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Abstract—In this paper, we sharpen some of the known
results of polar derivative of a polynomial by establishing the
Lq-version of a known inequality on the polar derivative of a
polynomial. Our result generalizes as well as improves upon
some well-known polynomial inequalities in this direction.

Index Terms—polynomial, polar derivative, integral inequal-
ities, maximum modulus.

I. INTRODUCTION

Let p(z) be a polynomial of degree n. Then, according to
a famous well-known classical result due to Bernstein [6],

max
|z|=1

|p
′
(z)| ≤ nmax

|z|=1
|p(z)|. (1)

Inequality (1) is sharp and equality holds if p(z) has all its
zeros at the origin.
If p(z) is a polynomial of degree n having no zero in
|z| < 1, then Erdös conjectured and later Lax [19] verified
that

max
|z|=1

|p
′
(z)| ≤ n

2
max
|z|=1

|p(z)|. (2)

Inequality (2) is best possible and equality holds for
p(z) = a+ bzn, where |a| = |b|.

For the class of polynomials p(z) of degree n not vanish-
ing in |z| < k, k ≥ 1, Malik [20] proved

max
|z|=1

|p
′
(z)| ≤ n

1 + k
max
|z|=1

|p(z)|. (3)

Next, Bidkham and Dewan [7] generalized inequality (3) and
obtained

Theorem 1. If p(z) is a polynomial of degree n having no
zero in |z| < k, k ≥ 1, then for 1 ≤ R ≤ k,

max
|z|=R

|p
′
(z)| ≤ n(R+ k)n−1

(1 + k)n
max
|z|=1

|p(z)|. (4)

The result is best possible and equality in (4) holds for

p(z) =

(
z + k

1 + k

)n

.

Aziz and Zargar [5] considered the class of polynomials

p(z) = a0 +
n∑

ν=µ
aνz

ν , 1 ≤ µ ≤ n, not vanishing in |z| < k,
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k ≥ 1, and proved the following generalization of Theorem
1.

Theorem 2. If p(z) = a0 +
n∑

ν=µ
aνz

ν , 1 ≤ µ ≤ n, is a

polynomial of degree n having no zero in |z| < k, k ≥ 1,
then for 0 < r ≤ R ≤ k,

max
|z|=R

|p
′
(z)| ≤ nRµ−1(Rµ + kµ)

n
µ−1

(rµ + kµ)
n
µ

max
|z|=r

|p(z)|. (5)

The result is best possible and equality in (5) holds for
p(z) = (zn + kn)

n
µ , where n is a multiple of µ.

As an improvement and generalization of Theorem 2, Aziz
and Shah [4] proved

Theorem 3. If p(z) = a0 +
n∑

ν=µ
aνz

ν , 1 ≤ µ ≤ n, is a

polynomial of degree n having no zero in |z| < k, k > 0,
then for 0 < r ≤ R ≤ k,

max
|z|=R

|p
′
(z)| ≤ nRµ−1(Rµ + kµ)

n
µ−1

(rµ + kµ)
n
µ

×

{
max
|z|=r

|p(z)| − min
|z|=k

|p(z)|
}
. (6)

The result is best possible and equality in (6) holds for
p(z) = (zn + kn)

n
µ , where n is a multiple of µ.

Further, by involving some of the coefficients of the poly-
nomial, Chanam and Dewan [9] obtained an improvement of
Theorem 3.

Theorem 4. If p(z) = a0 +
n∑

ν=µ

aνz
ν , 1 ≤ µ ≤ n, is a

polynomial of degree n having no zero in |z| < k, k > 0,
then for 0 < r ≤ R ≤ k,

max
|z|=R

|p
′
(z)| ≤ n×

µ
n

|aµ|
|a0|−mkµ+1Rµ−1 +Rµ

Rµ+1 + kµ+1 + µ
n

|aµ|
|a0|−m (kµ+1Rµ + k2µR)


×exp

n

∫ R

r

µ
n

|aµ|
|a0|−mkµ+1tµ−1 + tµ

tµ+1 + kµ+1 + µ
n

|aµ|
|a0|−m (kµ+1tµ + k2µt)

dt


×
{
max
|z|=r

|p(z)| − min
|z|=k

|p(z)|
}
. (7)

For a polynomial p(z) of degree n, we now define the
polar derivative of p(z) with respect to a real or complex
number α as

Dαp(z) = np(z) + (α− z)p
′
(z).

IAENG International Journal of Applied Mathematics, 53:4, IJAM_53_4_31

Volume 53, Issue 4: December 2023

 
______________________________________________________________________________________ 



This polynomial Dαp(z) is of degree at most n − 1 and it
generalizes the ordinary derivative p

′
(z) in the sense that

lim
α→∞

Dαp(z)

α
= p

′
(z),

uniformly with respect to z for |z| ≤ R, R > 0.

Aziz [2] was the first to extend some of the above inequal-
ities to polar derivative. He, in fact, extended inequality (3)
to polar derivative by proving that, if p(z) is a polynomial
of degree n having no zero in |z| < k, k ≥ 1, and for every
real or complex number α with |α| ≥ 1,

max
|z|=1

|Dαp(z)| ≤ n

(
|α|+ k

1 + k

)
max
|z|=1

|p(z)|. (8)

Dividing both sides of inequality (8) by |α| and letting
|α| → ∞, we obtain inequality (3).

Over the last four decades, a large number of results
concerning the polar derivative of polynomials was obtained
by many different authors. More information on classical
results and polar derivatives can be found in the books of
Milovanović et al. [23], Rahman and Schmeisser [31] and
Marden [21]. We can also see in the literature (for example,
refer [11], [16], [18], [22], [25], [26], [27], [28], [33], [34],
[35]) the latest research and development in this direction.

If we examine inequalities (2) due to Erdös-Lax [19]
onwards to inequality (7) of Theorem 4, it is concluded
that these inequalities give upper bound estimates of
the maximum modulus of the ordinary derivative of a
polynomial on a bigger circle in terms of the maximum
modulus of the polynomial itself on a smaller circle, where
both the circles are prescribed on the zero free open disc
and its boundary. Similar further extensions for the polar
derivative of a polynomial were made by Dewan and Singh
[13] by extending Theorems 2 and 3 into polar derivative as
follows.

Theorem 5. If p(z) = a0 +
n∑

ν=µ
aνz

ν , 1 ≤ µ ≤ n, is a

polynomial of degree n having no zero in |z| < k, k > 0,
then for every real or complex number α with |α| ≥ R and
0 < r ≤ R ≤ k,

max
|z|=R

|Dαp(z)| ≤
n(Rµ + kµ)

n
µ−1

(rµ + kµ)
n
µ

×

(kµ + |α|Rµ−1)max
|z|=r

|p(z)|. (9)

Theorem 6. If p(z) = a0 +
n∑

ν=µ
aνz

ν , 1 ≤ µ ≤ n, is a

polynomial of degree n having no zero in |z| < k, k > 0,
then for every real or complex number α with |α| ≥ R and
0 < r ≤ R ≤ k,

max
|z|=R

|Dαp(z)| ≤
n(Rµ + kµ)

n
µ−1

(rµ + kµ)
n
µ

×

[
(kµ + |α|Rµ−1)max

|z|=r
|p(z)|−{

(kµ + |α|Rµ−1)− (rµ + kµ)
n
µ

(Rµ + kµ)
n
µ−1

}
min
|z|=k

|p(z)|
]
. (10)

Similarly, Bidkham et al.[8] extended Theorem 4 to polar
derivative and proved

Theorem 7. If p(z) = a0 +
n∑

ν=µ
aνz

ν , 1 ≤ µ ≤ n, is a

polynomial of degree n having no zero in |z| < k, k ≥ 1,
then for every real or complex number α with |α| ≥ R and
0 < r ≤ R ≤ k,

max
|z|=R

|Dαp(z)| ≤
n

1 + s
′
0(µ)

[(
|α|
R

+ s
′

0(µ)

)
× exp

{
n

∫ R

r

Atdt

}
max
|z|=r

|p(z)|

+

(
s
′

0(µ) + 1−
(
|α|
R

+ s
′

0(µ)

)
exp

{
n

∫ R

r

Atdt

})
m

]
(11)

where m = min
|z|=k

|p(z)|,

At =

µ
n

|aµ|
|a0|−mkµ+1tµ−1 + tµ

tµ+1 + kµ+1 + µ
n

|aµ|
|a0|−m (kµ+1tµ + k2µt)

, (12)

and

s
′

0(µ) =

(
k

R

)µ+1
 (µn )

|aµ|Rkµ−1

|a0|−m + 1

(µn )
|aµ|kµ+1

(|a0|−m)R + 1

 . (13)

It was Zygmund [36] who extended Bernstein’s inequality
(1) into Lq version for q ≥ 1, whereas for 0 < q < 1 was
proved by Arestov [1] that{∫ 2π

0

|p
′
(eiθ)|qdθ

} 1
q

≤ n

{∫ 2π

0

|p(eiθ)|qdθ
} 1

q

.

Inequality (2) due to Erdös and Lax [19] was extended
into Lq-setting by de-Brujin [10] for q ≥ 1 and Rahman
[30] for 0 < q < 1 by establishing{∫ 2π

0

|p
′
(eiθ)|qdθ

} 1
q

≤ n{
1
2π

∫ 2π

0
|1 + eiα|qdα

} 1
q

×

{∫ 2π

0

|p(eiθ)|qdθ
} 1

q

. (14)

Later, similar extension into Lq analogue of inequality (3)
due to Malik [20] was made by Gardner and Weems [15]
and independently by Rather [32] and proved{∫ 2π

0

|p
′
(eiθ)|qdθ

} 1
q

≤ n{
1
2π

∫ 2π

0
|k + eiα|qdα

} 1
q

×

{∫ 2π

0

|p(eiθ)|qdθ
} 1

q

. (15)

It is of interest to obtain Lq inequalities for the polar
derivative of a polynomial. In this direction, for the first time
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Govil et al. [17] generalized inequality (14) due to de-Brujin
[10] and Rahman [30] for polar derivative version by proving

Theorem 8. If p(z) is a polynomial of degree n having no
zero in |z| < 1, then for q ≥ 1 and for every real or complex
number α with |α| ≥ 1,{∫ 2π

0

|Dαp(e
iθ)|qdθ

} 1
q

≤ n(|α|+ 1)Fq×

{∫ 2π

0

|p(eiθ)|qdθ
} 1

q

,

where

Fq =

{
1

2π

∫ 2π

0

|1 + eiα|qdα
}−1

q

.

Next, Aziz et al. [3] extended inequality (15) for the polar
derivative as

Theorem 9. If p(z) is a polynomial of degree n having no
zero in |z| < k, then for k ≥ 1 , then for q ≥ 1 and for
every real or complex number α with |α| ≥ 1,{∫ 2π

0

|Dαp(e
iθ)|qdθ

} 1
q

≤ n(|α|+ k)Gq

{∫ 2π

0

|p(eiθ)|qdθ
} 1

q

,

where

Gq =

{
1

2π

∫ 2π

0

|k + eiα|qdα
}−1

q

.

Recently, improved bounds of Theorem 9 were proved by
Milovanović and Mir [22].

Very recently, Theorems 5 and 6 were extended to Lq

analogue by Maisnam et al. [12] as follows.

Theorem 10. If p(z) = a0 +
n∑

ν=µ
aνz

ν , 1 ≤ µ ≤ n, is a

polynomial of degree n having no zero in |z| < k, k > 0,
then for every q > 0 and for every real or complex number
α with |α| ≥ R, and for 0 < r ≤ R ≤ k,{∫ 2π

0

|Dαp(Reiθ)|qdθ
} 1

q

≤

n

{(
k
R

)µ

+ |α|
R

}
{

1
2π

∫ 2π

0
|
(

k
R

)µ

+ eiγ |qdγ
} 1

q

×
[ ∫ 2π

0

{
|p(reiθ)|+

∫ R

r

ntµ−1

tµ + kµ
M(p, t)dt

}q

dθ

] 1
q

,

(16)
where

M(p, t) = max
|z|=t

|p(z)|.

Theorem 11. If p(z) = a0 +
n∑

ν=µ
aνz

ν , 1 ≤ µ ≤ n, is a

polynomial of degree n having no zero in |z| < k, k > 0,

then for every q > 0 and for every real or complex numbers
α, β with |α| ≥ R, |β| < 1 and for 0 < r ≤ R ≤ k,{∫ 2π

0

∣∣Dαp(Reiθ) + nβm
∣∣q dθ} 1

q

≤

n

{(
k

R

)µ

+
|α|
R

}
{

1

2π

∫ 2π

0
|
(

k
R

)µ

+ eiγ |qdγ
} 1

q

×
[ ∫ 2π

0

{
|p(reiθ)|+

∫ R

r
ntµ−1

kµ+tµM(p, t)dt

−
∫ R

r
ntµ−1

kµ+tµmdt− |β|m
}q

dθ

] 1
q

, (17)

where M(p, t) = max
|z|=t

|p(z)|, m = min
|z|=k

|p(z)|.

II. LEMMAS

We need the following lemmas to prove our theorem.

Lemma 12. If p(z) = a0 +
n∑

ν=µ

aνz
ν , 1 ≤ µ ≤ n, is a

polynomial of degree n having no zero in |z| < k, k ≥ 1,
then

max
|z|=1

|p
′
(z)| ≤ n

1 + s0(µ)

{
max
|z|=1

|p(z)| −m

}
, (18)

where m = min
|z|=k

|p(z)|
and

s0(µ) = kµ+1


µ
n

|aµ|
|a0|−mkµ−1 + 1

µ
n

|aµ|
|a0|−mkµ+1 + 1

 .

The above lemma is due to Gardner et al. [14].

Lemma 13. If p(z) = a0 +
n∑

ν=µ

aνz
ν , 1 ≤ µ ≤ n, is a

polynomial of degree n having no zero in |z| < k, k ≥ 1,
then for any complex number α with |α| ≥ 1, and for q > 0{∫ 2π

0

|Dαp(e
iθ)|qdθ

} 1
q

≤ n(|α|+ T0(µ))Cγ(T0(µ))×

{∫ 2π

0

|p(eiθ)|qdθ
} 1

q

, (19)

where

T0(µ) = kµ+1

 (µn )
|aµ|
|a0| k

µ−1 + 1

(µn )
|aµ|
|a0| k

µ+1 + 1


and

Cγ(T0(µ)) =

{
1

2π

∫ 2π

0

|T0(µ) + eiβ |qdβ
}−1

q

.

This lemma is due to Mir and Ahmad [24].
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Lemma 14. If p(z) = a0 +
n∑

ν=µ

aνz
ν , 1 ≤ µ ≤ n, is a

polynomial of degree n having no zero in |z| < k, k > 0,
then for 0 < r ≤ R ≤ k,

|p(Reiθ)| ≤ |p(reiθ)|+ n×∫ R

r

µ
n

|aµ|
|a0|−m

kµ+1tµ−1+tµ

tµ+1+ µ
n

|aµ|
|a0|−m

(kµ+1tµ+k2µt)+kµ+1

{M(p, t)−m} dt, (20)

and

M(p, r) + n×[∫ R

r

µ
n

|aµ|
|a0|−m

kµ+1tµ−1+tµ

tµ+1+kµ+1+ µ
n

|aµ|
|a0|−m

(kµ+1tµ+k2µt)

{M(p, t)−m} dt]

≤ {M(p, r)−m} ×

exp

{
n
∫ R

r

µ
n

|aµ|
|a0|−m

kµ+1tµ−1+tµ

tµ+1+kµ+1+ µ
n

|aµ|
|a0|−m

(kµ+1tµ+k2µt)
dt

}
+m, (21)

where m = min
|z|=k

|p(z)|, M(p, t) = max
|z|=t

|p(z)| and

M(p, r) = max
|z|=r

|p(z)|.

Proof: Since p(z) has no zero in |z| < k, k > 0, then
for 0 < t ≤ k, P (z) = p(tz) has no zero in |z| < k

t ,
k
t ≥ 1.

Thus on using Lemma 12 to |p(z)|, we have

max
|z|=1

|p
′
(z)| ≤ n

1 + (kt )
µ+1

{
µ
n

|aµ|
|a0|−m

tµ( k
t )

µ−1+1

µ
n

|aµ|
|a0|−m

tµ( k
t )

µ+1+1

}

×

{
max
|z|=1

|p(z)| − min
|z|= k

t

|P (z)|

}
where

m = min
|z|= k

t

|P (z)| = min
|z|= k

t

|p(tz)| = min
|z|=k

|p(z)|.

Which gives

tmax
|z|=t

|p
′
(z)| ≤ n×

µ
n

|aµ|
|a0|−m

kµ+1

t + 1

1 + µ
n

|aµ|
|a0|−m

kµ+1

t + µ
n

|aµ|
|a0|−m

k2µ

tµ + kµ+1

tµ+1


×
{
max
|z|=1

|p(tz)| −m

}
,

which is equivalent to

max
|z|=t

|p
′
(z)| ≤ n×

µ
n

|aµ|
|a0|−mkµ+1tµ−1 + tµ

tµ+1 + µ
n

|aµ|
|a0|−m (kµ+1tµ + k2µt) + kµ+1


×
{
max
|z|=t

|p(z)| −m

}
. (22)

Now, for 0 < r ≤ R ≤ k and 0 ≤ θ < 2π, we have

|p(Reiθ)− p(reiθ)| ≤
∫ R

r

|p
′
(teiθ)|dt

which implies

|p(Reiθ)| ≤ |p(reiθ)|+
∫ R

r

|p
′
(teiθ)|dt. (23)

Since ∫ R

r

|p
′
(teiθ)|dt ≤

∫ R

r

max
|z|=t

|p
′
(z)|dt,

using inequality (22) in (23), we get the first inequality (20)
of Lemma 14.

Further, taking maximum over θ in inequality (20), we
have

max
|z|=R

|p(z)| ≤ max
|z|=r

|p(z)|+ n×∫ R

r

µ
n

|aµ|
|a0|−mkµ+1tµ−1 + tµ

tµ+1 + µ
n

|aµ|
|a0|−m (kµ+1tµ + k2µt) + kµ+1

× {M(p, t)−m} dt. (24)

Now, let us denote the right hand side of inequality (24) by
ϕ(R). Then

ϕ
′
(R) = n


µ
n

|aµ|
|a0|−mkµ+1Rµ−1 +Rµ

Rµ+1 + µ
n

|aµ|
|a0|−m (kµ+1Rµ + k2µR) + kµ+1


×{M(p,R)−m} . (25)

Using M(p,R) ≤ ϕ(R), equality (25) can be written as

ϕ
′
(R)− n {AR} × {ϕ(R)−m} ≤ 0. (26)

where AR =
µ
n

|aµ|
|a0|−m

kµ+1Rµ−1+Rµ

Rµ+1+ µ
n

|aµ|
|a0|−m

(kµ+1Rµ+k2µR)+kµ+1
.

Multiplying both sides of (26) by exp
{
−n
∫
ARdR

}
, we

get

d

dR

[
{ϕ(R)−m} exp

{
−n

∫
ARdR

}]
≤ 0. (27)

It is concluded from (27) that the function

{ϕ(R)−m} exp
{
−n

∫
ARdR

}
is a non-increasing function of R in (0, k].
Hence for 0 < r ≤ R ≤ k,

{ϕ(r)−m} exp
{
−n

∫
Atdr

}
≥ {ϕ(R)−m} exp

{
−n

∫
AtdR

}
,

where At is as defined in (12),
which is equivalent to

{ϕ(r)−m} exp

{
n

∫ R

r

Atdt

}
≥ {ϕ(R)−m} . (28)

Since ϕ(r) = M(p, r) and using the value of ϕ(R) in (28),
we get

M(p, r) + n

[∫ R

r

At {M(p, t)−m} dt

]
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≤ {M(p, r)−m} exp

{
n

∫ R

r

Atdt

}
+m.

This completes the proof of inequality (21) of Lemma 14.

The following lemma is due to Govil and Kumar [16].

Lemma 15. If a ≥ 1, b ≥ c ≥ 1, and q > 0, then

a+ b{∫ 2π

0
|eiθ + b|qdθ

} 1
q

≤ a+ c{∫ 2π

0
|eiθ + c|qdθ

} 1
q

. (29)

Lemma 16. If p(z) = a0 +
n∑

ν=µ

aνz
ν , 1 ≤ µ ≤ n, is a

polynomial of degree n having no zero in |z| < k, k > 0,
then

µ

n

|aµ|kµ

|a0| −m
≤ 1, (30)

where m = min
|z|=k

|p(z)|.

This lemma is due to Gardner et al. [14].

Lemma 17. If p(z) = a0 +
n∑

ν=µ

aνz
ν , 1 ≤ µ ≤ n, is a

polynomial of degree n having no zero in |z| < k, k > 0,
then 0 < R ≤ k,

µ
n

|aµ|R
|a0|−mk2µ + kµ+1

µ
n

|aµ|
|a0|−mkµ+1Rµ +Rµ+1

≥ 1. (31)

Proof: Since p(z) ̸= 0 in |z| < k, k > 0, then for
0 < R ≤ k, the polynomial P (z) = p(Rz) ̸= 0 in
|z| < k

R , k
R ≥ 1. Applying Lemma 16 to the polynomial

P (z), we have
µ

n

|aµ|
|a0| −m

kµ ≤ 1. (32)

Since R ≤ k, we have

0 ≤ Rµk −Rkµ ≤ kµ+1 −Rµ+1. (33)

Multiplying (32) and (33) sidewise, we have

µ

n

|aµ|
|a0| −m

kµ(Rµk −Rkµ) ≤ (kµ+1 −Rµ+1),

which is equivalent to (31) and the proof of Lemma 17 is
completed.

Lemma 18. If p(z) is a polynomial of degree n having no
zero in |z| < k, k > 0, then

|p(z)| ≥ m for |z| ≤ k, (34)

where m = min
|z|=k

|p(z)|.

This lemma is due to Gardner et al. [14].

Lemma 19. The function

g(x) = kt+1

{
t
n

|at|
x kt−1 + 1

t
n

|at|
x kt+1 + 1

}
(35)

where k ≥ 1, t > 0, n ∈ N, is a non-decreasing function of
x > 0.

Proof: The proof follows simply by first derivative test.

III. MAIN RESULT

In this paper, we generalize and strengthen some of the
previously mentioned inequalities by establishing the Lq

inequality of Theorem 7, where the value of k is also
extended from k ≥ 1 to k > 0. Moreover, our result reduces
to several interesting generalisations and improvements of
known inequalities in this direction. More precisely, we prove

Theorem 20. If p(z) = a0 +
n∑

ν=µ

aνz
ν , 1 ≤ µ ≤ n, is a

polynomial of degree n having no zero in |z| < k, k > 0,
then for every q > 0 and for every real or complex numbers
α, β with |α| ≥ R, |β| < 1 and for 0 < r ≤ R ≤ k,{∫ 2π

0

|Dαp(Reiθ) + nβm|qdθ
} 1

q

≤ n

(
|α|
R

+ s
′

0(µ)

)
×

Cγ(s
′

0(µ))

[∫ 2π

0

{
|p(reiθ)|+ n

∫ R

r

At×

{M(p, t)−m} dt− |β|m}q dθ]
1
q (36)

where M(p, t) = max
|z|=t

|p(z)|, m = min
|z|=k

|p(z)|, At and s
′

0(µ)

is as defined in (12) and (13) and

Cγ(s
′

0(µ)) =

{
1

2π

∫ 2π

0

|s
′

0(µ) + eiγ |qdγ
}−1

q

. (37)

Proof: Since the polynomial p(z) = a0 +
n∑

ν=µ

aνz
ν ,

1 ≤ µ ≤ n, has no zero in |z| < k, k > 0, therefore, for
every real or complex number β with |β| < 1, by Rouche’s
Theorem, the polynomial p(z)+βm, where m = min

|z|=k
|p(z)|,

has no zero in |z| < k, k > 0. Let 0 < r ≤ R ≤ k, then the
polynomial P (z) = p(Rz) + βm has no zero in |z| < k

R ,
k
R ≥ 1, and hence applying Lemma 13 with δ = α

R such that
|α|
R ≥ 1,

{∫ 2π

0

|D α
R

{
p(Reiθ) + βm

}
|qdθ

} 1
q

≤ n

{
|α|
R

+ SR(µ)

}
× Cγ(SR(µ))

{∫ 2π

0

|p(Reiθ) + βm|qdθ
} 1

q

, (38)

where

SR(µ) =

(
k

R

)µ+1


µ
n

|aµ|Rµ

|a0−λm|
(
k
R

)µ−1
+ 1

µ
n

|aµ|Rµ

|a0−λm|
(
k
R

)µ+1
+ 1


and

Cγ(SR(µ)) =

{
1

2π

∫ 2π

0

|SR(µ) + eiγ |qdγ
}−1

q

.

Using Lemma 18, |p(z)| > m for |z| < k, i.e., in particular,
|a0| > m. Since |λ| < 1, we have |λ|m < m < |a0|, and
therefore

|a0 − λm| ≥ |a0| − |λ|m > |a0| −m.
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Using the fact of Lemma 19, we have SR(µ) ≥ s
′

0(µ), where

s
′

0(µ) =

(
k

R

)µ+1


µ
n

|aµ|Rkµ−1

|a0|−m + 1

µ
n

|aµ|kµ+1

(|a0|−m)R + 1

 , (39)

and by Lemma 17, s
′

0(µ) ≥ 1.
Now using the fact of Lemma 15, (38) becomes{∫ 2π

0

|D α
R

{
p(Reiθ) + βm

}
|qdθ

} 1
q

≤

n

{
|α|
R

+ s
′

0(µ)

}
Cγ(s

′

0(µ))×{∫ 2π

0

|p(Reiθ) + βm|qdθ
} 1

q

. (40)

Since

D α
R
p(Reiθ) = n

{
p(Reiθ) + βm

}
+( αR − eiθ)Rp

′
(Reiθ)

= Dαp(Reiθ) + nβm,

(40) is equivalent to{∫ 2π

0
|Dαp(Reiθ) + nβm|qdθ

} 1
q ≤

n
{

|α|
R + s

′

0(µ)
}
Cγ(s

′

0(µ))×{∫ 2π

0
|p(Reiθ) + βm|qdθ

} 1
q

. (41)

Now, we choose the argument of β suitably such that

|p(Reiθ) + βm| = |p(Reiθ)| − |β|m. (42)

If we use equality (42) in the right hand side of (41), we get{∫ 2π

0
|Dαp(Reiθ) + nβm|qdθ

} 1
q ≤

n
{

|α|
R + s

′

0(µ)
}
Cγ(s

′

0(µ))×{∫ 2π

0

[
|p(Reiθ)|+ |β|m

]q
dθ
} 1

q

. (43)

By using inequality (20) of Lemma 14 in (43), we have

{∫ 2π

0

|Dαp(Reiθ) + nβm|qdθ
} 1

q

≤

n

{
|α|
R

+ s
′

0(µ)

}
Cγ(s

′

0(µ))×

[∫ 2π

0

{
|p(reiθ)|+ n

∫ R

r

At×

{M(p, t)−m} dt− |β|m}q dθ]
1
q , (44)

and this completes the proof of Theorem 20.

Remark 21. Taking limit as q → ∞ in (36), we have

max
|z|=R

|Dαp(z) + nβm| ≤

n

1 + s
′
0(µ)

(
|α|
R

+ s
′

0(µ)

)
×
[
M(p, r) + n

∫ R

r

At {M(p, t)−m} dt− |β|m
]
, (45)

where At is as defined in (12).
Using the simple fact

|Dαp(z) + nβm| ≥ |Dαp(z)| − n|β|m,

and inequality (21) of Lemma 14 in inequality (45), we
have

max
|z|=R

|Dαp(z)| ≤
n

1 + s
′
0(µ)

(
|α|
R

+ s
′

0(µ)

)
×

[
{M(p.r)−m} exp

{
n

∫ R

r

Atdt

}
+m−|β|m

]
+n|β|m,

which on taking limit as |β| → 1 becomes inequality (11) of
Theorem 7.

Remark 22. Dividing both sides of inequality (36) of The-
orem 20 by |α| and taking limit as |α| → ∞, we have

Corollary 23. If p(z) = a0 +
n∑

ν=µ
aνz

ν , 1 ≤ µ ≤ n, is a

polynomial of degree n having no zero in |z| < k, k > 0,
then for every q > 0 and for every real or complex number
β with |β| < 1, and for 0 < r ≤ R ≤ k,{∫ 2π

0
|p′

(Reiθ)|qdθ
} 1

q ≤ n
RCγ(s

′

0(µ))×[ ∫ 2π

0

{
|p(reiθ)|+ n

∫ R

r
At×

{M(p, t)−m} dt− |β|m}q dθ
] 1

q

, (46)

where M(p, t) = max
|z|=t

|p(z)|, At is as defined in (12) and

Cγ(s
′

0(µ)) is as defined in Theorem 20.

Remark 24. Taking simultaneous limit as q → ∞ and
|β| → 1 in (46) of Corollary 23, we have

max
|z|=R

|p
′
(z)| ≤

n


µ
n

|aµ|
|a0|−mkµ+1Rµ−1 +Rµ

Rµ+1 + kµ+1 + µ
n

|aµ|
|a0|−m (kµ+1Rµ + k2µR)


×

[
max
|z|=r

|p(z)|+ n

∫ R

r

At {M(p, t)−m} dt−m

]
,

which on applying inequality (21) of Lemma 14 gives
inequality (7) of Theorem 4.

Remark 25. Putting R = r in Corollary 23, we obtain a
generalized Lq extension of Lemma 12 proved by Gardner
et al. [14].

Corollary 26. If p(z) = a0 +
n∑

ν=µ
aνz

ν , 1 ≤ µ ≤ n, is a

polynomial of degree n having no zero in |z| < k, k > 0,
then for every p > 0 and for every real or complex number
β with |β| < 1, and for r ≤ k,

2π∫
0

∣∣∣p′
(reiθ)

∣∣∣q dθ


1
q

≤

n

r{
1

2π

2π∫
0

∣∣s′
0(µ) + eiγ

∣∣q dγ} 1
q

×

IAENG International Journal of Applied Mathematics, 53:4, IJAM_53_4_31

Volume 53, Issue 4: December 2023

 
______________________________________________________________________________________ 



 2π∫
0

{
|p(reiθ)| − |β|m

}q
dθ


1
q

,

where s
′

0(µ) is as defined in Theorem 20,
which for r = 1 and |β| → 1 gives Lq analogue of inequality
(18) of Lemma 12.

Remark 27. Theorem 20 improves as well as generalizes
both Theorems 10 and 11 of Maisnam et al. [12].

Remark 28. Further, if R = r = k = µ = 1, Theorem 20
yields an improved Lq-version in polar derivative of the Lq-
inequality (14) in ordinary derivative proved by de-Brujin
[10].

REFERENCES

[1] V. V. Arestov, “On inequalities for trigonometric polynomials and their
derivative”, IZV. Akad. Nauk. SSSR. Ser. Math., vol. 45, pp. 3-22, 1981.

[2] A. Aziz, “Inequalities for the polar derivative of a polynomial”, J.
Approx. Theory., vol. 55(2), pp. 183-193, 1988.

[3] A. Aziz, N. A. Rather and Q. Aliya, “Lq norm inequalities for the
polar derivative of a polynomial”, Math. Inequal. Appl., vol. 11(2),
pp. 283-296, 2008.

[4] A. Aziz and W. M. Shah, “Inequalities for a polynomial and its
derivative”, Math. Inequal. Appl., vol. 7(3), pp. 379-391, 2004.

[5] A. Aziz and B. A. Zargar, “Inequalities for a polynomial and its
derivative”, Math. Inequal. Appl., vol. 1(4), pp. 543-550, 1998.

[6] S. Bernstein, “Lecons Sur Les Propriétés extrémales et la meilleure ap-
proximation desfunctions analytiques d’une fonctions reele”, Gauthier-
Villars Paris, 1926.

[7] M. Bidkham and K. K. Dewan, “Inequalities for polynomial and its
derivative”, J. Math. Anal. Appl., vol. 166(2), pp. 319-324, 1992.

[8] M. Bidkham, M. Shakeri and M. Eshaghi Gordji, “Inequalities for the
polar derivative of a polynomial”, J. Inequal. Appl., vol. 1, pp. 1-9,
2009.

[9] B. Chanam and K. K. Dewan, “Inequalities for a polynomial and its
derivative”, J. Math. Anal. Appl., vol. 336, pp. 171-179, 2007.

[10] N. G. De-Brujin, “Inequalities concerning polynomials in the complex
domain”, Nederl. Akad. Wetench. Proc. Ser. A, vol. 50, pp. 1265-1272,
1947.

[11] K. B. Devi, K. Krishnadas and B. Chanam “Some inequalities on polar
derivative of a polynomial”, Nonlinear Funct. Anal. Appl., vol. 27(1),
pp. 141-148, 2022.

[12] M. T. Devi, K. Krishnadas, N. Reingachan and B. Chanam, “Integral
inequalities for polar derivative of a polynomial”, J. Anal., 2021.
https://doi.org/10.1007/s41478-021-00332-7.

[13] K. K. Dewan and B. Singh, “Inequalities for the polar derivative of a
polynomial”, J. Comb. Inf. and Syst. Sci., vol. 31, pp. 83-90, 2006.

[14] R. B. Gardner, N. K. Govil and A. Weems, “Some results concerning
rate of growth of polynomials”, East Journal on Approximations, vol.
10, pp. 301-312, 2004.

[15] R. B. Gardner and A. Weems, “A Bernstein-type of Lq inequality for
a certain class of polynomials”, J. Math. Anal. Appl., vol. 219, pp.
472-478, 1998.

[16] N. K. Govil and P. Kumar, “On Lq inequalities involving polar
derivative of a polynomial”, Acta Math. Hung., vol. 152(1), pp. 130-
139, 2017.

[17] N. K. Govil, G. Nyuydinkong and B. Tameru, “Some Lq inequalities
for the polar derivative of a polynomial”, J. Math. Anal. Appl., vol.
254(2), pp. 618- 626, 2001.

[18] P. Kumar, “On Zygmund-type inequalities involving polar derivative
of a lacunary-type polynomial”, Bull. Math. Soc. Sci. Math. Roum.,
vol. 61(110), pp. 163-172, 2019.

[19] P. D. Lax, “Proof of a conjecture of P. Erdös on the derivative of a
polynomial”, Bull. Amer. Math. Soc., vol. 50, pp. 509-513, 1944.

[20] M. A. Malik, “On the derivative of a polynomial”, J. London Math.
Soc., vol. 2(1), pp. 57-60, 1969.

[21] M. Marden, “Geometry of Polynomials”, Math. Surveys, vol. 3, Amer.
Math. Soc., Providence 3, 1966.
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