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Abstract—In this paper, the population dynamics of a novel 

coronavirus are studied. An extended SEIR model with 

quarantine, hospitalization, and the environment compartment 

is proposed to simulate the novel coronavirus epidemic. The 

model considers eight distinct epidemiological classes: 

susceptible, exposed, asymptomatic, symptomatic, 

quarantined, hospitalized, recovered, and viruses in the 

environment. The basic reproduction numbers are determined 

by using a method called the next-generation matrix. The 

model has two equilibria: a disease-free equilibrium and an 

endemic equilibrium. The Lyapunov function and the LaSalle 

invariance principle are used to analyze the global 

asymptotical stability of the equilibria of the proposed model. 

The disease-free equilibrium is globally asymptotically stable 

if the basic reproduction number is less than unity, and the 

endemic equilibrium is globally asymptotically stable if the 

basic reproduction number is greater than unity. To study 

cost-effectiveness assessments for the four optimum control 

strategies, we ran numerical simulations. When the four 

control strategies were compared, it was discovered that 

Strategy A (public health education and intensive medical 

treatment) was the most economical and efficient control 

intervention in the absence of vaccination. However, we 

observe that strategies A, B, and D are similarly effective at 

containing COVID-19 in terms of infection prevention. 

 
Index Terms—COVID-19 model, global stability, 

quarantine, hospitalization, optimal control. 

 

I. INTRODUCTION 

HE World Health Organization (WHO) designated the 

novel coronavirus (COVID-19) as a public health 

emergency of international concern (PHEIC) on January 30, 

2020.On February 12, 2020, a brand-new coronavirus 

disease in humans was given the name "Coronavirus 

Disease" by the World Health Organization. In March 2020, 

WHO proclaimed COVID-19 a global pandemic [1]. The 
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spread of the COVID-19 virus can occur due to direct or 

indirect physical contact with the sufferer. Indirect 

transmission can occur when viruses in patient droplets are 

inhaled by humans [2]. The virus can survive for up to three 

days on plastic and stainless steel, or it can survive in 

aerosols for up to three hours [3]. The spread of COVID-19 

is difficult to detect because it can be transmitted by people 

without symptoms. The outbreak and spread of COVID-19 

have prompted governments and health authorities in 

various countries to take the necessary actions to stop the 

spread of COVID-19. Pharmaceutical or non-medical 

interventions that can be carried out by all parties under the 

coordination of the local government, for example, public 

health education campaigns, implementing clean and 

healthy behavior through health protocols (washing hands 

with soap, wearing a mask, not smoking, consuming 

balanced nutrition, staying at home, avoiding crowds, 

keeping the environment clean, etc.), and ensuring the 

availability of support (PCR tests). The growth of the 

COVID-19 epidemic is extremely serious and constitutes a 

significant threat to public health security and the global 

economy, so COVID-19 must be controlled.  

Until now, the mechanism of the spread of COVID-19 

has been studied for prevention and control purposes. One 

approach to understanding the dynamics of the spread of 

infectious diseases is through mathematical modelling. 

Mathematical models can help us understand the 

transmission and control mechanisms of new infectious 

diseases like COVID-19. In the absence of vaccines or 

pharmaceutical interventions, mathematical modelling can 

be used to evaluate non-medical preventative strategies or 

non-pharmaceutical interventions ([4]-[8]). Many new 

epidemic model are based on the classic SEIR (Susceptible-

Exposed-Infectious-Recovered). Several COVID-19 

epidemic models based on the classic SEIR compartment 

model are now being utilized to simulate COVID-19 disease 

dynamics ([9]-[12]). Zhao et al. [13] investigated an adapted 

SEIR model to forecast COVID-19 spread in South Africa, 

Egypt, Algeria, Nigeria, Senegal, and Kenya. Similarly, [14] 

investigated the expansion of the SEIR model using model 

parameters derived from epidemiological data and estimates 

based on data from West Java Province, Indonesia. Obsu 

and Balcha [15] used a COVID-19 mathematical model that 

included three time-dependent control functions: preventive 

control measures (quarantine, isolation, and social 

distancing), disinfection of contaminated surfaces, and 
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infected individuals at home. Rapid testing, medical masks, 

increased medical care in hospitals, and public awareness 

are among the interventions investigated by the authors. 

Furthermore, [16] conducted a mathematical study on the 

spread of COVID-19 while taking social distancing and 

rapid assessment into account in the case of Jakarta, 

Indonesia. Luo et al. [17] studied the contribution of non-

pharmaceutical interventions to the control of COVID-19 in 

China based on a pairwise model. Asamoah et al. [18] use 

data from Ghana to investigate the global stability and cost-

effectiveness of COVID-19 in terms of environmental 

impact. They then used cost-effectiveness analysis to look at 

optimal control and economic outcomes. Following that, 

Asamoah et al. [19] look into the sensitivity and an 

economic evaluation of a new model to study the COVID-

19 epidemic and its control measures to find the best 

solution. Their main discovery was that it is better to have 

two ways to control a situation (reducing transmission and 

isolating cases) instead of just one way, even though it may 

be more expensive. 

According to the facts and descriptions above, COVID-19 

is currently a health problem in all countries. If vaccine 

availability is limited, public health education campaign 

interventions, quarantine, self-isolation, early diagnosis and 

treatment, and surface disinfection are the top priority 

programs for preventing the spread of COVID-19. This is 

where the significance of this study lies: examining the 

impact of nonpharmaceutical and medical interventions 

using mathematical models. In this study, the model 

framework refers to the model from [18], which was 

expanded by adding quarantine and hospital compartments.  

The aim of this research is to analyze optimal control and 

Analyzing the best way to control the transmission of 

COVID-2019 and the cost-effectiveness of implementing 

public health education (awareness the medical mask, stay at 

home, and washing their hands), intense medical treatment, 

and surface disinfection. It is recommended to use a bigger 

SEIR model: Susceptible, Exposed, Asymptomatic 

Infectious, Symptomatic Iinfectious, Quarantined, 

Hospitalized, and Recovered.  

The organization of this paper is as follows: In the next 

section, the epidemic model, positivity, and boundedness of 

the solutions are shown in Section 2. In Section 3, the model 

analysis is discussed, comprising the equilibrium point, the 

basic reproduction number, and an examination of the global 

stability of the equilibrium point. The sensitivity analysis of 

the basic reproduction number is presented in Section 4. 

Section 5 defines the optimal control problem, characterizes 

the optimal control, and presents numerical simulations. 

Section 6 contains the cost-effectiveness analysis. In Section 

7, several conclusions are offered as a conclusion. 

II. MODEL FORMULATION 

We assumed that the total population is divided into eight 

distinct epidemiological classes: susceptible class or 

individuals who are susceptible to the COVID-19 virus 

( ( )S t ), exposed class or individuals who have been infected, 

but are not infectious ( ( )E t ), asymptomatic class  or 

individuals who are infectious yet do not exhibit symptoms 

( ( )A t ), symptomatic class or someone who has COVID-19 

symptoms and can transfer the illness ( ( )I t ), quarantined 

asymptomatic class or individuals with infectious diseases 

yet show no symptoms are quarantined ( ( )Q t ), hospitalized 

or  isolated  symptoms  class  or  individuals  with infectious  

diseases who are admitted to a medical facility ( ( )H t ), 

recovered class or those who have recovered from the illness 

( ( )R t ), and the concentration of the SARS-CoV-2 in the 

environment ( ( )B t ).  The total population of humans at time 

t is ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )N t S t E t A t I t Q t H t R t       . A flow 

diagram of each compartment's dynamics in model (1) is 

shown in Fig. 1. 

The corresponding systems of differential equations and 

the description of the parameters are, respectively, given in 

(1) and Table I. 
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  

 (1) 

 

The non-negative initial conditions of the system of 

model (1)  are  denoted by (0) 0, (0) 0, (0) 0, (0) 0,S E A I     

(0) 0, (0) 0, (0) 0, (0) 0.Q H R B     

We simplify the equation of system (1) to get the total 

differential equation as 

 

1 2

1 2

,

.

dN
N I H

dt
dB

m A m I B
dt

  



    

  

 (2) 

 

 
 

Fig. 1.  Schematic diagram of the deterministic model (1). 
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The model developed assumed that susceptible 

individuals are continuously recruited (by birth or 

immigration) into the population at a constant rate  . The 

susceptible individuals acquire the COVID-19 infection 

when they interact with the infected individuals in 

, , ,A I H and B  compartments. According to the assumption 

that the frequency of human-pathogen interactions is 

bilinear with the intensity of infection, 

1 2 1( ) ,A I H B         where the parameter   shows the 

effective contact rates from asymptomatic, symptomatic, 

and hospitalized classes and 
1  shows the effective contact 

rates of the virus in the environment class. The parameter 

1 1(0 1)    accounts for the expected reduction in disease 

transmissibility of asymptomatic infected individuals versus 

symptomatic infected individuals. The parameter 
2  is used 

for the infectiousness rate among COVID-19 hospitalized 

patients. Following the completion of the incubation period, 

the latent individuals develop an infection and become 

infected at the rate  and proportion denoted by p  enters 

the symptomatic infected class after exhibiting disease 

symptoms, while the remainder with no symptoms join the 

asymptomatic infected compartment. Asymptomatic 

individuals who have contact with COVID-19-infected 

patients are discovered (by contact-tracing) and placed in 

quarantine at a rate of 1 , progression rate from quarantined 

to the hospitalized class at a rate  . Symptomatic infected 

individuals have been confirmed (after testing) and placed in 

hospitals at a rate of 
2 . The parameters 1 and 

2  represent 

the recovery rates of quarantined and hospitalized classes, 

respectively. Last but not least, 
1  and 

2  indicate, 

respectively, the COVID-19-induced death rate for 

people in the I and H classes.  The natural death rate in 

all classes is denoted by  . Here every state variables and 

parameters are considered to be positive for every 0t  . 

In order for the system (1) to be biologically valid, the 

model’s solution must be both positive and bounded for 

every time 0t  . The following lemmas provide the proof: 

 

Lemma 1. If ( ) ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ))D t S t E t A t I t Q t H t R t B t  

with the initial condition, then the solution D(t) of system (1) 

is nonnegative for every 0t  . Also, limsup ( ) /
t

N t 


   

and 
1 2limsup ( ) ( ) /

t
B t m m 


   . 

Proof.  Let  1 sup 0 : ( ) 0 in [0, ]t t D t t   . Thus,
1 0t  . 

From the first equation of the system (1), we have 

 

    ( ) ,
dS

S
dt

 (3) 

 

With 
1 2 1( )A I H B        . Using the integrating factor 

and the technique of variable separation, (3) can be 

expressed as 

 

   ( )exp ( ) exp ( ) .
dS

S t v v dv v v dv
dt

        
 (4) 

 

Integrating (4) in the range [0, t1] we get, 

   1 1

1 1
0 0 0

( )exp ( ) (0) exp ( ) .
t t x

S t t u du S x v dv dx           

 

So, 

 

    1 1

1 1
0 0

( ) (0) exp ( ) exp ( )

        0 .

t t

S t S x v dv dx t u du         
  



   (5) 

For the remaining equations, we follow the same 

procedures as in the equation for system (1) above to show 

( ) 0D t  for all 0t  . As a result, the first portion of the 

lemma is established.            

         As for the second portion of the lemma, it should be 

emphasized that 

1 2

0 ( ), ( ), ( ), ( ), ( ), ( ), ( ) ( ) ,

( )
0 ( ) .

S t E t A t I t Q t H t R t N t

m m
B t






  

 
 

 

If the first seven equations of system (1) are added, we 

get  

        
1 2

( ) .
dN

N I H N
dt

 (6) 

 

From the last equation of system (1), we have 

  
1 2

.
dB

m A m I B
dt

 (7) 

 

When we combine and subtract limsup and liminf  for 

t   in (6) and (7), we get  

 

 
 

   / liminf ( ) limsup ( ) /
t t

N t N t  

 

and 

 

 
 

     
1 2 1 2

( )/ liminf ( ) limsup ( ) ( )/ .
t t

m m B t B t m m  

 

TABLE I 

DESCRIPTION OF THE PARAMETERS OF THE MODEL (1) 

Parameter Description 

Λ The recruitment rate of susceptible 

β Effective contact rates from asymptomatic, symptomatic 
and hospitalized classes 

β1 Effective contact rate from the environment 

μ Natural death rate 
η1 Relative transmissibility of asymptomatic class 

η2 Relative transmissibility of hospitalized class 

p The proportion of individuals who receive a timely 
diagnosed 

κ The probability of exposed people becoming infected 

γ1 The quarantined rate  
γ2 The hospitalized rate  

α1 The disease-induced death rate at I2 class 

α2 The disease-induced death rate at H class 
δ1 Recovery from quarantined class 

δ2 Recovery from hospitalized class 

σ The natural decay rate of virus from the environment 
(surfaces) 

θ Progression rate from quarantined to the hospitalized 

m1 Virus contribution due to I1 into the environment 
m2 Virus contribution due to I2 into the environment 
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Thus, limsup ( ) /
t

N t 


    and 
1 2limsup ( ) ( ) /

t
B t m m 


   . 

The proof of Lemma 2 is completed.                           ⧠                                                   

 

The closed region will be defined as a positively invariant 

set in the following lemma. Using our COVID-19 model, 

the area shown below will be analyzed. Consider the area 

that is feasible 
4 ,h b       

where 

  7, , , , , , : /h S E A I Q H R N       

and 

 1 2: ( ) /b B B m m       . 

 

Lemma 2. The closed region 8

   given below is a 

positively invariant set with a non-negative initial condition 

for the system (1) in 8


. 

 

  8

1 2, , , , , , , : / , ( ) /S E A I Q H R B N B m m         . (8) 

Proof.  From (6) and (7), we have 

 

  
( )dN t

N
dt

 and  



 

( )dB t m
B

dt
, 

 

where 
1 2m m m  . 

Integrating both sides of the above two inequality 

equations and applying the comparison [20] when t  ,  

we  obtain  

 ( ) (0) 1

        (0)

t t

t

N t N e e

N e

 





 

 




  

  
   

 

 

and  

( ) (0) .tm m
B t B e 

 

  
   

 

 

Clearly, 0 ( )N t      and  0 ( )B t m    , as t  . 

In particular, ( )N t   if (0)N   and ( )B t m    if 

(0)B m   . Thus, the region Ω is positive invariant and 

attracts all possible solutions of the system (1). Thus, 

( ), ( ), ( ), ( ), ( ), ( ), ( ),S t E t A t I t Q t H t R t and ( )B t  are bounded.  

The proof of Lemma 2 is completed.                            ⧠                                                   

 

III. MODEL ANALYSIS 

We will perform  a qualitative analysis of the system (1) 

in this part. 

A. The Equilibrium Points 

In this section, the equilibrium points of system (1) will 

be calculated. For convenience, we note 
1 ,k     

2 1 3 2 1 4 1, , ,k k k               and 
5 2 2 .k       

The equilibrium points of system (1) is obtained by 

solving the following system 

 

1 2 1

1 2 1 1

2

3

1 4

2 5

1 2

1 2

[ ( ) ] 0

[ ( ) ] 0

(1 ) 0

0
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0
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m A m I B

    
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





 

  



      

    

  

 

 

  

  

  

 (9) 

 

From the system (9) and some algebraic manipulations, 

we have 

 

1

2 3 2 4

2 1

2 3 4 5

1 1 2 2 4 2 1

2 3 4 5

3 1 2 2

2 3

(1 ) (1 )
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( (1 ) )
,

(1 ) ( (1 ) )
,
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p E p E p E
A I Q

k k k k

bd p c p E
H

k k k k

p E k k p c p E
R

bd k k k k

k m p k m p E
B

k k

   

   

       

 

 



 
  

 


  
 

 


 (10) 

 

Substituting (10) in the second equation of system (1) 

gives 

 

1 3 4 5 2 1 3 2 2 3 4 2 4 5

2 3 4 5

1 3 1 2 2
1

2 3

{ (1 ) (1 ) }

[ (1 )
    0 .

k k k p k p k k p k k k p

k k k k

k m p k m p
S k E

k k

      

 



     



  
  

 

 (11)  

B. Disease-Free Equilibrium and Basic Reproduction 

Number 

The first case in (11) if 0,E   results in the disease-free 

equilibrium point, given by 

 

0 , 0, 0, 0, 0, 0, 0, 0 .X


 
  
 

 (12) 

 

The expected value of the infection rate per time unit is 

the basic reproduction number, denoted as
0R . An infected 

person is the source of the infection, which affects a 

susceptible population. In the following, we will find that 

the basic reproduction number
0R of system (1) is computed 

using the next-generation matrix method formulated in [21].  

Let  , , , , , ,
T

X E A I Q H B  
1 2 1, ,k k        

3 2 1 ,k      4 1 ,k      and 
5 2 2 .k      Without 

loss of generality, system (1) can be written as  

 

( ) ( )
dX

X X
dt

=F V  (13) 

 

where 
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
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
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  
    

    
    

   
     
  

        

F V

 (14) 

 

 By calculating, we obtain the Jacobian matrices of 

( )XF  and ( )XV  at the disease-free equilibrium 0X  are 

respectively, 

 

1 2 1

1

2

3

1 4

2 5

1 2

0 0 0 0 00 0

(1 ) 0 0 0 00 0 0 0 0 0

0 0 00 0 0 0 0 0
, .

0 0 0 00 0 0 0 0 0

0 0 00 0 0 0 0 0

0 0 00 0 0 0 0 0

k

p k

p k
F V

k

k

m m

  

   



 



 



     
   

    
    
    

   
       

      

 (15) 

 

Now, 1FV  is the generation matrix of system (1) and the 

basic reproduction number of system (1) is obtained as the 

spectral radius 1( )FV   that is the dominant eigen value of 

the matrix 1FV  , denoted by 
0R , is thus given by 

 

1 2 1 3 2 2 4
0

1 2 1 3 1 2 3 4 5

1 3 1 2 2

1 2 3

0 0 0 0

(1 ) [ (1 ) ]

[ (1 ) ]
       +

   A I H B

p p k p k k p

k k k k k k k k k

k m p k m p

k k k

        

  

 

 

     
  

  

   

R

R R R R

 (16) 

 

where 
0 0 0, , ,A I HR R R and 

0BR   are the proportions of the 

basic reproduction number contributed by the asymptomatic 

infected class, the symptomatic infected class, the 

hospitalized infected class, and the virus in the environment 

class, respectively. The basic reproduction number 

represents the number of new infected individuals caused by 

a primary infected individual during the infection period in 

totally susceptible individuals. 

 

C. Endemic Equilibrium 

Let us suppose that  * * * * * * * *

1 , , , , , , ,X S E A I Q H R B  

represents an endemic equilibrium of system (1). The 

second case in (11) if 0E   implies that  

 

*

0

S = .
μ



R
 (17) 

 

By adding the first two equations of system (9), we 

substitute *S  from (17) and simplify  *E  we get  

 

    
   

 
 

*
* 0

1 1 0

1S
E

k k

R
R

. (18) 

 

Hence, * 0E  whenever 0 0R . Thus, the other components 

of the endemic equilibrium 1X  can then be obtained by 

substituting the unique value of *E give in (18) into the 

steady-state expressions in (10), we obtain 

  
* * *

* * * 1

2 3 2 4
*

* 2 1

2 3 4 5
* *

* 1 1 2 2 4 2 1

2 3 4 5
*

* 3 1 2 2

2 3

(1 ) (1 )
, , ,

( (1 ) )
,

(1 ) [ (1 ) ]
,

[ (1 ) ]
.

p E p E p E
A I Q

k k k k

bd p c p E
H

k k k k

p E k k p c p E
R

bd k k k k

k m p k m p E
B

k k

   

   

       

 

 



 
  

 


  
 

 


. (19) 

D. Global Stability of the Disease-free Equilibrium 

We shall demonstrate the global stability of the disease-

free equilibrium 0X in this subsection to confirm that the 

COVID-19 disease has been eradicated. For this purpose, 

we consider the feasible region   

 0
1 ( , , , , , , , ) :S E A I Q H R B S S    . 

 

Lemma 3. For the system (1), the region 
1 is positively 

invariant. 

Proof.  From the first equation of system (1), we have 

 

 

1 2 1

0 0

[ ( ) ]

      

    as  .

dS
A I H B S S

dt

S S

S S S

    

 


 

      

 
     

 

   

 (20) 

 

In order to solve the differential equations (20), we use 

the comparison theorem [33], 

 

 0 0( ) (0) .tS t S S S e      

So, if  0(0)S S  is true for all 0,t   then 0( )S t S  is true 

for all  0.t   Hence, we have the region Ω1 is positively 

invariant and attracts all solutions of system (1).  

The proof of Lemma 3 is completed.                            ⧠ 

The global asymptotic stability for the disease-free 

equilibrium of system (1) will be examined in the following 

theorem. We applied the approach suggested by [22] to look 

into the global stability of 0X . 

 

Theorem 1.  If 
0 1R , then the disease-free equilibrium 0X  

of system (1) is globally asymptotically stable in Ω.  

Proof.  Let 2

1 ( , )Y S R   represents the uninfected 

compartments,  6

2 ( , , , , , )Y E A I Q H B    represents  the  

infected  compartments,  and  the disease-free equilibrium  

of  system (1), 0
0 1( ,0,0,0,0,0,0, 0) ( ,0,0,0,0,0,0, 0)X Y    

where  0 0 0
1 ( , ) ( ,0)Y S R    . System (1) can be written as 
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1
1

2
1 2 1

( ,0),

( ), ( ,0) 0,

dY
F Y

dt

dY
G Y Y G Y

dt



 ,

 (21) 

 

where 

1 2 1
1 2

1 2

[ ( ) ]
( )

A I H B S S
F Y Y

Q H R

    

  

      
  

  
, , 

1 2 1 1

2

3
1 2

1 4

2 5

1 2

[ ( ) ]

(1 )

( ) .

E I H B S k E

p E k A

p E k I
G Y Y

A k Q

I Q k H

m A m I B

   







 



    
 

  
 

  
 

  
 
   

, . 

 
The disease-free equilibrium of system (1) is globally 

asymptotically stable if the two following conditions (H1) 

and (H2) are satisfied. 

(H1) For 01
1 1( ,0),

dY
F Y Y

dt
  is globally asymptotically stable 

where 0
1( ,0) 0.F Y   

(H2) 1( , 0) 0G Y   and 1 2 2 1 2 1 2( ) ( ), ( ) 0G Y Y CY G Y Y G Y Y  , , ,   

         for 
1 2( , )Y Y   and 

2

0

1( , 0)YC D G Y   is a Metzler-  

         matrix. 

From the first equation of system (21), 

 

1
1( ,0) .

SdY
F Y

Rdt





  
   

 
 (22) 

 

The solution of system (22) is 

 
0

0

( ) ( )
.

( )

t

t

S t S e

R t R e





  



     
  
    

   

It can be shown 0S S      and 0 0R R   as 

t  , indicating that the solution of (22) has global 

convergence. As a result, condition (H1) is satisfied, and  
0 0 0

1 ( , )Y S R  is globally asymptotically stable. 

Furthermore, we show that 1 2( , )G Y Y  satisfies the two 

conditions given in (H2). It is clear that 1( , 0) 0G Y  . From 

the system (21), we obtain 

 

1 2 1

2

1

2

0
31

1 4

2 5

1 2

- 0

(1- ) - 0 0 0 0

0 - 0 0 0( ,0) .

0 0 - 0 0

0 0 - 0

0 0 0 -

Y

k

p k

p kC D G Y

k

k

m m

  

   







 



   
 
 
 
  
 
 
 
  
 

   (23) 

and 

1 2 1 2

0
1 2 1

( )= ( )

( )[ ( ) ]

0

0
            

0

0

0

G Y Y CZ G Y Y

S S A I H B   



    
 
 
 
 
 
 
 
 
 

, ,

 (24) 

 

The matrix C is a Metzler-matrix because none of its off-

diagonal entries are nonnegative. In the region 1,  0S S  

and hence we have 0 0S S  . The boundaries of the total 

population are N   and .B m    We have 

0
1 2 1( )[ ( ) ]S S A I H B        and 1 2( ) 0.G Y Y ,   As a result,  

1 2( , )G Y Y meets the two criteria, which suggests that 

condition (H2) is met. 

The proof of Theorem 1 is completed.                             ⧠ 

 

E. Global Stability of Endemic Equilibrium 

The Lyapunov asymptotic theorem is used to describe the 

global asymptotic stability of the endemic equilibrium. By 

referencing the research of Riyapan and Xu [31, 32], we will 

design a Lyapunov function from system (1). 

 

Theorem 2 If
0 1R , then the endemic equilibrium 1X  of the 

system (1) is globally asymptotically stable in  . 

Proof.  Let
0 1R , such that the endemic equilibrium of 

system (1) 1X  exists. We consider the candidate Lyapunov 

function L   as follows: 

 

         
     

         


     


* * * * *1
2

2 2
* * *1

2
        .

S S E E A A I I Q Q

H H R R B B

L
 (25) 

 

The statement below gives the derivative of L along the 

solutions of system (1). The statement below gives the 

derivative along the solutions of system (1). 

 

         
     

         


     


* * * * *

* * *          .

d
S S E E A A I I Q Q

dt dN dB
H H R R B B

dt dt

L
 (26) 

 

From (6) and (7), all solutions  of  system (1)  satisfy  
** , , .,N B dN dt N dtm mdB B         

Thus, 0d dt L  and  

  

* * * * *

* * *

* *

2 2

( ) ( ) ( ) ( ) ( )

          ( ) ( ) ( )

       ( )( ) ( )( )

         = ( )( ) ( )( )

        ( ) ( )

         0.

m

m m

m

d
S S E E A A I I Q Q

dt
dN dB

H H R R B B
dt dt

N N N B B B

N N B B

N B



   

 

 

 

 



  



         


     


      

     

    



L

 (27) 
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Additionally, 0d dt L  if and only if N   and   

B m    (or * * * * * *, , , , , ,S S E E A A I I Q Q H H       

*,R R  and *B B ). Hence, L is a Lyapunov function on 

 . The biggest compact invariant set of system (1) in the 

set   , , , , , , , : 0d
dt

S E A I Q H R B  L  is a singleton  1X . Then 

by LaSalle's Invariance Principle [23], the endemic 

equilibrium X1 is globally asymptotically stable in 

 for
0 1R .    

The proof of Theorem 2 is completed.                             ⧠        

 

F. Sensitivity Analysis for 
0R  

The effect of model parameter values on the output value 

of 
0R . Sensitivity analysis is used to measure how sensitive  

the basic reproduction number with respect to the model 

parameters. We perform the analysis by calculating the basic 

reproduction number is with respect to the model 

parameters. 

We perform the analysis by calculating the sensitivity 

indices of 
0R  to the parameters in the model using the 

approach of [24]. The sensitivity index is used to measure 

the spread  of  the initial  disease and the relative change in  

 

0R  if one parameter changes while other parameters remain. 

A sensitivity index on parameters with a high influence on 

0R  can be used to target intervention in order to control 

disease transmission. The sensitivity index can also be 

computed using partial derivatives when a variable is 

differentiable function of a model parameter. 

 

Definition 1. The normalized forward sensitivity index of a 

variable, 
0R , that depends differentiably on index on 

parameter, c is defined as 

 

0 0

0

.c

c

c


 



R R
R

 (28) 

 

Using parameter values from Table I, we calculate the 

sensitivity indices of 
0R  for all 18 parameters 

1( , , , ,     

1 2 2 2 1 2 1 1 1 2, , , , , , , , , , , , , )p m m           related to
0R . We 

performed a sensitivity analysis using (28) with these 

parameters. The parameters are ordered from most sensitive 

to least sensitive.  In practice, the natural death rate, disease 

death rate, and recruitment rate are not easy to control, so 

from Table III, it is concluded that the most sensitive 

parameter is  , followed by 
1 , and 

1 . Fig. 2 depicts the 

sensitivity index values for all parameters in bar chart which 

corresponds to Table III. 

In general, Table III indicates that by increasing one of 

the sensitivity indices with a positive sign 

1 2 1( , , , , , , ,p      
2 1, , , )m m   while the other parameters 

constant, the value of 
0R  increases. This implies that they 

increase the endemicity of the disease. The value of 
0R  

decreases when one of the sensitivity indices with a negative 

sign 
1 2 1 2 1 2( , , , , , , )       is increased while the other 

parameters remain constant. This means that they reduce the 

endemicity of the disease.  

Table III shows that   represent the rate of transmission 

from the infected ( , , )A I H  to the susceptible and has a 

positive sensitivity index (+0.9218). This shows that an 

increase (or decrease) in   a by 10% will be followed by an 

increase (or decrease) in
0R  by 9.218 %. 

On the other hand, 1  represents the rate of quarantine 

and has a negative sensitivity index (-0.7166). This shows 

that a change of 10% in 1  will be immediately followed by 

a change of 7.166% in the basic reproduction number
0R . 

The natural mortality rate (  ) and the recruitment rate of 

susceptibles (  ), respectively, are linked to and the highest 

sensitivity index, respectively. We cannot utilize these 

factors as as control parameters since they are 

uncontrollable. The sensitivity index of the hospitalized rate 

 
Fig. 2.  Global sensitivity plot. 
  

 
Fig. 3.  The relationship among 

0 1, , and . R   

  

TABLE III 

SENSITIVITY INDEX OF 
0R  FOR MODEL PARAMETERS 

Parameter Sensitivity 

Index 

Parameter Sensitivity 

Index 

 -1.0003   +0.0782 

 +1.0000  +0.0782 

 +0.9218  +0.0673 

 -0.7166   +0.0593 

 +0.7058  -0.0593 

 +0.1954  -0.0137 

 -0.1870  +0.0109 

 +0.0825  -0.0025 

 -0.0799  +0.0002 
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is -0.1870, which indicate that to reduce 
0R  we need to 

increase the hospitalized rate. The sensitivity index of 

recovery from hospitalized class 
2( )  is are -0.0799, which 

indicate that to reduce 
0R  we need to increase the recovery 

from hospitalized class. The sensitivity index of the natural 

decay rate of viruses from the environment surfaces ( ) is 

+0.0782, which indicates that to reduce 
0R  we need to 

decrease the natural decay rate of virus from the 

environment (surface). The sensitivity indices for 
2  and   

are relatively small, which indicate that they have no effect 

on
0R . The relationship between the basic reproduction 

number
0R , the transmission rate  , and the quarantined rate 

1  is depicted in Fig. 3. According to Fig. 3, even if 1 is 

large, the basic reproduction number 
0R  can be less than 

unit by decreasing the transmission rate  . 

 

IV. OPTIMAL CONTTROL 

A. The Formulation of Optimal Control Problem 

Previously, we analyzed the impact of control 

interventions at a constant rate. In this section, we formulate 

the optimal control problem for COVID-19 by including 

five time-dependent controls in system (1). The first control 

variable is the awareness of wearing a medical mask, 

staying at home, and washing their hands to prevent the 

spread of COVID-19, as denoted by
1u .  The control variable 

2u  is a control variable used to improve hospitalized patient 

care in terms of intense medical treatment to increase the 

recover rate of hospitalized individuals. The control variable 

3u  is surface disinfection, which is used to reduce the 

number of viruses on environmental surfaces. The controls 

are bounded between 0 and 1 in the intervention time 

interval [0, T], where T stands for the last time the controls 

were utilized. Thus, system (1) became 

 

1 1 2 1

1 1 2 1

1

2 1

1 1

2 2 2 2

1 2 2

1 2 3

(1 )[ ( ) ] ,

(1 )[ ( ) ] ( ) ,

(1 ) ( ) ,

( ) ,

( ) ,

( ) ,

( ) ,

( )

dS
u A I H B S S

dt
dE

u A I H B S E
dt
dA

p E A
dt
dI

p E I
dt

dQ
A Q

dt
dH

I Q u H
dt
dR

Q u H R
dt
dB

m A m I u
dt

    

     

  

   

   

    

  



       

      

   

   

   

     

   

    .B

 (29) 

 

Furthermore, it is also stated that there are bounds on the 

maximum rate of control measures in a given period. 

B. Characterization of Optimal Control 

Our goal is to minimize the number of infected humans 

(asymptomatic infected, symptomatic infected, hospitalized 

individuals), the pathogen population B (the concentration 

of coronavirus in the environmental reservoir), and the costs 

required to control COVID-19 by applying these five 

measures. The Pontryagin maximal principle [25] provides 

the necessary conditions for optimal control. According to 

PMP, the optimal control problem with the objective 

function is given by  

 

 2 2 21
1 2 3 4 1 1 2 2 3 32

0

( ) ( )

T

J u b A b I b H b B c u c u c u dt         (30) 

 

where , 1, 2, 3, 4jb j   are the balance of the cost size of 

reducing the disease transmission and , 1, 2, 3ic i   are 

weights of the relative costs of the controls associated with 

the measures 
1 2, ,u u and 

3u  respectively.  The goal is to 

create an optimal control, 2 2

1 2, ,u u  and 2

3u  such that  

   * * *

1 2 3 1 2 3, , min ( ), ( ), ( ) ,
iu U

J u u u J u t u t u t


 (31) 

where the control set is given by  

 ( ) : 0 ( ) 1, 1,2, 3, [0, ]i iU u t u t i t T      . 

We will also use system (1) to determine the existence of 

an optimal control with the necessary conditions that satisfy 

Pontryagin's Maximum Principle [41]. The Pontryagin’s 

Maximum Principle converts (1)-(3) into a problem of 

minimizing a pointwise Halmitonian function H  with 

respect to ( 1, 2, 3)iu i  .  The Lagrangian L for the above 

optimal control system is defined as  

 
2 2 21

1 1 2 2 3 4 1 1 2 2 3 32
( )L b I b I b H b B c u c u c u        (32) 

 

The Hamiltonian function H is defined for all [0, ],t T  as 

follows. 

 

 

 

 

 

 

 

2 2 21
1 2 3 4 1 1 2 2 3 32

1 1 2 1

1 1 2 1

1

2 1

1 1

2 2 2 2

1 2 2

( )

(1 )[ ( ) ]

(1 )[ ( ) ] ( )

(1 ) ( )

 ( )

( )

  + ( )

( )

S

E

A

I

Q

H

R

b A b I b H b B c u c u c u

u A I H B S S
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A Q

I Q u H

Q u H

     

      

   

    

    

     

  

      

       

      

   

   

   

    

   

H

 

 1 2 3( ) .B

R

m A m I u B



    

 (33) 

 

where , , , , , , ,S E A I Q H R       and B  are the adjoint 

variables.  

Next, we examine the preconditions that must be met in 

order for a solution to the optimal control problem for 

system (1) to exist.  

 

Theorem 3.  If 
* * * *

1 2 3( , , )u u u u  is an optimal control and 

 * * * * * * * *, , , , , , ,S E A I Q H R B  are the solutions of the 

corresponding control system (1) that minimize the objective 

functional 
1 2 3

( , , )J u u u  over the control set U, then there 

exists an adjoint variable 
j

  for , , , , , ,j S E A I Q H  ,R B , 
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which satisfying  

1 1 2 1

1 1 1 1

1

2 1 2

1 2

( )(1- )[ ( ) ] ,

( ) +( ) ,

( )(1- ) ( )

         ,

( )(1- ) ( )

         ( ) ,               

S
S E S

E
E A A I E

A
S E A Q

A B

I
S E I H

I B

dλ
λ λ u A I H B λ μ

dt
dλ

λ λ λ λ p λ
dt

dλ
b λ λ u S λ

dt
λ λ m

dλ
b λ λ u S λ

dt
λ m

   

  

  



  

  

     

   

     

 

     

  

1

3 1 2 2 2

2

4 1 1 3

                                              

( ) ( ) ,

( )(1- ) ( )( )

          ( ),

,

( )(1- ) ( ).

Q

Q H Q R Q

H
S E H R

H

R
R

B
S E B

dλ
λ λ λ

dt
dλ

b λ λ u S λ u
dt

λ

dλ
λ

dt
dλ

b λ λ u S λ u
dt

    

  

 



 

    

      

 



     

    (34) 

 

with transversality condition  

 

( ) 0j T   for  , , , , , , ,j S E A I Q H R B  (35) 

 

Furthermore, the associated optimal controls 
* *

1 2, ,u u  and *

3u  

are given by 

 

* 1 2 1
1

1

*

2

2

*

3

3

( )[ ( ) ]
min 1, max 0, ,

( )
min 1, max 0, ,

min 1, max 0, .

E S

H R

B

λ λ A I H B S
u

c

λ λ H
u

c

λ B
u

c

         
   

   

   
   

   

    
   

    

 (36) 

Proof.  To determine whether optimal control exists, utilize 

the result from [26]. By differentiating the Hamiltonian 

function H  in (33) with respect to the state variables S, E, 

A, I, Q, H, R, W, and B, we can obtain the adjoint equations 

(7.9) as follows: 

 

1

, ( ) 0; , ( ) 0;

, ( ) 0; , ( ) 0;

, ( ) 0; , ( ) 0;

, ( ) 0; , ( ) 0.

S E
S E

A I
I I

Q H
Q H

R B
R B

dλ d dλ d
λ T λ T

dt dS dt dE

dλ d dλ d
λ T λ T

dt dA dt dI

dλ d dλ d
λ T λ T

dt dQ dt dH

dλ d dλ d
λ T λ T

dt dR dt dB

     

     

     

     

H H

H H

H H

H H

 (37) 

 

Furthermore, to obtain the characterizations for the 

optimal control, we need to partially differentiate the 

Hamiltonian function H  in (33) with respect to 
1 2, ,u u and 

3u on the control set U. The optimal control of system (1) is 

discovered using the following equations: 

 

1 1 1 2 1

1

2 2

2

3 3

3

( )[ ( ) 0

( ) 0,

0.

S E

R H

B

c u A I H B
u

c u H
u

c u B
u

     

 




      




   




  



H

H

H

 (38) 

 

Solving (38) for 
1 2, ,u u and 

3u gives  

 

1 2 1
1

1

2

2

3

3

( )[ ( ) ]
,

( )
,

.

E S

H R

B

λ λ A I H B S
u

c

λ H
u

c

λ B
u

c

   



   







 (39) 

 

Finally, from common control arguments requiring 

bounds on the control, it follows that 

 

*

0 if        0

 if 0 1  ,

1 if        1

i

i i i

i

u

u u u

u




  
 

 (40) 

where 1, 2, 3i  .  As a result, the characterization in (36) 

can be derived. 

The proof of Theorem 3 is completed.                            ⧠ 

 

V. NUMERICAL SIMULATION 

A. Optimal Control Simulation 

Using the parameter values in Table II, we can directly 

calculate the basic reproduction number 
0 1.433105R ,  

indicating that the system has a globally asymptotically 

stable E1 = (5.131228×106, 1466.7, 797.5, 95.3, 1651.1, 

104.5, 8.9562×106, 327.4) equilibrium point.  In this section, 

we perform only four numerical simulations of seven 

possible combinations of three intervention strategies (u1, u2, 

and u3) to explore the most effective intervention strategies. 

With appropriate lower and upper bounds for the control and 

initial conditions for the state variables, the constraint 

system (29) and adjoint system (34) are solved forward in 

time and backward in time, respectively.  

This simulation known as fourth-order Runge-Kutta 

forward-backward sweep simulation. For simulation 

purposes, we used the initial conditions S(0) = 30,416,000, 

E(0) = 15, A(0) = 15, I(0) = 12, Q(0) = 5, H(0) = 0, R(0) = 0, 

and B(0) = 0, together with the parameter values listed in 

Table I. The weight and cost associated with the objective 

function (5.2) are assumed to be 
1 2 320, 100, 20c c c   . The 

lower and upper bounds for  the controls   are assumed to be 

0 and 1. 

We consider and compare three control intervention 

schemes: a double control implementation and three control 

implementations combined. Thus, the simulations of optimal 

control are divided into four strategies: the use of a 

combination of 
1 2and u u   (Strategy A), the use of a control 

combination of
1 3and u u  (Strategy B), the use of a 
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combination of 
2 3and u u (Strategy C), and the use of a 

combination of 
1 2 3, and u u u (Strategy D). 

 The following four scenarios were considered for 

numerical simulations: 

 

Strategy A. The Use of a Combination of 
1u and

2u  

Fig. 4 presents the numerical simulation with the 

implementation of the combination of two controls 
1u  (the 

awareness about medical masks, staying at home, and hand 

washing) and 
2u (the intense medical treatment). Fig. 4 (a-b) 

demonstrates that the optimal control Strategy A can reduce 

the total number of infections averted ( A I H  ) and the 

number of viruses on environmental surfaces (B) compared 

to not using the optimal control Strategy A.  Figure 4 (c) 

depicts the control profile for this strategy. It can be seen 

that the usage of the awareness about medical mask, stay at 

home, and hand washing (
1u ) measures needs to be 

optimally practiced (100%) for about the first 61 days and 

then gradually decrease to zero (lower bound). The usage of 

control 
2u (the intense medical treatment) was 0.16 at the 

start of the control period and then gradually decreased to 

the lower bound.  

 

Strategy B. The Use of a Combination of 
1u and

3u  

Fig. 5 shows the numerical simulation with the 

implementation of the combination of two controls, namely, 

the awareness about medical mask, stay at home, and hand 

washing (
1u ) and the surface disinfection (

3u ). According 

to Fig. 5(a-b), the use of Strategy B is the same as the 

simulation results by strategy A. The control profile for 

Strategy B is shown in Figure 5(c). It is observed that the 

controls 
1u  and 

3u  are kept 100% for the first 61 and 3 days 

of COVID-19 pandemic, respectively.  

 

Strategy C. The Use of a Combination of 
2u and

3u  

Fig. 6 presents the numerical simulation with the 

implementation of the combination of two controls 
2u (the 

intense medical treatment) and 
3u  (the surface disinfection). 

Figs. 6(a) and 6(b) demonstrate that the optimal control 

Strategy A can reduced the total number of infections 

averted and the number of viruses on environmental 

surfaces (B) compared to not using the optimal control 

Strategy A.  Figure 6(c) depicts the control profile for this 

strategy. It can be seen that the usage of awareness about 

medical masks, staying at home, and hand washing (
1u ). 

 

Strategy D. The Use of a Combination of 
1 2, ,u u and

3u  

Fig. 7 shows the implementation of the combination of 

three controls: public health education or awareness about 

medical masks, staying at home, and hand washing (
1u ), 

intense medical treatment (
2u ), and surface disinfection 

(
3u ). Figures 7(a-b) show that the total number of infections 

averted and the number of viruses on environmental 

surfaces removed by Strategy D are the same as the 

simulation results for strategy A or B. The control profile for 

Strategy D is shown in Figure 7 (c).  It can be seen that the 

usage of this strategy should be maintained at optimally 

practiced levels for controls 
1u and

3u , respectively, at 61 

and 3.3 days. After which, at the end of the control period, it 

progressively declined to zero. Comparatively, control 
2u  

was 0.15 at the start of the control period before gradually 

dropping to the lower bound.  

B. Cost-Effectiveness Analysis 

In this session, cost-effectiveness analysis is used to 

evaluate and determine the most effective and cost-effective 

strategy from four competing strategies (A, B, C, and D). To 

examine  the variations in health costs and results of 

alternative solutions for the same finite resources, we 

employ two methods of implementation: ICER, or  

incremental cost-effectiveness ratio and ACER, or average 

cost-effectiveness ratio. 

The definitions of ICER for the two strategies i and j and 

ACER for strategy k are given as follows [19]: 

 

Difference in total costs of strategies  and 
ICER .

Difference in total number of infectious averted of strategies  and 

i j

i j 


 (41) 

Total costs invested on the intervention
ICER .

Total number of infections averted using the intervention  
  (42) 

 

The numerator of ICER in (41) consists of the differences 

in intervention cost, cost of disease averted, and cost of 

prevented cases. While the ICER denominator in (41) 

evaluates the difference in health outcomes, including the 

total  number of infectious diseases averted  (the  differences 

between infectious disease individuals without and with 

control measures), the total number of infectious diseases 

averted (TA) and viral loads eliminated (TV) with the 

strategy  used over a specified time period were calculated 

using the formula *

0

( ) ( )
T

TA i X X dt   and 

*

0

( ) ( )
T

TV i B B dt  . Variable X is the number of the 

infectious individuals ( , , )A I H   without controls and is 

the number of the infectious individuals * * *( , , )A I H  with 

TABLE II 

PARAMETERS VALUES  OF THE MODEL (1) 

Parameter Value (day-1) References 

Λ 271.23 [15] 

β 6.038×10-8 [18] 
β1 1.03×10-8 [15] 

μ 3.01×10-5 [15] 

η1 0.6323 [18] 
η2 0.5642 [19] 

p 0.0268 [19] 

κ 0.1849 [19] 
γ1 0.3309 [19] 

γ2 0.0714 [19] 

α1 0.0048 [19] 

α2 0.0102 [19] 

δ1 0.1429 [19] 

δ2 0.3219 [19] 

σ 0.3117 [18] 

θ 0.0169 [18] 
m1 0.0178 [18] 

m2 0.9215 [18] 
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controls.  and are the viral load on surfaces in the 

environment without and with controls, respectively. 

Furthermore, the formula that defines the total cost (TC) 

for implementing optimal control for a strategy  is 

2 2 21
1 1 2 2 3 32

0

( ) ( )
T

TC i c u c u c u dt   . 

Table III shows the total number of infectious diseases 

averted, the total number of viruses on the surface, the total 

cost, and the objective values of the various strategies. This 

table  shows  the  total  number  of  infections  averted  after  

 

implementing different control strategies in ascending order, 

ordered in terms of the mean total number of diseases 

prevented and the total viral load removed.  

 

 

TABLE III 

TOTAL AVERTED, TOTAL VIRAL LOAD, TOTAL COST, AND J  VALUE 

Strategy TA TV  TC 
 

J 

C 1.072E+07 1.409E+07 4199.400 8.138E+07 

A 8.764E+07 1.856E+07 635.1245 1413 

B 8.764E+07 1.856E+07 747.7781 1231 

D 8.764E+07 1.856E+07 752.1264 1231 

 

 
 

 

 

 

 
 
Fig. 4.  Numerical simulation with the implementation of controls 

1 2 andu u . 

  

 

 

 
 
Fig. 5.  Numerical simulation with the implementation of controls 

1 3 andu u . 

  

IAENG International Journal of Applied Mathematics, 53:4, IJAM_53_4_24

Volume 53, Issue 4: December 2023

 
______________________________________________________________________________________ 



 

The overall number of infectious diseases avoided, the 

total number of viruses on the surface, the total cost, and the 

objective values of the various techniques are all displayed. 

The lowest cost value is associated with the control 

implementation utilizing strategy C, which is followed by 

strategy A in Table III. On the other hand, the control 

application using strategy D (or B) has the highest cost 

value and the lowest objective value.  

To incrementally compare the two competing strategies, 

the ICER for strategies C and A is calculated using the 

ICER formula (41) as follows:  

 

4.199E 03
ICER(C) 3.92E 04,

1,072E 07


  


 

635.1245 4199.4
ICER(A) 4.63E 05

8.764E 07 1.072E 07


   

  
. 

 

From Table IV, it can be seen that ICER (C) has a higher 

value than ICER (A). This means that using the combination 

of two controls 
2u (the intense medical treatment) and 

3u  

(the surface disinfection).  Thus, strategy C is excluded from  

the list of potential control interventions competing for the 

same limited resources, and then we compare control 

intervention strategies A and B using a similar procedure, as 

shown in Table V. 

Note that, because the total number of infections averted 

by the three competing strategies A, B, and D is the same, 

the ICER for those methods does not need to be 

recalculated. This cost analysis method states that the most 

cost-effective option is the one with the lowest ACER value. 

Table V shows that implementing Strategy A is the most 

economically advantageous option, followed by Strategy B 

and lastly Strategy D. The outcome is inconsistent with 

strategy B's (or D's) objective function value, which is the 

lowest of the four strategies.  

Therefore, in this study, strategy A, which combines of 

two controls 
1u  (awareness about medical masks, staying at 

home, and hand washing) and 
2u  (the intense medical 

treatment), is considered to be the most economically sound 

option. From numerical simulation and the cost-

effectiveness analysis for the four optimum control 

strategies, it was discovered that when the four control 

strategies were compared. In the absence of immunization, 

Strategy A (using physical or social distancing protocols) 

was the most cost-effective and effective control 

intervention. However, we observe that techniques A, B, 

and D are similarly effective at containing COVID-19 in 

terms of infection prevention. 

VI. CONCLUSION 

In this study, we create and examine a mathematical 

model of COVID-19 transmission that incorporates public 

health education (awareness about medical masks, staying at 

home, and hand washing), intense medical treatment, and 

surface disinfection interventions is created and examined. 

TABLE IV 

COMPARISON OF STRATEGIES C AND A FOR INTERVENTION CONTROLS 

Strategy TA TC  ACER ICER 

C 1.072e+07 4199.400 3,92E-07 3.92E+04 

A 8.764e+07 635.1245 7,25E-06 -4.63E-05 

B 8.764e+07 747.7781 8,53E-06 - 

D 8.764e+07 752.1264 8,53E-06 - 

 
 

 

 

 

 

 
 
Fig. 6.  Numerical simulation with the implementation of controls 

2 3 andu u . 

  

TABLE V 

COMPARISON OF STRATEGIES A, B, AND D FOR INTERVENTION CONTROLS 

Strategy TA TC  ICER ICER 

A 8.764e+07 635.1245 7,25E-06 7.247E-06 

B 8.764e+07 747.7781 8,53E-06 - 
D 8.764e+07 752.1264 8,58E-06 - 
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In the first part, we perform a theoretical analysis of the 

model, including proving the positivity and boundedness of 

the solution using differential equation theory, establishing 

two equilibrium points (disease-free and endemic), 

determining the basic reproduction number expression via 

the generation matrix approach, demonstrating the disease-

free equilibrium point and endemic equilibrium point are 

global stable by building the Lyapunov function, and using 

the Lasalle invariant principle. Then the model was 

developed by adding three control variables: public health 

education (u1), intense medical treatment (u2), and surface 

disinfectant (u3). Three control expressions are produced 

using Pontryagin's maximal principle, 

In the second part, we run numerical simulations. 

Through sensitivity analysis, the sensitivity index for each 

parameter to the basic reproduction number is obtained. 

Next, employing the fourth-order Runge-Kutta numerical 

scheme and the forward-backwards sweep method. We tried 

out the four different strategies and checked what happened 

and obtained the four optimal strategies, which were 

visually demonstrated in the form of plots of total infected 

cases, virus on the surface, and control profiles for each 

strategy. The four optimal strategies were then analyzed 

using average cost-effectiveness ratio (ACER) and cost-

effectiveness analysis (ICER), yielding three final strategies, 

namely, Strategy A (a combination of the public health 

education and the intense medical treatment), Strategy B (a 

combination of the public health education and the surface 

disinfectant), and Strategy D (a combination of three 

controls) with the same number of averted infections.  As a 

result, the total cost value and the objective function value 

of the strategy are utilized to determine which is most 

effective, with strategy A being the most effective. 

However, we found that, in terms of preventing infection, 

Strategies A, B, and D were similarly successful in 

containing COVID-19. 

This study suggests that future research should consider 

extending the model to account for the impact of vaccination 

on reducing the number of COVID-19 cases and develop 

strategies that are cost-effective and low-impact. Further 

studies using appropriate factual data sets are encouraged to 

have a better understanding of the dynamics of disease 

transmission.  
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