

Abstract—Multi-objective problems have gained much

attention during the last decade. To balance the diversity and
the convergence of the multi-objective differential evolution
algorithm (MODE), an improved MODE is proposed based on
the affinity propagation clustering (APC) and the
non-dominated count approach in this paper. The proposed
algorithm is referred to as AP-MODE, which improves the
search efficiency by utilizing the affinity propagation approach
to find out the population distribution structure for guiding
search. In addition, mating restriction probability is used to
select parent individuals for recombination from the
neighborhoods or the whole population. Meanwhile, the
mating restriction probability is updated according to the
non-dominated count approach at each generation. This
proposed algorithm is verified by comparing it with some
state-of-the-art multi-objective evolutionary algorithms, and
the simulation results on DTLZ test problems indicate that
AP-MODE can efficiently achieve two goals of multi-objective
optimization, i.e., the convergence to actual Pareto front and
uniform spread of individuals along Pareto front.

Index Terms—Differential Evolution Algorithm, Affinity
Propagation, Clustering, Multi-objective Optimization.

I. INTRODUCTION
ULTI-OBJECTIVE optimization problems [1]-[7] are
the main topics of optimal decision issues in research

and applications. These multiple objectives are often
interrelated and mutually conflicted, meaning that any
improvement in one objective may lead to the degradation of
at least one objective. With the emergence of numerous
multi-objective problems, the corresponding optimization
algorithms have been continuously improving. Such as
non-dominated sorting based genetic algorithm
(NSGA-II)[7], the evolutionary many-objective
optimization algorithm using reference-point-based
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non-dominated sorting approach (NSGA-III) [9],
multi-objective evolutionary algorithm based on
decomposition (MOEA/D) [10], Ɛ-dominance based
multi-objective evolutionary algorithm ( MOEA )[11],
improving the Strength Pareto Evolutionary Algorithm for
Multi-objective Optimization (SPEA-2) [12].
Differential evolution (DE) is an efficient evolutionary

algorithm introduced by Price and Storn[13]. In contrast to
traditional EA, DE employs a series of operations to produce
offspring, including variation and crossover of individuals in
the current population. DE algorithm also has a low space
complexity. Due to its excellent properties, DE algorithms
are more conducive to handling large-scale,
high-complexity optimization problems and have been
successfully applied to solve optimization problems in many
scientific and engineering fields [14]-[17]. Meanwhile,
many researchers intend to extend it to solve multi-objective
optimization problems (MOPs). In 1999, Chang[18] first
introduced the dominance relationship among individuals
into the DE algorithm and acted as a pioneer in solving
MOPs using the DE algorithm. Recently, multi-objective
differential evolution algorithms (MODE) are being
developed, and many algorithms have been proposed.
Abbass et al. [19] first proposed a Pareto Differential
Evolution (PDE) algorithm for solving MOPs by
incorporating Pareto dominance. PDE was compared with
SPEA on two test problems and outperformed it. PDE
showed the great potential of DE algorithms in solving
MOPs and greatly contributed to the advancement of the
field. To improve the convergence of the solution set and the
uniformity of the solution distribution, Xue et al. [20]
proposed MODE, which employs a new Pareto-based
ranking assignment and crowding distance metric. MODE
was tested on five benchmark problems, and it achieved
more favorable outcomes than SPEA. Ali et al. [21]
introduced a multi-objective differential evolution algorithm
that utilizes the advantage of dyadic-based learning to
generate an initial population of potential candidates and
uses the concept of random localization in the variation step.
Li et al. [22] proposed a decomposition-based MODE
algorithm that uses DE instead of a genetic algorithm as a
search engine to improve the diversity and convergence of
the solution set. However, the mutation pattern of the DE
algorithm has not been further improved. In 2015, Zheng et
al. [23] designed a multi-objective differential selection
strategy based on two populations to ensure the quality of
the generated solutions. In order to prevent existing MODEs
from falling into the local optimum, jumping gene operation
was introduced, and a novel MODE based on jumping genes
was presented by Liu[24]. The phenomenon of jumping
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genes reveals that jumping genes on chromosomes can jump
from one position to another. The algorithm has been proven
to be highly effective and exhibits excellent convergence
performance. Li et al. [25] proposed a modified differential
evolution method with a self-adaptive parameters method,
and the proposed algorithm adopted two variation rules
based on the rand and the best individual in the whole
population. Ai et al. [26] proposed an improved
multi-objective differential evolutionary algorithm with
archive and spherical pruning based on the MODE-MSRM
algorithm, which improves the convergence and robustness
of the algorithm. Li et al. [27] proposed a MODE algorithm,
which was formed by incorporating the memory mechanism
of PSO. The personal best concept is utilized in MODE to
memorize the set of non-dominated solutions found by each
solution. In 2022, Yu et al. [28] developed a constrained
multi-objective differential evolution algorithm with a
ranking mutation operator, which can find a well-distributed
Pareto front. Tian Ye[29] team designed a hybrid algorithm
based on differential evolution and a conjugate gradient
method tailored for large-scale multi-objective optimization
problems (LSMOPs). Compared to state-of-the-art MOEAs
and classic algorithms, the proposed algorithm performs
better for solving LSMOPs.
In summary, MODE is proven to be a simple and effective

algorithm for solving MOPs. Although many methods for
improving MODE are proposed constantly, MODE is still
facing challenges. In order to improve its performance
further, this paper proposed a new approach to extend DE to
make it suitable for solving MOPs, which is called
AP-MODE (Multi-Objective Differential Evolutionary
Algorithm based on Affinity Propagation). Its details are
introduced in the following section. The main contributions
of this work can be enumerated as follows:
1) Aiming at guiding the search process and accelerating

convergence, and affinity propagation clustering is utilized
to discover the structure of the Pareto solution set.
2) For population crossover mutations, an adaptive

method of recombination and mating restriction probability
is proposed to make a population more universal and
increase the diversity of the population.
3) The proposed algorithm is verified through a series of

comprehensive experiments on benchmark instances, and
The results show that the proposed algorithm has better
convergence and diversity than the competitor algorithms.
This paper is organized as follows: Section II describes

the AP approach and the new DE strategy. Section III
describes the framework of the proposed algorithm and its
detailed components. Section IV shows the performance
comparison. Finally, some conclusions are displayed in
Section V.

II. BASIC IDEAS AND CONCEPTS

The MOP[30] considered in this paper is formulated as
follows:

T
1 2min ( ) ( ( ), ( ),..., ( ))mF x f x f x f x (1)

where T
1( ,..., )nx x x  is the decision vector of

dimension n and nR is feasible space. The image set,
 ( )S F x x  , is called objective space.

A. DE
DE was introduced by Storn in 1995. The classical DE

algorithm contains four main steps during the optimization
process: initialization, mutation, crossover, and selection.
The algorithmic details of the four steps are outlined in
Algorithm 1. There are three main control parameters that
significantly affect the performance of DE, which contain
population size ( NP ), crossover rate ( rC ), and mutation
scale factor ( DEF ). It is worth noting that the differential
mutation operators may have different search behaviors. It is
worth noting that the differential mutation operators may
have different search behaviors. Four basic most commonly
used mutation operators that are listed as follows:
DE/rand/1: 1 2 3( )i r DE r rV X F X X   ;
DE/best/1: 2 3( )i best DE r rV X F X X   ;
DE/rand/2: 1 2 3 4 5( ) ( )i r DE r r DE r rV X F X X F X X     ;
DE/current-to-best/1:

1 2( ) ( )i i DE best i DE r rV X F X X F X X    
Where iV denotes the generated perturbed vector,

(0,1]DEF  is the control parameter, which mainly affects
the global optimization ability of the algorithm. The smaller
the value DEF is, the better the local search ability of the
algorithm will be. The algorithm has a greater probability of
escaping the local minimum with a larger DEF value.
However the convergence speed will be slower. In addition,
DEF also affects population diversity. bestX is the random

non-dominated solution from the global external archive.
1 2 3 4 5, , , ,r r r r rX X X X X are different solutions randomly

selected from the current population.

Algorithm 1 Outline of DE’s main procedure
Step 1. Initialize population P randomly and evaluate the

individuals of P .
Step 2. While the stopping criterion is not satisfied, do:
2.1 for iP ( 1,...,i NP ) in P repeat:
(2.1.1) Create a candidate from the parent iP
(2.1.2) Evaluate the candidate
(2.1.3) If the candidate individual is better than the parent, the
candidate replaces the parent. Otherwise, discard the candidate.
2.2 Randomly enumerate the individuals in P

B. MODE
Being a powerful heuristic for numerical optimization,

DE has been extended into MOPs by many researchers.
However, there exist many difficulties. On the one hand,
pursuing a diverse Pareto front is a challenging issue for any
MOEA. On the other hand, deciding how to deal with parent
and candidate solutions is difficult. For these considerations,
MODE adopts the following principles:
1) If the candidate solution outperforms )( the parent

solution, the candidate solution replaces it.
2) If the parent solution outperforms )( the candidate

solution, the candidate solution is rejected.
3) Otherwise (when there is no dominance relationship

between them), the candidate solution is added to the current
population.
Now, the population size is between NP and 2 NP .

Then, the current population is truncated to prepare for the
next step of evolution. The so-called truncation comes from
NSGA-II, which selects the best NP individuals to form a
new population based on ranking and crowding distance.
The procedure of MODE is described in Algorithm 2.
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Algorithm 2 Outline of MODE
Input: max generation maxG ; population size NP
Output: Pareto optimal solutions
Step 1. Initialize population 1 2{ , ,..., }NPP x x x

Step 2. While maxt G (t is current generation), do:
2.1 For each individual of P repeat:
(a) Create candidate solution from parent P (i.e. Solution
generation)
(b) Evaluate candidate solution
(c) If the candidate solution dominates the parent, replace the
parent with the candidate solution. If the parent dominates the
candidate solution, discard the candidate solution. Otherwise,
add a candidate solution to the population.
2.2 If the population size exceeds NP , truncate it using the
environmental selection approach.
2.3 Randomly enumerate solutions in P .
2.4 Let algebraic counter 1t t  .

C. Affinity propagation
Clustering methods[31]-[33] divide objects into groups or

clusters based on their similarity in some attributes. The
clustering approach aims to make objects within a class as
similar as possible and objects between classes as different
as possible. The specific steps of the AP[34]-[35] algorithm
is depicted in the following algorithm 3:

Algorithm 3 Outline of AP’s main procedure
Input: Data: points to be clustered, maxG : Maximum iterative
generations
Output: the cluster to which each data point belongs
Step 1. Initialization: generation counter 0t  ; reference

degree ( )p k ; similarity matrix S ;
Step 2. main loop:
2.1 Calculate matrix [ ( , )]N NA a i k  and [ ( , )]N NR r i k 

2.2 Update the matrixAand R according to following formulas:
1

1

( , ) (1 )* ( , ) * ( , )
( , ) (1 )* ( , ) * ( , )

t t t

t t t

r i k r i k r i k
a i k a i k a i k

 

 





  

  

2.3 Determine the center of the points
2.4 Distribution of each point
2.5 1t t 
Step 3. Stop iteration: if maxt G , print out result, otherwise,

turn to Step 2.

In AP-MODE, for each solution i tx P , its parent can
originate in two sources: the first one is the solution in a
cluster containing ix , which is good at generating
high-quality solutions to promote exploitation, and the
second one is the whole population tP , which can enhance
exploration. One of the most important aspects to be
discussed is how parental individuals are selected from two
sources to achieve a balance between exploration and
exploitation. At the early evolution stage, the first individual
can quickly lose diversity. In the later generation, the other
source performs poorly in generating better solutions. Hence,
an adaptive parameter  is employed to balance the
exploitation and exploration. This parameter  determines
which parents are selected from which source. The parents
originate from the neighborhoods with probability  ; the
parents are selected from the entire population. (i.e., mating
restriction) with probability 1  . In practice, many
high-quality solutions are desirable at the early evolutionary
stage, while the latter evolutionary stage should focus on

stimulating the diverse spread of solutions. Therefore, the
mating restriction probability  may also require different
values at different evolutionary stages. In order to achieve
the above goals, the non-dominated count-based approach is
proposed to adjust  adaptively at each generation, which
is shown in (2):

1
| |

| |
t

t
t

F
F NP









 
(2)

In this formula, NP is the population size, | |tF refers to
the number of non-dominated solutions that rank in the first
front, and 1010  is set to ensure the rationalization of this
design.

D. Part and Select Algorithm (PSA)
The Part and Select Algorithm (PSA), developed by

Salomon et al. [36], is capable of selecting well-spread
points from a given set of points in the objective space that
contains potential solutions. The minimal requirements of
PSA make it suitable for use as a selection mechanism
and/or as a crowding assignment mechanism, which can
improve the diversity of the Pareto front. It is recommended
to refer to [37]-[38] for a clear introduction to the PSA.

III. IMPROVEDMODE

MODE is widely used to solve multi-objective problems
(MOPs). There are two essential parts in the multi-objective
evolutionary algorithm: variation and environmental
selection. These two parts contribute to MODE ’ s
performance. However, most existing research prioritizes
the selection operator over the reorganization operator[39].
Thus, many multi-objective evolutionary algorithms
(MOEA) directly use recombination operators designed for
single-objective evolutionary algorithms. However, there
are essential differences between single-objective
evolutionary algorithm and multi-objective evolutionary
algorithm in terms of the topological structure of the solution,
i.e., the former is one or several independent points, while
the latter is a Pareto solution set with regular flow pattern
structure. Therefore, it is necessary to redesign the specific
recombination operator considering the practical
characteristics of MOPs. For these considerations, this
improved algorithm denoted by AP-MODE is proposed,
which takes MODE as the framework, introducing the
affinity propagation clustering and non-dominated counter
adaptive mating restriction approach. After the initialization
process, the population is clustered by the affinity
propagation method, and a new solution by Solution
Generation is generated, thus accelerating the exploration
and exploitation of the whole population. Afterward,
environmental selection is used to prune population size.
The specific changes are as follows:

A. AP-MODE
AP-MODE integrates current MODE with AP, based on

evidence that combining recombining similar parents can
boost its performance. The procedure and flowchart of the
AP-MODE algorithm are depicted in Algorithm 4 and Fig. 1,
respectively:
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Algorithm 4 Main Steps of AP-MODE
Input: NP : population size; maxG : Maximum Generation; 0 :

initial mating restriction probability.
Output: Non-dominated set of solutions
Step 1. Initialization population 1 2{ , ,..., }t NPP x x x and generation

counter 1t 
Step 2. Main loop:
2.1. Set external archive tE 

2.2. Custer the population:     )( tAffinity Propagation P // Algorithm 3
2.3. For each i tx P , 1,2,...,i NP do

(a) identify iB which denotes the set of solutions locating in the
same cluster with ix (except for ix )

(b) set a mating pool iQ for ix ,
 
 
\ , if ,

\ , otherwise,

i
ii

i
i

B x rand
Q

P x

  


rand is

a random number in the range of [0,1] .
(c) generate a new solution  ,i

i
iSolutionGeneration Qy x //

Algorithm 5
(d) preserve the new solution  t t iE E y 

2.4 Update the population   ( )t t tenvironmental selection EP P  //
Algorithm 6
2.5 Update the probability  based on non-dominate solutions
2.6 1t t 
Step 3. Stop iteration: if t NP , output the result, otherwise turn to

Step 2.

B. Solution generation
Since the differential evolution operator [40] usually

outperforms other mutation operators in single-objective
optimization, the MODE algorithm adopts it and the other
common polynomial mutation (PM) [41] to improve
performance, as shown in Algorithm 5.

Algorithm 5 Outline of Solution Generation
Input: parent solution x ; mating poolQ .
Output: candidate solution y ; external archive E
Step 1. Select two different random solutions 1rx and 2rx by

the binary tournament selection approach.
Step 2. Create a candidate solution: 1 2( )r ry x F x x   

Step 3. Repair the candidate solution:
,

,
, otherwise

i i i

i i i i

i

a y a

y b y b
y

  

  
 

where ia and ib ( 1, 2,..., )i n are the lower and upper
boundaries.
Step 4. Mutate the candidate solution

( ), if ( ) ,
, otherwise,

i i i i
i

i

y b a rand pm
y

y
   

  
1

1 1

1
1 1

[2 (1 2 )( ) ] 1, if 0.5,

1 [2 2 (2 1)( ) ] , otherwise,

m m

m m

i i

i i
i

i i

i i

b yr r r
b a

y ar r
b a

 

 



 

 

 
   

 


    
where ( ), 1,2,...,r rand i n 

Step 5. Repair the solution
, ,

, ,
, otherwise,

i i i

i i i i

i

a y a

y b y b
y

  

  
 

for 1,2,...i n

Step 6. Return 1{ ,..., }ny y y and update { }E E y 

First, the binary tournament selection method randomly
selects two solutions from the mating pool Q [42]. Then, the
DE operator is utilized to produce a candidate by current
individual x and two parents, 1rx and 2rx . Afterward,
polynomial mutation (PM) mutates candidates to improve
their quality. F and m denote the control parameter and the
distribution index of mutation in these two operators,
respectively. Sometimes, the newly generated candidates
may violate the boundary constraints. In this case, we
replace them with the closest boundary values. Furthermore,
this method doesn't need the creation of a new candidate. It
is worth mentioning that the DE’s mutation operation is
included only in AP-MODE, i.e., the selection operation is
redefined in the next part. This design’s purpose is that the
DE mutation operator is not affected by any orthogonal
coordinate rotation and can solve complex Pareto sets (PS)
[43].

C. Environmental selection

Environmental selection aims to truncate the population
to obtain the best individuals. In AP-MODE, the truncation,
which consists of sorting the individuals with
non-dominated sorting and evaluating individuals with
crowding distance metric proposed in NSGA-II, is
employed to establish a promising population. Algorithm 6
shows the procedure for environmental selection.

Algorithm 6 Outline of environmental selection
Input: current population t tA P

Output: next generation population 1tP

Step 1. Assign the solutions i t tx A P  to different fronts

1,..., ,...lF F and calculate the crowding distance
Step 2. Add all individuals in tP to 1tP

Step 3. If 1tP NP  then
Step 4. Iteratively add individuals from iF to 1tP .

If 1 1| | | |lF F s N    , 1| | | |lF F N   ,

the next parent population tP is constructed from the

members of the sets 1 1, ..., , ...lF F  and from N s

members of the set lF according to the PSA.
Step 5. End if
Step 6. Return 1tP

The input is the current population t tA P of the size
between NP and 2 NP . Firstly, assign all individuals to
different front 1,... ,...lF F according to the non-dominated
sorting approach. Next, calculate the crowding distance of
the whole individual using the PSA method and sort all
individuals in a descending order of each layer. Afterward,
all the non-dominated solutions in t tA P are added to 1tP .
The new population is filled by fronts until 1| |tP NP  .
Iteratively add individuals from iF to 1tP .
If 1 1| | | |lF F s N    , 1| | | |lF F N   ,
the next parent population tP is constructed from the
members of the sets 1 1, ..., , ...lF F  and from N s
members of the set lF according to the PSA. Fig. 2
illustrates the process of environmental selection.
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NP

Non-dominated sorting: PSA

Lack of superiority and elimination

Fig. 2. An illustration of environmental selection

IV. COMPARISION

A. Experimental settings
In order to validate the performance of the proposed

method, the experiments were conducted on AP-MODE, the
original MODE, and NSGA-II. The experimental
environment is 11th Gen Intel(R) Core(TM) i5-11320H @
3.20GHz 3.19 GHz; 16 GB memory; Windows 11 operating
system. The algorithm implementation platform is
MATLAB R2015a.
1) Test Functions
To test the effectiveness of the proposed algorithm, a

series of DTLZ [16] test functions proposed by Deb, Thiele
et al. were adopted. Here, DTLZ1-DTLZ4 were used to test
the performance of the above three algorithms in solving
continuous or discontinuous distributions and preferences in
different dimensions.
2) Algorithm Performance Evaluation Indexes
To evaluate the performance of AP-MODE, four metrics,

including GD [45], IGD [46], HV [47], and Spacing [8], are
employed to assess the convergence and diversity of the
population of the above algorithms.
3) Parameter Settings

For comparison, all algorithms use the same initial
population with the same genetic settings for each test. In
NSGA-II, a polynomial mutation operator and a
real-parameter simulated binary crossover operator are
employed to form the genetic operators. The mutation and
crossover probability are set to be 1/mp n ( n is the
number of variables) and 0.9cp  respectively. In the
AP-MODE and MODE, the mutation probability
equals 1/mp n ; the distribution index equals 20m  .
Moreover, the initial mating restriction probability and DE
control parameter are set to be 0.5  and 0.5F  ,
respectively. The maximum number of generations is

500max G ; the population size is N=100. In order to obtain
significant results in this comparison, each algorithm is run
independently 30 times.

B. Experimental Results Analysis
The mean and standard deviation values of four metrics

are presented in TABLE I-IV. In these tables, the best index
values are highlighted in bold. The results of a typical
approximated set are showed in Fig. 3 and Fig. 4.

Now, we discuss the performance of AP-MODE. Fig. 3
(Fig. 4) presents the final approximated set for two (three)
objectives of DTLZ1-4 with the median IGD values
obtained by AP-MODE. Fig. 3 shows that the optimal
solutions obtained by AP-MODE successfully converge to
the Pareto front and completely cover all the instances in two
objectives. In contrast, for DTLZ1 in two-dimensional
objective space, the visual comparison shows that the
solutions obtained through AP-MODE are unable to
accurately approximate to the entire Pareto Fronts. For the
two-dimensional objective space, we can observe that the
objective points generated by AP-MODE distribute alone
the PFs well from Fig. 4. Especially, as seen in Fig 4 (a),
AP-MODE has a slight advantage in terms of diversity for
DTLZ1 and the superiority is also manifested in the results
for the DTLZ2. The most outstanding differences occur in
the results for DTLZ3 and DTLZ4 on three objectives.
According to [44], the quality of the final approximated set
in DTLZ4 depends heavily on the initial population.
AP-MODE consistently found solutions on the surface of
the hyper-sphere using the same initial population.
The superiority of AP-MODE is also depicted in the

statistics in TABLE I-IV. The mean metric values for each
instance are presented and the numbers in the square
brackets of TABLE I-IV show their ranks. The bold data in
the table are the best mean metric values yielded by the
algorithms for each instance.
The GD index represents the algorithm's convergence,

while the IGD index reflects both the convergence and
diversity of the approximated set. Smaller values of GD and
IGD are preferred. As can be seen from TABLE I,
AP-MODE obtains the best convergence performance
among the three algorithms for the DTLZ1-4. Accordingly,
the results show that the AP method outperforms the original
MODE, whose framework embeds the AP approaches in
terms of convergence. In a statistical sense, the best mean
ranking of the average index values obtained by the three
algorithms (called mean rank, MR) is AP-MODE, which
reveals that it performs better than the competitors.
According to the results in TABLE II, our algorithm

AP-MODE performs better than MODE in terms of
convergence and distribution index. Compared with
NSGA-II, AP-MODE has a narrow advantage for all the
instances except DTLZ1. Statistical comparisons also show
that AP-MODE performs best for the tests used in the
experiments.
TABLE III shows the results of HV measurements. A

higher HV value means better diffusion and convergence.
According to TABLE IV, for DTLZ1-4, our algorithm
(AP-MODE) obtains well results with the large HV values
than MODE, but occasionally worse than NSGA-II. The
results of the mean rank analysis indicate that AP-MODE
performs similarly to NSGA-II. This could be due to the fact
that while AP-MODE performs best with current parameter
settings when dealing with DTLZ2 and DTLZ4 instances, it
performs poorly with DTLZ1 and DTLZ3, resulting in a
lower mean rank score for AP-MODE.
As we know, the spacing index indicates the diversity of

the approximated set, with smaller values being preferable.
Intuitively, as we can see from TABLE IV, the diversity
values of AP-MODE are better than MODE and NSGA-II.
The AP-MODE algorithm has excellent superiority in
boosting diversity by embedding PSA. AP-MODE
outperforms MODE in terms of solution convergence and
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diversity. These observations demonstrate the effectiveness
of the mechanism adopted in our AP based on the
non-dominated counting approach and PSA to promote
convergence and diversity.

V. CONCLUSION

The paper aims at the problems of low population
diversity, slow convergence rate of the MODE algorithm in
high-dimensional target spaces.To solve these problems, the
AP-MODE is proposed in this paper. In AP-MODE, affinity
propagation clustering is utilized to discover the structure of
the Pareto solution set, whose structure is used to guide
individual reorganization, thus conducting the search and
accelerating convergence in the process of evolution. Then,
the parent individuals for recombination originated from two
sources. Moreover, according to the non-dominated

counting approach, the mating restriction probability is
adaptively updated at each generation. To demonstrate the
potential benefit of this novel algorithm, a series of
comprehensive experiments on benchmark instances are
conducted. Based on the experiment’s results, we can
conclude that the AP-MODE algorithm has two distinct
characteristics. Firstly, it assists in organizing individuals
with similar traits. Secondly, it achieves convergence and
exceptional diversity sets(based on IGD and HV).
In future work, certain strategies are suggested to decrease

computational complexity while maintaining good
performance and the proposed algorithm will be employed
in practical optimization problems.

Start

Initialize population P ,external archive E

Custer the population P using
an AP approach

Generate a new solution iy for each i tx P
by Solution Generation, preserve iy in E

Update the population tP
environmental selection

Update the probability  based on
non-dominate solutions

Reach the maximum
generations?

Output the population P

Yes

No

Fig.1. The flow chart of AP-MODE
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(a) DTLZ1

(b) DTLZ2

(c) DTLZ3

(d) DTLZ4
Fig. 3.  Final solution sets on two objectives DTLZ1-4.
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(a) DTLZ1

(b) DTLZ2

(c) DTLZ3

(d) DTLZ4
Fig. 4. Final approximated set on three objectives DTLZ1-4.
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TABLE I. GD RESULTS OF FOUR APPROACHES

GD NSGA-II AP-MODE MODE
DTLZ1 5.3290e-03 

4.2349e-04
7.389724e-03 
2.42797e-04

2.611807e-02 
2.60818e-03

DTLZ2 4.8263e-03 
2.2339e-04

9.46727e-06 
2.48733e-06

2.98286e-05 
1.01542e-05

DTLZ3 4.4104e-03 
5.8342e-04

1.03079e-05 
1.83576e-06

1.97311e-05 
1.90012e-06

DTLZ4 4.2920e-03 
5.2339e-04

1.1474e-05 
2.10127e-06

3.68182e-05 
2.49498e-05

Mean rank 0.3333 0.2500 0.4167

TABLE II. IGD RESULTS OF FOUR APPROACHES

IGD NSGA-II AP-MODE MODE
DTLZ1 4.1232e-03 

7.3396e-05
4.35284 e-03 
2.41914e-05

5.20867e-03 
7.89105e-04

DTLZ2 4.5746 e-03 
4.3576e-04

7.2334e-05 
1.90364e-05

7.2672e-04 
2.76087e-05

DTLZ3 5.2629e-03 
3.3236e-04

7.14497e-04 
1.32149e-05

1.752846e-03 
2.47919e-04

DTLZ4 6.1483 e-03 
8.3676e-05

7.19945e-04 
4.80988e-05

4.478822e-03 
8.82224e-04

Mean rank 0.3333 0.2500 0.4167

TABLE III. HV RESULTS OF FOUR APPROACHES

HV NSGA-II AP-MODE MODE
DTLZ1 8.0113e-00 

2.3921e-03
2.9908149 e-01 
2.827623e-03

1.531536e-01 
9.065461e-03

DTLZ2 7.3455e-01 
5.1771e-02

7.4428122e-01 
3.841661e-03

7.222772e-01 
5.48044e-03

DTLZ3 7.2915e-00 
2.1301e-02

7.4429027e-01 
2.83341e-03

7.075956e-01 
1.046824e-02

DTLZ4 7.1545e-01 
8.1201e-04

7.4683908e-01 
5.80292e-03

3.971449e-01 
6.3361959e-02

Mean rank 0.2500 0.2500 0.5000

TABLE IV.  SPACING RESULTS OF FOUR APPROACHES

Spacing NSGA-II AP-MODE MODE
DTLZ1 1.0718e-01 

1.2574e-03
1.467099e-01 
4.9430706e-02

1.19114e-01 
1.33865e-02

DTLZ2 1.1521e-01 
4.0920e-03

1.395144e-01 
9.389004e-03

1.371702e-01 
8.1863687e-03

DTLZ3 1.0927e-01 
1.9828e-03

1.3584396e-01 
6.417196e-03

1.334372e-01 
9.262767e-03

DTLZ4 1.1912e-01 
1.0433e-02

4.117766e-01 
4.3166609e-03

1.360292e-01 
8.441855e-03

Mean rank 0.5000 0.1667 0.3333
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