θ ≤
∫ ∆

0

e(p+q+r)κ

e(p+q+r) − 1
r
[
f
(
ϖ(κ), υσ(κ)

)]
ψκ

+

∫ ∆

0

e(p+q+r)κ

e(p+q+r) − 1

[
qf
(
ϖ(κ), ϖσ(κ)

)
+ pϖ(κ)

]
ψκ

+

∫ θ

0

r
[
f
(
ϖ(κ), υσ(κ)

)]
e(p+q+r)κψκ

+

∫ θ

0

[
qf
(
ϖ(κ), ϖσ(κ)

)
+ pϖ(κ)

]
e(p+q+r)κψκ

ϖ(θ)e(p+q+r)θ ≤
∫ ∆

0

ep(κ)

e−pθ − 1
r
[
f
(
ϖ(κ), υσ(κ)

)]
ψκ

+

∫ ∆

0

ep(κ)

e−pθ − 1

[
qf
(
ϖ(κ), ϖσ(κ)

)
+ pϖ(κ)

]
ψκ

+

∫ ∆

0

eq(κ)

e−qθ − 1
r
[
f
(
ϖ(κ), υσ(κ)

)]
ψκ

+

∫ ∆

0

eq(κ)

e−qθ − 1

[
qf
(
ϖ(κ), ϖσ(κ)

)
+ pϖ(κ)

]
ψκ

+

∫ ∆

0

er(κ)

e−rθ − 1
r
[
f
(
ϖ(κ), υσ(κ)

)]
ψκ

+

∫ ∆

0

er(κ)

e−rθ − 1

[
qf
(
ϖ(κ), ϖσ(κ)

)
+ pϖ(κ)

]
ψκ

so that,

ϖ(θ) ≤
∫ ∆

0

ep(κ−θ)

e−pθ − 1
r
[
f
(
ϖ(κ), υσ(κ)

)]
ψκ

+

∫ ∆

0

ep(κ−θ)

e−pθ − 1

[
qf
(
ϖ(κ), ϖσ(κ)

)
+ pϖ(κ)

]
ψκ

+

∫ ∆

0

eq(κ−θ)

e−qθ − 1
r
[
f
(
ϖ(κ), υσ(κ)

)]
ψκ

+

∫ ∆

0

eq(κ−θ)

e−qθ − 1

[
qf
(
ϖ(κ), ϖσ(κ)

)
+ pϖ(κ)

]
ψκ

+

∫ ∆

0

er(κ−θ)

e−rθ − 1
r
[
f
(
ϖ(κ), υσ(κ)

)]
ψκ

+

∫ ∆

0

er(κ−θ)

e−rθ − 1

[
qf
(
ϖ(κ), ϖσ(κ)

)
+ pϖ(κ)

]
ψκ
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ϖ(θ) ≤
∫ ∆

0

ep(κ−θ)

e−pθ − 1
r
[
f
(
ϖ(κ), υσ(κ)

)]
ψκ

+

∫ ∆

0

eq(κ−θ)

e−qθ − 1
r
[
f
(
ϖ(κ), υσ(κ)

)]
ψκ

+

∫ ∆

0

er(κ−θ)

e−rθ − 1
r
[
f
(
ϖ(κ), υσ(κ)

)]
ψκ

+

∫ ∆

0

ep(κ−θ)

e−pθ − 1

[
qf
(
ϖ(κ), ϖσ(κ)

)
+ pϖ(κ)

]
ψκ

+

∫ ∆

0

eq(κ−θ)

e−qθ − 1

[
qf
(
ϖ(κ), ϖσ(κ)

)
+ pϖ(κ)

]
ψκ

+

∫ ∆

0

er(κ−θ)

e−rθ − 1

[
qf
(
ϖ(κ), ϖσ(κ)

)
+ pϖ(κ)

]
ψκ

ϖ(θ) ≤
∫ ∆

0

G(θ,κ)r
[
f
(
ϖ(κ), υσ(κ)

)]
ψκ

+

∫ ∆

0

G(θ,κ)
[
qf
(
ϖ(κ), ϖσ(κ)

)
+ pϖ(κ)

]
ψκ

= (∆ϖ)(θ)

that is (ω(θ),∆ω(θ),∆ω(θ)) ∈ G for any θ ∈ Λ, this means
that λ(∆, G) ̸= ϕ.
(iv) For any (ϖ, υ, υ) ∈ G , that is ϖ(θ) ≤ υ(θ)

rf
(
ϖ(θ),υσ(θ)

)
+ qf

(
ϖ(θ), ϖσ(θ)

)
+ pϖ

≤ rf
(
ϖ(θ), υσ(θ)

)
+ qf

(
υ(θ), υσ(θ)

)
+ pϖ(θ)

and G(θ,κ) > 0 for (θ,κ) ∈ Λ× Λ,

(∆ϖ)(θ) =

∫ ∆

0

G(θ,κ)r
[
f
(
ϖ(κ), υσ(κ)

)]
ψκ

+

∫ ∆

0

G(θ,κ)
[
qf
(
ϖ(κ), ϖσ(κ)

)
+ pϖ(κ)

]
ψκ

≤
∫ ∆

0

G(θ,κ)r
[
f
(
ϖ(κ), υσ(κ)

)]
ψκ

+

∫ ∆

0

G(θ,κ)
[
qf
(
υ(κ), υσ(κ)

)
+ pυ(κ)

]
ψκ

= (∆υ)(θ) for all θ ∈ Λ,

which implies that (∆ϖ,∆υ,∆υ) ∈ G , that is G is ∆ closed.
(v) For all (ϖ, υ, υ) ∈ G ,

G(∆ϖ,∆υ,∆υ) = 2 sup
θ ∈ Λ

∣∣(∆ϖ)(θ)− (∆υ)(θ)
∣∣

= 2 sup
θ ∈ Λ

(∆υ)(θ)− (∆ϖ)(θ)

≤ sup
θ ∈ Λ

∫ ∆

0

G(θ,κ)r
[
f
(
ϖ(κ), υσ(κ)

)]
ψκ

+ 2 sup
θ ∈ Λ

∫ ∆

0

G(θ,κ)
[
qf
(
ϖ(κ), ϖσ(κ)

)
+ pϖ(κ)

]
ψκ

− 2 sup
θ ∈ Λ

∫ ∆

0

G(θ,κ)r
[
f
(
ϖ(κ), υσ(κ)

)]
ψκ

− 2 sup
θ ∈ Λ

∫ ∆

0

G(θ,κ)
[
qf
(
υ(κ), υσ(κ)

)
+ pυ(κ)

]
ψκ

G(∆ϖ,∆υ,∆υ)

≤ 2 sup
θ ∈ Λ

∫ ∆

0

G(θ,κ)p2
[
υ(κ)−ϖ(κ)

]
ψκ

+ 2 sup
θ ∈ Λ

∫ ∆

0

G(θ,κ)

q2
[(
υ(κ), υσ(κ)

)
−
(
ϖ(κ), ϖσ(κ)

)]
ψκ

+ 2 sup
θ ∈ Λ

∫ ∆

0

G(θ,κ)

r2
[(
ϖ(κ), υσ(κ)

)
−
(
ϖ(κ), υσ(κ)

)]
ψκ

≤ p2G(ϖ, υ, υ)

∫ ∆

0

G(θ,κ)ψκ

+ q2
[
G(ϖ,∆ϖ,∆ϖ) + G(υ,∆υ,∆υ)

] ∫ ∆

0

G(θ,κ)ψκ

+ r2
[
G(υ,∆ϖ,∆ϖ) + G(ϖ,∆υ,∆υ)

] ∫ ∆

0

G(θ,κ)ψκ

G(∆ϖ,∆υ,∆υ) ≤ p2G(ϖ, υ, υ)

∫ ∆

0

G(θ,κ)ψκ

+ q2G(ϖ,∆ϖ,∆ϖ)

∫ ∆

0

G(θ,κ)ψκ

+ q2G(υ,∆υ,∆υ)

∫ ∆

0

G(θ,κ)ψκ

+ r2G(υ,∆ϖ,∆ϖ)

∫ ∆

0

G(θ,κ)ψκ

+ r2G(ϖ,∆υ,∆υ)

∫ ∆

0

G(θ,κ)ψκ

G(∆ϖ,∆υ,∆υ)

≤ p2G(ϖ, υ, υ)

sup
θ ∈Λ

1

e−pθ − 1

(
1

p
ep(∆+κ−θ)

∣∣∣∣∣
θ

0

+
1

p
ep(κ−θ)

∣∣∣∣∣
∆

0

)
+ q2G(ϖ,∆ϖ,∆ϖ)

sup
θ ∈Λ

1

e−qθ − 1

(
1

q
eq(κ−θ)

∣∣∣∣∣
θ

0

+
1

q
eq(κ−θ)

∣∣∣∣∣
∆

0

)
+ q2G(υ,∆υ,∆υ)

sup
θ ∈Λ

1

e−qθ − 1

(
1

q
eq(κ−θ)

∣∣∣∣∣
θ

0

+
1

q
eq(κ−θ)

∣∣∣∣∣
∆

0

)
+ r2G(ϖ,∆υ,∆υ)

sup
θ ∈ Λ

1

e−rθ − 1

(
1

r
er(κ−θ)

∣∣∣∣∣
θ

0

+
1

r
er(κ−θ)

∣∣∣∣∣
∆

0

)
+ r2G(υ,∆ϖ,∆ϖ)

sup
θ ∈ Λ

1

e−rθ − 1

(
1

r
er(κ−θ)

∣∣∣∣∣
θ

0

+
1

r
er(κ−θ)

∣∣∣∣∣
∆

0

)
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G(∆ϖ,∆υ,∆υ)

≤ p2G(ϖ, υ, υ)
1

p(e−pθ − 1)

(
e−pθ − 1

)

+ q2G(ϖ,∆ϖ,∆ϖ)
1

q(e−qθ − 1)

(
e−qθ − 1

)

+ q2G(υ,∆υ,∆υ)
1

q(e−qθ − 1)

(
e−qθ − 1

)

+ r2G(ϖ,∆υ,∆υ)
1

r(e−rθ − 1)

(
e−rθ − 1

)

+ r2G(υ,∆ϖ,∆ϖ)
1

r(e−rθ − 1)

(
e−rθ − 1

)
G(∆ϖ,∆υ,∆υ) ≤ pG(ϖ, υ, υ)

+ q
[
G(ϖ,∆ϖ,∆ϖ) + G(υ,∆υ,∆υ)

]
+ r
[
G(ϖ,∆υ,∆υ) + G(υ,∆ϖ,∆ϖ)

]
for all ϖ, υ ∈ Λ. As a result of Theorem 2 and 3 as stated
above, it follows that all necessary conditions have been
fulfilled. Thus, ∆ possesses a unique fixed point.

V. NUMERICAL EXAMPLE

To illustrate the importance of the obtained results, we
provide a numerical example in this section.

Example 3. Consider the following FOBVP:

y′(t) + y(t) = sin(t), 0 ≤ t ≤ 2π, y(0) = y(2π). (22)

We define S as the set of all continuous real-valued functions
on the closed interval [0, 2π], i.e., S = C

(
[0, 2π], R

)
. Define

G : S× S× S → [0,∞] by

G(ϖ, υ, υ) = 2 sup
t∈[0,2π]

∣∣ϖ(t)− υ(t)
∣∣. (23)

Clearly, (S, G) is a complete G−metric space.
Define a mapping ∆ : S → S by

∆
(
f(t)
)
=

∫ t

0

t sin(f(t))ds− f(t) + sin(t). (24)

Assuming that the following conditions holds:
1. f(t) is continuous.

2.
∣∣sin(ϖ(t))− sin(υ(t))

∣∣ ≤ p
∣∣ϖ(t)− υ(t)

∣∣
3.
∣∣sin(ϖ(t))−∆

(
ϖ(t)

)∣∣ ≤ q
∣∣ϖ(t)−∆

(
ϖ(t)

)∣∣
4.
∣∣sin(ϖ(t))−∆

(
υ(t)

)∣∣ ≤ r
∣∣ϖ(t)−∆

(
υ(t)

)∣∣
Consider,∣∣∣∆(ϖ(t)

)
−∆

(
υ(t)

)∣∣∣
=
∣∣∣ ∫ t

0

t sin(ϖ(t))ds− f(t) + sin(t)

−
∫ t

0

t sin(υ(t))ds+ f(t)− sin(t)
∣∣∣

∣∣∣∆(ϖ(t)
)
−∆

(
υ(t)

)∣∣∣
=
∣∣∣ ∫ t

0

t
[
sin(ϖ(t))− sin(υ(t))

]
ds

+

∫ t

0

t sin(ϖ(t))ds−∆
(
ϖ(t)

)
+

∫ t

0

t sin(υ(t))ds−∆
(
υ(t)

)
+∆

(
υ(t)

)
−
∫ t

0

t sin(ϖ(t))ds

+∆
(
ϖ(t)

)
−
∫ t

0

t sin(υ(t))ds
∣∣∣

∣∣∣∆(ϖ(t)
)
−∆

(
υ(t)

)∣∣∣ < ∣∣∣sin(ϖ(t))− sin(υ(t))

+ sin(ϖ(t))−∆
(
ϖ(t)

)
+ sin(υ(t))−∆

(
υ(t)

)
+∆

(
υ(t)

)
− sin(ϖ(t))

+ ∆
(
ϖ(t)

)
− sin(υ(t))

∣∣∣
∣∣∣∆(ϖ(t)

)
−∆

(
υ(t)

)∣∣∣ ≤ ∣∣∣sin(ϖ(t))− sin(υ(t))
∣∣∣

+
∣∣∣sin(ϖ(t))−∆

(
ϖ(t)

)∣∣∣
+
∣∣∣sin(υ(t))−∆

(
υ(t)

)∣∣∣
+
∣∣∣∆(υ(t))− sin(ϖ(t))

∣∣∣
+
∣∣∣∆(ϖ(t)

)
− sin(υ(t))

∣∣∣
∣∣∆(ϖ(t)

)
−∆

(
υ(t)

)∣∣ ≤ p
∣∣ϖ(t)− υ(t)

∣∣
+ q
∣∣ϖ(t)−∆

(
ϖ(t)

)∣∣
+ q
∣∣υ(t)−∆

(
υ(t)

)∣∣
+ r
∣∣ϖ(t)−∆

(
υ(t)

)∣∣
+ r
∣∣υ(t)−∆

(
ϖ(t)

)∣∣
2 sup
t∈[0,2π]

∣∣∆(ϖ(t)
)
−∆

(
υ(t)

)∣∣
≤ 2 sup

t∈[0,2π]

p
∣∣ϖ(t)− υ(t)

∣∣
+ 2 sup

t∈[0,2π]

q
∣∣ϖ(t)−∆

(
ϖ(t)

)∣∣
+ 2 sup

t∈[0,2π]

q
∣∣υ(t)−∆

(
υ(t)

)∣∣
+ 2 sup

t∈[0,2π]

r
∣∣ϖ(t)−∆

(
υ(t)

)∣∣
+ 2 sup

t∈[0,2π]

r
∣∣υ(t)−∆

(
ϖ(t)

)∣∣
G(∆ϖ,∆υ,∆υ) ≤ pG(ϖ, υ, υ)

+ q
[
G(ϖ,∆ϖ,∆ϖ) + G(υ,∆υ,∆υ)

]
+ r
[
G(ϖ,∆υ,∆υ) + G(υ,∆ϖ,∆ϖ)

]
This leads us to the conclusion that all axioms of Theorem

2 and 3 are validated and as a result, the FOBVP sol. (22)
has a unique.
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The validity of our approach can be demonstrated by
utilizing the iteration method to confirm that the exact
solution of Equation (22) is indeed x(t) = t.

xn+1(t) = ∆
(
xn(t)

)
=

∫ t

0

t sin(xn(t))ds− xn(t) + sin(xn(t)) (25)

The examples are presented in Table I, II, III and IV
showcasing the convergence of the sequence (25) towards the
exact solutions of 0.25, 1.13,−0.85 and −0.98, as depicted
in Fig. 1, Fig.2, Fig.3 and Fig. 4, respectively.

Let us consider the initial solution as x0(t) = 0 to
commence the iterative process.

Table I
FOR t = 0.25, THE EXACT SOLUTION IS x(0.25) = 0.25

n xn+1(t = 0.25) Approximate Solution Absolute Error

0 x1(t = 0.25) 0.000000 2.5× 10−1.

1 x2(t = 0.25) 0.250767 7.67× 10−4

2 x3(t = 0.25) 0.250487 4.87× 10−4

3 x4(t = 0.25) 0.250488 4.88× 10−4

4 x5(t = 0.25) 0.250488 4.88× 10−4

Figure 1. The graph shows that Eq. (25) converges to exact solution 0.25.

Table II
FOR t = 1.13, THE EXACT SOLUTION IS x(1.13) = 1.13

n xn+1(t = 1.13) Approximate Solution Absolute Error

0 x1(t = 1.13) 1.195133 6.5133× 10−2.

1 x2(t = 1.13) 1.130777 7.77× 10−4

2 x3(t = 1.13) 1.130849 8.49× 10−4

3 x4(t = 1.13) 1.130848 8.50× 10−4

4 x5(t = 1.13) 1.130848 8.50× 10−4

Figure 2. The graph shows that Eq. (25) converges to exact solution 1.13.

Table III
FOR t = −0.85, THE EXACT SOLUTION IS x(−0.85) = −0.85

n xn+1(t = −0.85) Approximate Solution Absolute Error

0 x1(t = −0.85) -0.849479 5.21× 10−4.

1 x2(t = −0.85) -0.853717 −3.717× 10−3

2 x3(t = −0.85) -0.853713 −3.713× 10−3

3 x4(t = −0.85) -0.853713 −3.713× 10−3

4 x5(t = −0.85) -0.853713 −3.713× 10−3

Figure 3. The graph shows that Eq. (25) converges to exact solution −0.85.

Table IV
FOR t = −0.98, THE EXACT SOLUTION IS x(−0.98) = −0.98

n xn+1(t = −0.98) Approximate Solution Absolute Error

0 x1(t = −0.98) -0.977125 2.875× 10−3.

1 x2(t = −0.98) -0.976037 3.963× 10−3

2 x3(t = −0.98) -0.976039 3.961× 10−3

3 x4(t = −0.98) -0.976039 3.961× 10−3

4 x5(t = −0.98) -0.976039 3.961× 10−3
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Figure 4. The graph shows that Eq. (25) converges to exact solution −0.98.

Example 4. Consider the following FOBVP:

y′(t) + y(t) = cos(t), 0 ≤ t ≤ 2π, y(0) = y(2π). (26)

We define S as the set of all continuous real-valued functions
on the closed interval [0, 2π], i.e., S = C

(
[0, 2π], R

)
. Define

G : S× S× S → [0,∞] by

G(ϖ, υ, υ) = 2 sup
t∈[0,2π]

∣∣ϖ(t)− υ(t)
∣∣. (27)

Clearly, (S, G) is a complete G−metric space.
Define a mapping ∆ : S → S by

∆
(
f(t)
)
=

∫ t

0

t cos(f(t))ds− f(t) + cos(t). (28)

Assuming that the following conditions holds:
1. f(t) is continuous.

2.
∣∣cos(ϖ(t))− cos(υ(t))

∣∣ ≤ p
∣∣ϖ(t)− υ(t)

∣∣
3.
∣∣cos(ϖ(t))−∆

(
ϖ(t)

)∣∣ ≤ q
∣∣ϖ(t)−∆

(
ϖ(t)

)∣∣
4.
∣∣cos(ϖ(t))−∆

(
υ(t)

)∣∣ ≤ r
∣∣ϖ(t)−∆

(
υ(t)

)∣∣
Consider,∣∣∣∆(ϖ(t)

)
−∆

(
υ(t)

)∣∣∣
=
∣∣∣ ∫ t

0

t cos(ϖ(t))ds− f(t) + cos(t)

−
∫ t

0

t cos(υ(t))ds+ f(t)− cos(t)
∣∣∣

∣∣∣∆(ϖ(t)
)
−∆

(
υ(t)

)∣∣∣
=
∣∣∣ ∫ t

0

t
[
cos(ϖ(t))− cos(υ(t))

]
ds

+

∫ t

0

t cos(ϖ(t))ds−∆
(
ϖ(t)

)
+

∫ t

0

t cos(υ(t))ds−∆
(
υ(t)

)
+∆

(
υ(t)

)
−
∫ t

0

t cos(ϖ(t))ds

+∆
(
ϖ(t)

)
−
∫ t

0

t cos(υ(t))ds
∣∣∣

∣∣∣∆(ϖ(t)
)
−∆

(
υ(t)

)∣∣∣ < ∣∣∣cos(ϖ(t))− cos(υ(t))

+ cos(ϖ(t))−∆
(
ϖ(t)

)
+ cos(υ(t))−∆

(
υ(t)

)
+∆

(
υ(t)

)
− cos(ϖ(t))

+ ∆
(
ϖ(t)

)
− cos(υ(t))

∣∣∣
∣∣∣∆(ϖ(t)

)
−∆

(
υ(t)

)∣∣∣ ≤ ∣∣∣cos(ϖ(t))− cos(υ(t))
∣∣∣

+
∣∣∣cos(ϖ(t))−∆

(
ϖ(t)

)∣∣∣
+
∣∣∣cos(υ(t))−∆

(
υ(t)

)∣∣∣
+
∣∣∣∆(υ(t))− cos(ϖ(t))

∣∣∣
+
∣∣∣∆(ϖ(t)

)
− cos(υ(t))

∣∣∣
∣∣∆(ϖ(t)

)
−∆

(
υ(t)

)∣∣ ≤ p
∣∣ϖ(t)− υ(t)

∣∣
+ q
∣∣ϖ(t)−∆

(
ϖ(t)

)∣∣
+ q
∣∣υ(t)−∆

(
υ(t)

)∣∣
+ r
∣∣ϖ(t)−∆

(
υ(t)

)∣∣
+ r
∣∣υ(t)−∆

(
ϖ(t)

)∣∣
2 sup
t∈[0,2π]

∣∣∆(ϖ(t)
)
−∆

(
υ(t)

)∣∣
≤ 2 sup

t∈[0,2π]

p
∣∣ϖ(t)− υ(t)

∣∣
+ 2 sup

t∈[0,2π]

q
∣∣ϖ(t)−∆

(
ϖ(t)

)∣∣
+ 2 sup

t∈[0,2π]

q
∣∣υ(t)−∆

(
υ(t)

)∣∣
+ 2 sup

t∈[0,2π]

r
∣∣ϖ(t)−∆

(
υ(t)

)∣∣
+ 2 sup

t∈[0,2π]

r
∣∣υ(t)−∆

(
ϖ(t)

)∣∣
G(∆ϖ,∆υ,∆υ) ≤ pG(ϖ, υ, υ)

+ q
[
G(ϖ,∆ϖ,∆ϖ) + G(υ,∆υ,∆υ)

]
+ r
[
G(ϖ,∆υ,∆υ) + G(υ,∆ϖ,∆ϖ)

]
This leads us to the conclusion that all axioms of Theorem

2 and 3 are validated and as a result, the FOBVP sol. (26)
has a unique.

The validity of our approach can be demonstrated by
utilizing the iteration method to confirm that the exact
solution of Equation (26) is indeed x(t) = t.

xn+1(t) = ∆
(
xn(t)

)
=

∫ t

0

t cos(xn(t))ds− xn(t) + cos(xn(t)) (29)

The examples are presented in Table V, VI, VII and VIII
showcasing the convergence of the sequence (29) towards the
exact solutions of 1.11, 0.10,−0.75 and 0.58, as depicted in
Fig. 5, Fig.6, Fig.7 and Fig. 8, respectively.

Let us consider the initial solution as x0(t) = 0 to
commence the iterative process.
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Table V
FOR t = 1.11, THE EXACT SOLUTION IS x(1.11) = 1.11

n xn+1(t = 1.11) Approximate Solution Absolute Error

0 x1(t = 1.11) 1.256637 1.46637× 10−1.

1 x2(t = 1.11) 1.107490 2.510× 10−3

2 x3(t = 1.11) 1.107656 2.344× 10−3

3 x4(t = 1.11) 1.107656 2.344× 10−3

4 x5(t = 1.11) 1.107656 2.344× 10−3

Figure 5. The graph shows that Eq. (29) converges to exact solution 1.11.

Table VI
FOR t = 0.10, THE EXACT SOLUTION IS x(0.10) = 0.10

n xn+1(t = 1.10) Approximate Solution Absolute Error

0 x1(t = 0.10) 0.065823 3.4177× 10−2.

1 x2(t = 0.10) 0.104099 4.099× 10−3

2 x3(t = 0.10) 0.104057 4.057× 10−3

3 x4(t = 0.10) 0.104057 4.057× 10−3

4 x5(t = 0.10) 0.104057 4.057× 10−3

Figure 6. The graph shows that Eq. (29) converges to exact solution 0.10.

Table VII
FOR t = −0.75, THE EXACT SOLUTION IS x(−0.75) = −0.75

n xn+1(t = −0.75) Approximate Solution Absolute Error

0 x1(t = −0.75) -0.751398 −1.398× 10−3.

1 x2(t = −0.75) -0.748877 1.123× 10−3

2 x3(t = −0.75) -0.748880 1.120× 10−3

3 x4(t = −0.75) -0.748880 1.120× 10−3

4 x5(t = −0.75) -0.748880 1.120× 10−3

Figure 7. The graph shows that Eq. (29) converges to exact solution −0.75.

Table VIII
FOR t = 0.58, THE EXACT SOLUTION IS x(0.58) = 0.58

n xn+1(t = 0.58) Approximate Solution Absolute Error

0 x1(t = 0.58) 0.581159 1.159× 10−3.

1 x2(t = 0.58) 0.580512 5.12× 10−4

2 x3(t = 0.58) 0.580512 5.12× 10−4

3 x4(t = 0.58) 0.580512 5.12× 10−4

4 x5(t = 0.58) 0.580512 5.12× 10−4

Figure 8. The graph shows that Eq. (29) converges to exact solution 0.58.
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VI. CONCLUSION

The present study has demonstrated the fixed-point the-
orem for rational contractive mapping on G-metric space.
Additionally, it has shown the application of a FOBVP sol.
and presented an example of a binary relation in a Euclidean
metric space. Subsequently, we proposed a simple FOBVP
sol., employing the fixed point technique in G-metric space.
To achieve this, we utilized an iterative method based on the
fixed point approach, resulting in an approximate solution
for Equations (22) and (26). The validity of this approach is
confirmed by the numerical results.
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