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Abstract—This paper intends to develop a new integral-
filled function method with four properties. First, the proposed
filled function is non-exponential and non-logarithmic. This
property is aimed at avoiding the overflow effect during the
computational stage. Second, our method does not contain
parameters, so the possibility of non-converging iterations
can be prevented. Third, the filled function proposed in this
paper is continuously differentiable. By this property, any local
minimization procedures can be applied. Finally, the suggested
filled function is dependent on the objective function, and thus
it can provide any information for locating a minimum of the
filled function. To show that the proposed method is competitive,
a comparison has been made with one of the deterministic
approaches, namely the DIRECT method.

Index Terms—Global optimization, filled function method,
nonlinear programming, global minima, auxiliary function
approach.

I. INTRODUCTION

MANY scholars struggle to develop an effective ap-
proach to solve the unconstrained global optimization

problem. Their efforts led to many new algorithms. For ex-
amples, some methods categorized as a stochastic approach
offer the advantage of solving the black box optimization,
i.e., the problem when the objective function’s properties are
unclear. However, the stochastic approach has an expensive
computational issue, and the solution obtained needs better
accuracy. On the other hand, the deterministic approach
ensures convergence with accurate results. Nevertheless, this
approach can nly be applied to the optimization problem with
a clear mathematical structure.

Stochastic methods are typically inspired by nature. Ge-
netic algorithm [1], particle swarm optimization [2], bee
colony [3], simulated annealing [4], [5], firefly algorithm
[6], Venus flytrap optimization [7], are such examples. On
the other hand, the trajectory method [8], [9], covering
method [10], [11], branch and bound method [12], tunneling
method [13], and filled function method [14], [15], [16],
[17], [18], [19] could be categorized as a deterministic
approach. Although the use of stochastic methods is wider
in the real world, the deterministic approach still needs to
be more useful. On the contrary, many problems can still
be transformed into a global optimization model where the
mathematical structure of the objective function is previously
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known. In this situation, the deterministic approach is more
suitable to implement.

Among the deterministic methods, the filled function is
effective due to its ability to move from one local minimum
point of the objective function to another local minimum
point with a lower value. In addition, the method is fast
convergence and has a high accuracy rate. The method was
originally intended as a correction to tunneling, covering,
and trajectory methods. The filled function method, at first,
is created by Renpu Ge (see [14]). The method offered an
algorithm that has three main steps included:

1) Localizing the local minimum point of the objective
function h(x) employing any suitable iterative formula.

2) Formulating a new function known as the filled func-
tion method at the local minimum point achieved by
step 1 and finding the local minimum point of the filled
function.

3) Utilizing the local minimum point obtained by step 2
to minimize the objective function.

Step 1-3 is done iteratively until a termination criterion is
fulfilled. The properties of a new function referred to in step
2 are better known as the filled function definition.

From the aforementioned explanations, the filled function
tried to stretch the objective function in the region where
h(x) ≥ h (x∗), and x∗ is a local minimum point of h(x).
The second intention is that the local minimum point of
the objective function is maintained in the filled function
in the region with h (x) < h (x∗). The attempt results in an
example of the filled function defined as

ω (x, x∗, γ1, γ2) =
1

γ1 + h (x)
e

(
−‖x−x

∗‖2
γ2
2

)
. (1)

Two parameters in Equation (1) work to keep the filled
function from not having a minimum point and a saddle
point in the region where h(x) ≥ h (x∗) and having a
local minimum point in the rest of the feasible region.
However, choosing the exact value of the two parameters
is a complex matter. In addition, to deal with the filled
function algorithm, the parameter value must be corrected
iteratively. This situation could be more favorable, especially
in the computational implementation. Another drawback of
Equation (1) is the use of the exponent function because the
rate of change of the value of the filled function given in (1)
will be uncontrollable. Thus, the overflow effect becomes
predetermined.

Many scholars seize this situation as an opportunity to
correct the limitations suffered by Equation (1) by providing
some novel filled functions. Efforts to eliminate the exponen-
tial function were carried out in [16], [18]. The filled function
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in [17], [20] used an arctan function. The reason for using
such a function is to eliminate the overflow effect since the
arctan function is bounded. However, those filled functions
still included parameters, which was discussed earlier, and
using a parameter is not expected. Meanwhile, the filled
functions discussed in [18], [19] aimed to reduce the number
of parameters from two to only one parameter. Unluckily,
determining the parameter’s value includes the unknown
number such as the Lipschitz number, global minimum value,
etc.

The previous discussion concludes that the filled functions
will act effectively if it does not involve parameters. The first
non-parameter filled function was given in [21], which has
the following formula:

ω (x, x∗) = −sign (h (x)− h (x∗)) ‖x− x∗‖2, (2)

where sign (.) is a signum function, i.e.,

sign (w) =

{
1, w ≥ 0
−1, w < 0

.

Although the change of the value of the function given in
(2) is not as fast as the exponent function, the rate of change
can be reduced by other functions. By this reason, non-
parameter filled function (2) was corrected by the authors
of [22] by providing a new non-parameter filled function
such as following

ω (x, x∗) = −sign (h (x)− h (x∗)) arctan
(
‖x− x∗‖2

)
.

(3)
By Equation (3), the minimization of the filled function
is more stable. However, filled functions (2) and (3) are
discontinuous at the point such that h (x) = h (x∗), thus
there only a few local minimum procedures could be applied.

Continuously differentiable filled functions were then of-
fered to correct the discontinuous property of Equations (2)
and (3). The authors in [23] proposed

ω (x, x∗) = −‖x− x∗‖2φ (h (x)− h (x∗)) , (4)

where

φ (t) =

{
1 t ≥ 0
− exp

(
t2
)

+ 2 t < 0
.

From the filled function displayed in (4), it is clear that func-
tion (4) is continuously differentiable. However, it contains
an exponential function. Thus, the limitation suffered by Ge’s
filled function (1) could be experienced.

Some improvements were done in the literature [24], [25],
[26]. The filled functions proposed by those three literature
are displayed in Equations (5), (6), and (7).

ω (x, x∗) =
1

1 + ‖`‖2
φ (h (x)− h (x∗)) , (5)

where ` = x− x∗, φ (b) = 1
2π for every b ≥ 0, and

φ (b) = − arctan
(
b2
)

+
1

2
π

such that b < 0.

ω (x, x∗) = cosh

(
1

1 + ‖`‖2

)
φ (h (x)− h (x∗)) , (6)

where ` = x − x∗, φ (b) = 1 for b ≥ 0, and φ (b) = 1 − b2
for b < 0.

ω (x, x∗) = φ (h (x)− h (x∗))− arctan
(
‖`‖2

)
, (7)

where ` = x− x∗ and

φ (b) =

 0, b ≥ 0

−arctan(b2), b < 0
.

However, those filled functions are independent of the ob-
jective function in the region where h (x) ≥ h (x∗) and
dependent on the objective function in the domain with
h (x) < h (x∗). From the global optimization point of view,
this property is not advantageous since the constructed filled
function may not provide any information for locating a
local minimum point of h (x). Our analytical study found
that integration has a ”stretching effect” on a function. The
line integral filled function was found in [27], which has the
following formula:

ω (x, x∗) =

∫
[x∗,x]

[h (y)− h (x∗) + γ] ds, (8)

where [x∗, x] is a line segment, y ∈ [x∗, x], and γ is a
parameter satisfying 0 ≤ γ ≤ h (x∗)− h (x∗∗), x∗∗ denotes
the global minimum point of h (x).

From Equation (8), it can be investigated that a single
parameter γ is used. However, the condition to determine
γ involves x∗∗, which is unknown. In addition, to refuse
the integration, the algorithm in [27] implemented Newton’s
method to minimize its filled function. As widely known that
Newton’s method converges when the initial point is near
enough to the solution.

To overcome the imperfection of the filled function dis-
played in (8), this paper proposes a new integral filled
function that has the following properties:

1) The proposed filled function is not exponential or
logarithmic function. The objective is to avoid the
overflow effect.

2) Our filled function is a non-parameter filled function.
The goal is to streamline the algorithm from choosing
the best value of the parameter iteratively.

3) Continuously differentiable is the property of the pro-
posed filled function. By this property, many local min-
imization procedures can be chosen in the minimizing
process of the filled function.

4) The proposed filled function is dependent on the ob-
jective function. Thus, as previously discussed, the
information of the objective function is carried away
when obtaining the local minimum point of the filled
function. Thus, unlike the algorithm given in [23], [24],
[26], [25], which only minimizes the straight line in the
region when h (x) ≥ h (x∗), filled function proposed in
this paper contain the objective function in the intended
region.

This paper is divided into five sections. Basic knowledge
is given in Section 2. Then, a new integral filled function and
its analytical properties are provided in Section 3. Section 4
contains algorithm and numerical experiments, and finally, a
conclusion is drawn in Section 5.
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II. BASIC KNOWLEDGE

This paper is intended to solve problems that can be
transformed into unconstrained global optimization in which
the objective function is nonlinear and non-convex. Such a
model can be mathematically formed as

minh (x)
x ∈ Rn . (9)

Some assumptions of the objective function h (x) are listed
as follows:

1) The objective function h (x) is continuously differen-
tiable;

2) The objective function h (x) has finite local minimum
points with different function values;

3) lim
‖x‖→+∞

h (x) = +∞.

Assumption (3) reveals the existence of a closed and bounded
set Θ such that all the global minimum points of h (x) are
contained in Θ. Thus, the implication is that Problem (9) is
equivalent with

minh (x)
x ∈ Θ

. (10)

It has been mentioned in the introduction that the filled
function definition, which contains three axioms, is given
in [14]. However, the definition used a basin of attraction
definition. This concept is quite abstract and needs to be
determined exactly. Therefore, Yang and Shang in [28]
proposed a more simple definition.

Definition 2.1: Let Assumption 1-3 be satisfied, and x∗

is a local minimum point of the objective function h (x). A
function ω (x, x∗) is called a filled function if it is satisfied
three axioms:

1) The point x∗ is a local maximum point of h (x)
2) The set Θ1 = {x ∈ Θ : h (x) ≥ h (x∗)} \ {x∗} does

not contain stationary points of ω (x, x∗)
3) The set Θ2 = {x ∈ Θ : h (x) < h (x∗)} contains local

minimum points of ω (x, x∗).

Definition 2.1 is widely implemented since it is simpler than
the definition proposed in [14]. The proposed integral filled
function used Definition 2.1 to formulate the function. Two
sets, Θ1 and Θ2, will be used throughout this paper.

III. INTEGRAL FILLED FUNCTION AND ITS PROPERTIES

Axiom (2) in the filled function definitions was intended
to eliminate all the local minimum points of the objective
function because the information of the objective function is
not captured in the filled function in Θ1 . There are some
techniques to achieve this goal. Filled function in [20] and
[29] implement the flatten function technique. A function
β (x, x∗) is defined as a flatten function of h (x) at x∗ if

β (x, x∗) = h (x∗) +
1

2
{1− sign (α)}α,

where α = h (x) − h (x∗). If the objective function h (x)
transforms into β (x, x∗), the constructed filled function is
free from any stationary point in Θ1 as desired by axiom (2)
in Definition 2.1.

Function discussed in [27] (integral function) has a
”stretching effect”. To give a better understanding, an ex-
ample is given in Example 3.1.

Example 3.1: Assume that h (x) = sin (x)+sin
(
2
3x
)
, x ∈

[−5, 20] is an objective function. One of the local minimum
points of h (x) is x∗2 = 5.36225.
The graph of h is illustrated in Figure 1.

 Fig. 1: Objective Function

The aim is to ignore the local minimum point x∗2. If
r (x) = h (x) − h (x∗1), then the graph of r is shown in
Figure 2.

 Fig. 2: Graph of r (x)

The graph of r in Figure 2 which the value is non-negative,
is expected to be a non-stationary descent function. Now
define the integral function

g (x, x∗2) = −
b∫

a

(h (s)− h (x∗2)) ds, (11)

a = x, b = x∗2, if x < x∗2 and b = x, a = x∗2, if x ≥ x∗2, for
all x ∈ Θ1. The graph of g (x, x∗2) is displayed in Figure 3.

From Figure 3, it can be seen that function given in (11)
(g (x, x∗2)) decreases and does not contain stationary points
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 Fig. 3: Graph of g (x, x∗2)

in Θ1. All the local minimum and maximum of h (x) are
”stretching” by the integration. The dream is that the local
minimum points in Θ2 are unchanged. It means that the con-
structed filled function has the same local minimum points
as the objective function. However, that condition is hard to
achieve. Thus, one possible effort is to multiply g (x, x∗2)
with another function such that the filled function has a
local minimum point in the region Θ2. By this intuition, we
propose a non-parameter integral filled function, stretching
function, for short, which is defined as

ω (x, x∗) = ϑ1 (x)ϑ2 (r) , (12)

where r = h (x) − h (x∗), x∗ is a local minimum point of
h (x), the function ϑ1 is defined as

ϑ1 (x) = −
x∗∫
x

(h (s)− h (x∗)) ds,

if x < x∗2, and

ϑ1 (x) = −
x∫

x∗

(h (s)− h (x∗)) ds,

if x ≥ x∗2. The function ϑ2 (r) is also a piecewise function,
which has the form

ϑ2 (r) =

{
1, r ≥ 0
− arctan

(
r2
)
− 1, r < 0

.

Therefore, ω (x, x∗) is a piecewise function that has four
different functions, which are as follows:

1) ω1 (x, x∗) = −
x∗∫
x

` (s)ds, if x < x∗ and r ≥ 0

2) ω2 (x, x∗) =

(
−

x∗∫
x

` (s) ds

)(
− arctan

(
r2
)
− 1
)
, if

x < x∗ and r < 0

3) ω3 (x, x∗) = −
x∫

x∗
` (s) ds, if x ≥ x∗ and r ≥ 0

4) ω4 (x, x∗) =

(
−

x∫
x∗
` (s) ds

)(
− arctan

(
r2
)
− 1
)
, if

x ≥ x∗ and r < 0.
where ` (s) = h (s)− h (x∗).

 Fig. 4: Integral-filled Function of h (x) at x∗2

The geometric interpretation of the proposed integral-filled
function can be seen in Figure 4.
Figure 4 is the integral-filled function of h (x) at x∗2, where
the objective function used is the same as h in Example 3.1.
From the geometrical interpretation, the value of ω (x, x∗2)
is 0 at x∗2, and ω (x, x∗2) is decreasing and has no local
minimum point and inflection point in the region Θ1. Finally,
ω (x, x∗2) has a local minimum point in Θ2. The detail of
the properties of ω (x, x∗) will be discussed through some
theorems. For simplicity, when discussing the theorems, H
is a set of all local minimum points of h (x) in Θ.

Theorem 3.2: If x∗ ∈ H, then x∗ is a local maximum
point of ω (x, x∗)

Proof: Since x∗ ∈ H, then h (x) ≥ h (x∗), for all x ∈
B (x∗, δ), where B (x∗, δ) is a neigborhood of x∗ with a
radius δ > 0. Because h (x) ≥ h (x∗), thus the integral-filled
function is

ω1 (x, x∗) = −
x∗∫
x

(h (s)− h (x∗)) ds,

for x < x∗ and

ω3 (x, x∗) = −
x∫

x∗

(h (s)− h (x∗)) ds,

for x ≥ x∗. We know that ω1 (x∗, x∗) = 0 and ω3 (x∗, x∗) =
0, for all x = x∗. Since ` (s) = h (s)− h (x∗) ≥ 0, hence

ω1 (x, x∗) = −
x∗∫
x

` (s) ds ≤ 0 = ω (x∗, x∗)

and

ω3 (x, x∗) = −
x∫

x∗

` (s) ds ≤ 0 = ω (x∗, x∗)

for all x ∈ B (x∗, δ). Therefore, x∗ is a local maximum point
of ω in Ω.

Theorem 3.2 reveals that the proposed filled function
satisfies axiom 1 of Definition 2.1. From the theorem, it
also can be drawn that the value of ω is always 0 at x∗.
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Now imagine that x∗ is a starting position to explore all the
feasible domains Θ. Since the problems solved in this paper
are the univariate case, thus there are always two possible
directions. In order to get a local minimum point of ω (x, x∗),
then ω (x, x∗) should be decreasing in the region Θ1, both
for x ≥ x∗ and x < x∗. The decreasing property of ω (x, x∗)
is a necessary condition of axiom 2 in Definition 2.1. This
will be given in Theorem 3.3.

Theorem 3.3: Assume that x∗ ∈ H. If x ∈ Θ1, then
the integral-filled function ω (x, x∗) is strictly decreasing
function when x∗ is a starting point.

Proof: Since x ∈ Θ1, then h (s) ≥ h (x∗). Therefore,
the integral filled functions are:

ω1 (x, x∗) = −
x∗∫
x

h (s)− h (x∗) ds, for x < x∗ (13)

and

ω3 (x, x∗) = −
x∫

x∗

h (s)− h (x∗) ds, for x ≥ x∗. (14)

Assume that x1, x2 ∈ Θ1, with x1 < x∗ and x∗ < x2. It will
be proved that ω1 (x1, x

∗) < ω1 (x∗, x∗) and ω3 (x∗, x∗) >
ω3 (x2, x

∗). From Theorem 3.2, it has been proved that x∗

is a maximum point of ω (x, x∗) in Θ1, where the local
maximum value is ω (x∗, x∗) = 0. Since h (x) ≥ h (x∗),
then

x∗∫
x

h (s)− h (x∗) ds > 0, forx < x∗

and
x∫

x∗

h (s)− h (x∗) ds > 0, forx ≥ x∗.

This implies that ω1 (x1, x
∗) and ω3 (x2, x

∗) are both nega-
tive. Hence, for all x1 < x∗, ω1 (x1, x

∗) < ω1 (x∗, x∗) holds,
and for all x∗ < x2, ω3 (x∗, x∗) > ω3 (x2, x

∗) also holds.
These prove the theorem.

Theorem 3.3 is a necessary condition for the integral-
filled function to satisfy point (2) of Definition 2.1. However,
there may be some stationary points in Θ1. When the local
minimization procedure necessitates a stationary point as a
terminal criterion, then the minimization process of ω (x, x∗)
will stop in the region Θ1. When it happens, the local mini-
mum point of ω (x, x∗), which will be used as an initial point
to minimize the objective function h(x), is not in the basin
of attraction of the local minimum point of h(x). Theorem
3.4, together with Theorem 3.3, ensures that the interval Θ1

is clean from any stationary point and ω (x, x∗) is strictly
decreasing. Hence, by those two properties, the integral-
filled function algorithm will pass through Θ1 without any
obstacle. That is the ultimate desire of the integral-filled
function algorithm in Θ1, to eliminate all the local minimum
points of ω (x, x∗) in Θ1.

Theorem 3.4: Assume that x∗ ∈ H. If x ∈ Θ1, then there
are no stationary points of ω (x, x∗) contained in Θ1.

Proof: Since x ∈ Θ1, then Equations (13) and (14)
are held. Since h is continuous in Θ1, thus the fundamental
theorem of Calculus occurs, and we have

ω′1 (x, x∗) = − [h (x)− h (x∗)] , forx < x∗

and

ω′3 (x, x∗) = − [h (x)− h (x∗)] , forx ≥ x∗.

Since x ∈ Θ1, then from the definition of set Θ1, h (x) −
h (x∗) ≥ 0. However, x∗ does not belong to Θ1. Therefore,
ω′1 (x, x∗) and ω′3 (x, x∗) are negative. Hence, stationary
points of ω (x, x∗) will never be found in Θ1.

Theorem 3.3 and 3.4 prove that axiom 2 of Definition
2.1 is satisfied by the proposed filled function (12). The two
theorems are necessary for the minimization phase of the
integral filled function. For example, if Newton’s method or
steepest descent method is performed, then Theorem 3.4 en-
sures that the iteration points of Newton’s method or steepest
descent method are never be encountered a stationary point,
which is the stopping criterion of those methods, in the region
Θ1. However, it is possible that the non-gradient-based local
minimum procedures, such as Hooke and Jeeves method,
are employed. If so, the minimized function’s decreasing
property needs to be ensured. In this case, the guarantee is
Theorem 3.3. Summarily, by Theorem 3.3 and Theorem 3.4,
the minimization of our integral filled function will pass the
region Θ1 successfully without any disturbance.

Up to this point, the proposed integral function has been
proved to have two filling properties that must be possessed
to be categorized as a filled function. Subsequent attempts
are made to show that if the integral filled function has a
local minimum point, it must be in the region Θ2.

Theorem 3.5: Assume that x∗ ∈ H. If x̂∗ is a local
minimum or inflection point of ω (x, x∗), then x̂∗ is the
element of Θ2.

Proof: Assume that the theorem is not true. Thus, x̂∗ /∈
Θ2 and h (x) ≥ h (x∗). From Theorem 3.2, x∗ is a strict
local maximum point, and x̂∗ is a local minimum point of
ω (x, x∗) in Θ1. Therefore, x̂∗ 6= x∗. From Theorem 3.3, it
was proved that ω (x, x∗) is strictly decreasing in Θ1. Thus
if x̂∗ is a local minimum point, it contradicts Theorem 3.3.
On the other hand, Theorem 3.4 indicates that there is no
stationary or inflection point of ω (x, x∗) in Θ1. Hence, if
x̂∗ is an inflection point of ω (x, x∗) in Θ1, it contradicts
Theorem 3.4. Consequently, x̂∗ is the element of Θ2.

Theorem 3.5 reveals that the local minimum point of the
integral filled function is never in Θ1 but in Θ2. However,
there is no guarantee that ω (x, x∗) has a local minimum
point or inflection point in Θ2. This will be proved in
Theorem 3.6.

Theorem 3.6: Assume that x∗ ∈ H. If Θ2 6= ∅, then
there exists _

x
∗
∈ Θ2 such that ω′

(
_
x
∗
, x∗
)

= 0, where

ω′
(
_
x
∗
, x∗
)

is the derivative of ω at _x
∗
.

Proof: Assume that Θ̄2 = {x ∈ Θ : h (x) ≤ h (x∗)},
where Θ̄2 is a closure of Θ2. Since the set Θ̄2 is a
subset of Θ, then Θ̄2 is bounded. Therefore, Θ̄2 6= ∅ is
a closed and bounded set. From the property of ω, ω is
continuously differentiable on R. Hence, ω is continuously
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differentiable on Θ̄2. From the Weirstrass extreme value the-
orem, ω (x, x∗) has a local minimum point _x

∗
in Θ̄2. From

the fact that ω (x, x∗) is differentiable at _
x
∗
; consequently,

ω′
(
_
x
∗
, x∗
)

= 0. From Theorem 3.4, ω (x, x∗) does not have

a stationary point in the set Θ̂2 = {x ∈ Θ : h (x) = h (x∗)}.
Since Θ2 6= ∅,

_
x
∗
∈ Θ2. This proves the theorem.

From all the theorems discussed in this section, it can be
concluded that the proposed integral filled function can be
categorized as a filled function.

IV. ALGORITHM AND NUMERICAL SIMULATIONS

The proposed method that has been discussed will
be tested for its reliability. For this purpose, the global
minimum algorithm has been developed. The integral
filled function ω (x, x∗) will be employed in one of the
stages in the proposed algorithm. To be more concise,
the algorithm will be named as IFFM algorithm. In the
numerical implementation stage, IFFM is then written in
Matlab language programming code. In the IFFM algorithm,
ℵ (`, ι) is defined as the minimization process of a function
` using the initial point ι.

IFFM Algorithm

1) Initialization phase
a) Choose initial point x0 ∈ Θ randomly
b) Choose α0 ∈ (0, α), where α > 0 is a small real

number
c) Choose λ > 0, for instance λ = 0.1
d) Set the coordinate direction ei. Since this paper

solves the univariate global optimization prob-
lems, thus there are only two directions, i.e.,
positive and negative axis directions.

e) Set k = 1

2) Looping phase
a) ℵ

(
h, x0

)
. The first local minimum point x∗ is

obtained from this phase.
b) Construct integral filled function at x∗,

ω (x, x∗) = ϑ1 (x)ϑ2 (r) ,

as has been displayed in Equation (12).
c) Set i = 1
d) while (α0 < α) do

i) xk = x∗ + α0ei
ii) while (i ≤ 2) do

A) ℵ (ω, xk). This step will obtain a local
minimum point x† of ω (x, x∗)

B) if h
(
x†
)
> h (x∗) then i = i+ 1

C) else ℵ
(
h, x†

)
to find a better local mini-

mum point x∗∗ of h(x), x∗ ← x∗∗, and set
k = k + 1

D) end if
E) α0 = α0 + λ
F) i = i+ 1

iii) end while
iv) x∗ is considered as a global minimum point

of h.
e) end while

The looping phase of the IFFM algorithm begins with ob-
jective function minimization. This is one of the special fea-
tures of the algorithm with the auxiliary function approach,
namely the use of the local minimization procedure in its
algorithm. Our algorithm implements the BFGS method to
obtain x∗, the local minimum point of h(x). The construction
of (12) is done after x∗ is found. The looping process using
”while” logic is carried out in the next stage, where the
looping will stop if α0 > α is satisfied. The value of α0 and
α are selected at the initialization phase. Inside the looping,
some procedures are done; they are as follows:

1) Since x∗ is the maximum point of ω (x, x∗), the initial
point to minimize ω (x, x∗) needs to be formed in the
neighborhood of x∗. The constructed initial point is
defined as

xk = x∗ + α0ei,

where ei is coordinate directions. Since this paper is
limited to obtaining the global minimum point of the
univariate functions, ei is the positive and negative x-
axis.

2) ”while” logic is performed provided that i ≤ 2. The
integral-filled function (12) in this path is minimized
using the initial point xk = x∗ + α0ei. The local
minimum point of ω (x, x∗) is notated by x†.

3) After x† is found, we perform ”if” logic because
there are two possibilities regarding the value of the
objective function at x†.

4) Condition h
(
x†
)
> h (x∗) has implications for repeat-

ing the minimization process of ω (x, x∗) using the
other direction.

5) Conversely, if h
(
x†
)
< h (x∗), the objective function

will be minimized by using x† as a new initial point.
In this phase, x∗∗, a better local minimum point of h(x)
will be obtained, and the process will be back to the
looping phase until α0 > α is satisfied. The value of
α0 increases by adding λ > 0.

To confirm that the filled function (12) can be implemented
as one of the alternatives in solving univariate global op-
timization problems, the IFFM algorithm has been imple-
mented by involving some benchmark functions taken from
[30]. The intended test functions are displayed in Table I. The
numerical results obtained for each problem are displayed in
Table II - XVI. The symbols used in Table II - XVI can be
described as follows:

1) For j = 1, xj0 denotes the initial point to minimize the
objective function h(x), with the value at that point
defined as h

(
xj0

)
.

2) For i > 1, xj0 denotes the local minimum point of the
filled function, and h

(
xj0

)
is its value.

3) x∗j and h
(
x∗j
)

denote the local minimum points and
the minimum value of h(x), respectively.

The numerical results in Table II - XVI show that the
proposed method can solve the unconstrained global opti-
mization problems for univariate cases. Table XVII indicates
the computational performance of the integral-filled function
(12). IFFM algorithm is programmed in MATLAB working
on Windows 10 with Intel(R) Core(TM) i3-7020U CPU and
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TABLE I: Test Functions

P Function Θ

1 h (x) = 1
6
x6 − 52

25
x5 + 39

80
x4 + 71

10
x3 − 79

20
x2 − x+ 1

10
[−1.5, 11]

2 h (x) = sin 10x
3

+ sinx [1, 10]

3 h (x) = −
5∑

j=1

j sin ((j + 1)x+ j) [−10, 10]

4 h (x) = 0.1 cos (5πx) + x2 [−1, 1]

5 h (x) = 3x sin 18x− 1.4 sin 18x [−4.2, 0]

6 h (x) = 3 − 0.84x+ lnx+ sinx+ sin 10
3
x [0.8, 10]

7 h (x) = −
5∑

j=1

j cos ((j + 1)x+ j) [−10, 10]

8 h (x) = sinx+ sin 2
3
x [−3.1, 20]

9 h (x) = −x sinx [0, 30]

10 h (x) = x2 − cos (18x) [−2, 2]

11 h (x) = 1
2

n∑
k=1

(
x4k − 16x2k + 5xk

)
, n = 1 [−5, 5]

12 h (x) = −e−x sin 2πx [0, 4]

13 h (x) = cos
(
3
5
x
)

cos (2x) + sin (x) [0.5, 12]

14 h (x) = sin (2x) sin (x) + sin
(
2
3
x
)

[0, 20]

15 h (x) = −x− 1 + sin 3x [0, 12]

TABLE II: Computational Result of Problem 1

j xj0 h
(
xj0

)
x∗j h

(
x∗j

)
1 -1.5000 -11.0886 -1.4142 -11.4180

2 2.0633 -12.5028 10 -2.9763e+04

TABLE III: Computational Result of Problem 2

j xj0 h
(
xj0

)
x∗j h

(
x∗j

)
1 1.0000 0.6509 1.3983 -0.0135

2 2.9031 -0.0135 3.3873 -1.1999

3 5.0656 -1.8618 5.1457 -1.8996

TABLE IV: Computational Result of Problem 3

j xj0 h
(
xj0

)
x∗j h

(
x∗j

)
1 -3.7000 -2.5707 -3.7392 -2.6596

2 -1.9217 -5.1495 -1.7255 -9.4947

3 -6.7710 -12.0292 -6.7746 -12.0312

TABLE V: Computational Result of Problem 4

j xj0 h
(
xj0

)
x∗j h

(
x∗j

)
1 -0.5000 0.2500 -0.5505 0.2318

2 -0.3741 0.2318 0.1849 -0.0630

TABLE VI: Computational Result of Problem 5

j xj0 h
(
xj0

)
x∗j h

(
x∗j

)
1 0.2000 0.3540 0.0794 -1.1502

2 -0.9319 -3.6747 -0.9621 -4.2830

3 -1.9987 -7.3102 -2.0084 -7.4233

4 -4.0842 -12.9947 -4.1022 -13.7056

TABLE VII: Computational Result of Problem 6

j xj0 h
(
xj0

)
x∗j h

(
x∗j

)
1 0.8000 3.3115 1.4071 2.2027

2 2.8028 2.2027 3.4353 0.2983

3 4.5787 0.2983 5.1964 -1.3934

4 9.0033 -2.5822 9.1079 -2.6361

TABLE VIII: Computational Result of Problem 7

j xj0 h
(
xj0

)
x∗j h

(
x∗j

)
1 2.1000 -0.9453 7.6032 -2.9276

2 -3.0030 -3.6137 -3.0032 -3.6137

3 -2.1223 -4.8164 -2.0072 -6.1698

4 -1.0050 -7.8078 -0.8003 -14.5080

TABLE IX: Computational Result of Problem 8

j xj0 h
(
xj0

)
x∗j h

(
x∗j

)
1 3.1000 0.9211 5.3622 -1.2160

2 -1.7458 -1.9031 -1.8104 -1.9060

TABLE X: Computational Result of Problem 9

j xj0 h
(
xj0

)
x∗j h

(
x∗j

)
1 6.7000 -2.7125 7.9787 -7.9167

2 13.2987 -8.8915 14.2074 -14.1724

3 19.6845 -14.5911 20.4692 -20.4448

4 26.0496 -20.6754 26.7409 -26.7222

TABLE XI: Computational Result of Problem 10

j xj0 h
(
xj0

)
x∗j h

(
x∗j

)
1 -1.7000 2.2048 -1.7346 2.0274

2 -1.4752 2.0274 -1.3877 0.9376

3 -1.1170 0.9376 -1.0408 0.0899

4 -0.7573 0.0899 -0.6938 -0.5156

5 -0.3954 -0.5156 -0.3469 -0.8789

6 -0.0275 -0.8789 7.9797e-17 -1

TABLE XII: Computational Result of Problem 11

j xj0 h
(
xj0

)
x∗j h

(
x∗j

)
1 4.0000 10.0000 2.7468 -25.0294

2 -2.0838 -30.5205 -2.9035 -39.1662

TABLE XIII: Computational Result of Problem 12

j xj0 h
(
xj0

)
x∗j h

(
x∗j

)
1 3.3000 -0.0351 3.2249 -0.0393

2 2.4267 -0.0393 2.2249 -0.1067

3 1.4267 -0.1067 1.2249 -0.2901

4 0.2955 -0.7139 0.2249 -0.7887

4.00 GB RAM. The notations used in Table XVII are as
follows:
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TABLE XIV: Computational Result of Problem 13

j xj0 h
(
xj0

)
x∗j h

(
x∗j

)
1 0.5000 0.9956 1.3410 0.3523

2 2.7349 0.3474 3.6915 -0.7951

3 5.5698 -0.7951 5.9460 -1.0421

4 10.3374 -1.0421 10.9598 -1.9544

TABLE XV: Computational Result of Problem 14

j xj0 h
(
xj0

)
x∗j h

(
x∗j

)
1 1.7000 0.6524 2.1684 0.2231

2 3.6576 0.2231 4.2310 -0.4121

3 5.8759 -0.4121 6.3598 -0.8787

4 7.8616 -0.8787 8.3621 -1.3934

5 16.6402 -1.7638 16.6483 -1.7640

TABLE XVI: Computational Result of Problem 15

j xj0 h
(
xj0

)
x∗j h

(
x∗j

)
1 0.9000 -1.4726 1.6841 -3.6269

2 3.0489 -3.7744 3.7785 -5.7213

3 5.1115 -5.7468 5.8729 -7.8157

4 7.2013 -7.8238 7.9673 -9.9101

5 9.2945 -9.9136 10.0617 -12.0045

IT : the number of iterations, which means how many
local minimum points are obtained by the proposed
algorithm, where the last local minimum point is a
global one.

α0: The real number used as a stopping criterion in the
IFFM algorithm

FE : Function evaluation of the objective and integral-filled
functions before termination.

T : CPU time in seconds for the IFFM algorithm to stop.
Table XVII summarizes the computational performance

of the integral-filled function method for all the problems.
From the function evaluation point of view, the proposed
method is effective. FE1 and FE2 in Table XVIII denote the
number of function evaluations obtained by the integral-filled
function proposed in the paper and obtained by the DIRECT
method [31], respectively. To indicate the competitiveness of
the proposed method, in Table XVIII, we compare the results
obtained by our method and the most famous method to
solve the unconstrained global optimization problems, which
is the DIRECT method. The DIRECT method becomes very
useful since it is superior when implemented to solve black-
box problems (i.e., the problems where the mathematical
structures are not available). Of 15 problems solved, 86.67%
have smaller function evaluations obtained by the proposed
method than the function evaluation achieved by the DIRECT
method. For problem 15, the iteration points of the DIRECT
method are out of the feasible domain. Thus, we conclude
that the DIRECT method fails to locate the global minimum
point. Nevertheless, from the numerical experiments and
the comparison, it can be concluded that the integral-filled
function is reliable.

Figures 5 and 6 are the geometric illustration of the

TABLE XVII: Computational performance of the proposed
integral-filled function (12)

Problem IT α0 FE T

1 2 1.00 27 0.439381

2 3 0.10 40 0.430665

3 3 0.01 40 0.228277

4 2 0.10 27 0.198790

5 4 1.00 70 0.263361

6 4 0.10 56 1.174794

7 4 0.01 63 0.449774

8 2 0.10 27 0.246004

9 4 0.10 56 1.142269

10 6 0.10 81 0.209939

11 2 0.10 24 0.197185

12 4 0.10 51 0.216852

13 4 0.10 56 0.982040

14 5 0.10 81 1.693732

15 5 0.10 81 0.432175

TABLE XVIII: Comparison between integral-filled function
and DIRECT method

Problem x∗j h
(
x∗j

)
FE1 FE2

1 10.0000 -2.9763e+04 27 37

2 5.1457 -1.8996 40 81

3 -6.7746 -12.0312 40 43

4 0.1849 -0.0630 27 39

5 -4.1022 -13.7056 70 93

6 9.1079 -2.6361 56 61

7 -0.8003 -14.5080 63 105

8 -1.8104 -1.9060 27 45

9 26.7409 -26.7222 56 51

10 7.9797e-17 -1.0000 81 3

11 -2.9035 -39.1662 24 39

12 0.2249 -0.7887 51 63

13 10.9598 -1.9544 56 67

14 16.6483 -1.7640 81 87

15 10.0617 -12.0045 81 failed

convergence of the DIRECT method for Problems 2 and 5.
The objective function of Problems 2 and 5 has the global
minimum points at x∗j = 5.1457 and x∗j = −4.1022 with
the global minimum values h

(
x∗j
)

= −1.8996 and h
(
x∗j
)

=
−13.7056, respectively. The strength of the DIRECT method
lies in its ability to partition the search area so that it does not
need a starting point like the filled function method. If the
iteration points of minimization with the DIRECT method
are close to the global minimum point, the search process
usually slows down because the partition is narrower. This
is the drawback of the DIRECT method. For Problems 2 and
5, the DIRECT method has converged since the 81st and 93rd
function evaluations. Although this method is efficient, based
on the comparison results shown in Table XVIII, the method
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Fig. 5: Computational performance of the DIRECT method
for Problem 2

 

Fig. 6: Computational performance of the DIRECT method
for Problem 5

proposed in this study is more efficient.

V. CONCLUSION

Inspired by the filled function method, we introduced the
integral-filled function method. The main feature of this
function is dependent on the objective function. This property
differs from the continuously differentiable parameter-free
filled functions, which are all independent of the objective
function in the region where the value is greater than the
value at the incumbent local minimum point of the objective
function. This valuable property provides information for
obtaining a minimum point of the proposed integral-filled
function, which is very helpful in the computational stage.
Numerical experiments have been carried out to support the
claim for superior properties of the proposed method. In
the final stage, a numerical comparison with the DIRECT
method is also done to show that the proposed method

is competitive and reliable. The integral-filled function ap-
proach proposed in this paper is an integral function. How
to generalize the function is still an open problem.
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