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Abstract—Chain graphs and threshold graphs play an impor-
tant role in Spectral Graph Theory. Nesting in the neighborhood
of vertices in these graphs has gained the attention of various
researchers. Motivated by this structure, recently two new
classes of graphs, namely partial chain graphs and partial
threshold graphs have been defined. In this article, we give
a few bounds on the spectral radius and energy of partial
chain graphs and partial threshold graphs in terms of the total
number of vertices. We obtained a class of partial chain graphs
and partial threshold graphs with exactly two main eigenvalues.
The energy of some classes of partial threshold graphs and
partial chain graphs are obtained.

Index Terms—Threshold graphs, Chain graphs, Divisor ma-
trix, Equitable partition, Energy.

I. INTRODUCTION

ACollection S = {S1, S2, . . . , Sn} of sets is said to
form a chain with respect to set inclusion, if for every

Si, Sj ∈ S either Si ⊆ Sj or Sj ⊆ Si. We write u ∼ v if the
vertices u and v are adjacent in G, u ≁ v if they are not.

The neighborhood of the vertex u ∈ V (G) is the set N(u)
consisting of all the vertices v such that v ∼ u in G. For a
graph G, we write det(G) and per(G) for determinant and
permanent of adjacency matrix A(G) of G. Its characteristic
polynomial is denoted by χ(G). The spectral radius λ1(G)
of a graph is the largest eigenvalue of its adjacency matrix.

Readers are referred to [16] for all the elementary nota-
tions and definitions not described but used in this paper.

Definition 1.1: A chain graph is a bipartite graph in which
the neighborhoods of the vertices in each partite set form a
chain with respect to set inclusion.
In other words, for every two vertices u and v in the same
partite set and their neighborhoods N(u) and N(v), either
N(u) ⊆ N(v) or N(v) ⊆ N(u). We note that, every
partite set in a chain graph has at least one dominating
vertex, that is, a vertex adjacent to all the vertices of
the other partite set. The color classes of a chain graph
G(V1∪V2, E) can be partitioned into h non-empty cells given
by V1 = V11∪V12∪ . . .∪V1h and V2 = V21∪V22∪ . . .∪V2h

such that N(u) = V21 ∪V22 ∪ . . .∪V2 h−i+1, for any vertex
u ∈ V1i, 1 ≤ i ≤ h. If mi = |V1i| and ni = |V2i|, then
we write G = DNG(m1, . . . ,mh;n1, . . . , nh). Due to this
nesting property, the chain graphs are also called double
nested graphs (DNGs).
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A split graph is a graph which admits a partition of
its vertex set into two parts W1 and W2 such that W1

induces a complement of a clique (co-clique) and W2 induces
a clique. Every other edge, called a cross edge, joins a
vertex of W1 with a vertex of W2. A threshold graph is
a split graph in which the adjacencies defined by the cross
edges satisfy the following nesting property. Both W1 and
W2 can be partitioned into h non-empty cells, say, W1 =
W11 ∪W12 ∪ . . .∪W1h and W2 = W21 ∪W22 ∪ . . .∪W2h

such that N(u) = W21∪W22 . . .∪W2 h−i+1, for any vertex
u ∈ W1i, 1 ≤ i ≤ h. It is also called a nested split
graph (NSG). If mi = |W1i| and ni = |W2i|, then we
write G = NSG(m1,m2, . . . ,mh;n1, n2, . . . , nh). Readers
are referred to [1]–[5], [8] for more results on chain and
threshold graphs.

Motivated by the nesting property of the extremal graphs
(chain and threshold graphs), the authors of the article [12]
defined a new class of graphs, whose vertex set can be
partitioned into two disjoint subsets V1 and V2 such that
⟨V1⟩ ∼= ⟨V2⟩ and has the nesting property. Formal definition
is given below.

Definition 1.2: [12] A graph G on n vertices is said to be
a partial threshold graph if its vertex set can be partitioned
into two disjoint subsets V1 and V2 such that the following
conditions are satisfied.

1 ⟨V1⟩ ∼= ⟨V2⟩.
2 The set {Vi ∩N(v)} ̸= ϕ form a chain with respect to

set inclusion for every v ∈ Vj , j ̸= i, 1 ≤ i, j ≤ 2.

We denote N1(u) = N(u) ∩ V1, u ∈ V2 and N2(v) =
N(v) ∩ V2, v ∈ V1. The subsets V1 and V2 can be further
partitioned into h non-empty cells V1 = V11 ∪ . . .∪ V1h and
V2 = V21 ∪ . . . ∪ V2h which satisfies the following nesting
property:
For every vertex u ∈ V1i, 1 ⩽ i ⩽ h,N2(u) = V21 ∪
. . . ∪ V2 h−i+1 and for v ∈ V2j , 1 ⩽ j ⩽ h, N1(v) =
V11 ∪ . . . ∪ V1 h−j+1. If |V1i| = mi and |V2i| = ni,
then we write G = PTG(m1,m2, . . . ,mh;n1, n2, . . . , nh).
Unlike the chain graphs or threshold graphs, G =
PTG(m1, . . . ,mh;n1, . . . , nh) is not representing a sin-
gle graph, instead it represents a graph family Gf with
nesting property as explained earlier. It does not Specify
the structure of ⟨V1⟩ or ⟨V2⟩. Thus, we write Gf =
PTG(m1,m2, . . . ,mh;n1, n2, . . . , nh). We use the notion
G ∈ Gf = PTG(m1, . . . ,mh;n2, . . . , nh) of graphs which
have the bipartition V (G) = V1 ∪ V2 such that ⟨V1⟩ ∼= ⟨V2⟩.

Note that all the graphs G ∈ Gf =
PTG(m1,m2, . . . ,mh;n2, n2, . . . , nh) have same number
of edges and same number of vertices. Also, when
G ∈ Gf = PTG(m1,m2, . . . ,mh;n1, n2, . . . , nh) with
⟨V1⟩ ∼= Kn

2
, we get a threshold graph on n vertices.

The graphs (Figure 1) G1, G2 ∈ Gf = PTG(1, 2, 1; 1, 1, 2).
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Fig. 1. G1, G2 ∈ Gf = PTG(1, 2, 1; 1, 1, 2)

Definition 1.3: [12] Consider a partial threshold graph
G(V1 ∪ V2, E) with V1 = {u1, u2, . . . , up} and V2 =
{u′

1, u
′
2, . . . , u

′
p} and N2(ui) ⊆ N2(ui−1), 2 ⩽ i ⩽ p. Then

G is said to be a strong partial threshold graph if there exists
a bijective mapping Φ : V1 → V2 satisfying the following
conditions:
(i) ui ∼ uj implies Φ(ui) ≁ Φ(uj), for all 1 ≤ i ̸= j ≤ p.
(ii) N1(Φ(ui)) ⊆ N1(Φ(ui−1)), 2 ⩽ i ⩽ p.
We denote Φ(ui) by u′

i.
The nested split graphs with |V1| = |V2| and PTG(p; p)

are strong partial threshold graphs. The graph G1 of Figure
1 is a strong partial threshold graph with Φ(a) = e,Φ(b) =
f,Φ(c) = g and Φ(d) = h. For G2 of Figure 1, Φ(a) =
h,Φ(b) = e,Φ(c) = f and Φ(d) = g. But as N1(e) ⊈
N1(h), G2 is not a strong partial threshold graph.

In [12], the authors developed an algorithm which returns
(if exists) a strong partial threshold graph with Wiener index
k for a given input value k.

Definition 1.4: [9] A graph G is said to be a partial chain
graph if its vertex set can be partitioned into two subsets V1

and V2 such that the following conditions are satisfied.
1) At least one of the partite sets is independent.
2) If a partite set Vi (i = 1, 2) is independent, then neigh-

borhoods of vertices of Vi form a chain with respect to
the operation of set inclusion. If not, {Vj ∩ N(v)} ̸=
ϕ (j ̸= i) for every vertex v ∈ Vi.

Clearly, if Vi is not independent, then the neighborhoods of
its vertices do not form a chain. Further, when both the partite
sets are independent, we get a chain graph. When V1 is inde-
pendent and ⟨V2⟩ ∼= Kn for some n ≥ 1, we get a threshold
graph. Due to the nesting property of neighborhoods, it is
possible to further partition each of Vi (i = 1, 2) into h cells
V1 = V11 ∪ V12 ∪ . . . ∪ V1h and V2 = V21 ∪ V22 ∪ . . . ∪ V2h

such that N(u) = V21 ∪ V22 ∪ . . . ∪ V2 h−i+1 for all
u ∈ V1i, 1 ≤ i ≤ h. Suppose mi = |V1i| and ni = |V2i|,
then we write G = PCG(m1,m2, . . . ,mh;n1, n2, . . . , nh),
where |V1| =

∑h
i=1 mi and |V2| =

∑h
i=1 ni. The struc-

ture induced by the partite set V2 (which need not be
independent) is not taken into account in the above-said
approach and the notation. Similar to the partial thresh-
old graph, G = PCG(m1,m2, . . . ,mh;n1, n2, . . . , nh)
does not represent a single graph, but a family of graphs
Gf with nesting as said above. Thus, we write Gf =
PCG(m1,m2, . . . ,mh;n1, n2, . . . , nh) (instead of just G).
A threshold graph with |V1| = |V2| is also a partial chain
graph as well as a partial threshold graph. Unlike a chain

graph and threshold graph, a partial threshold graph and
a partial chain graph can contain any graph as its induced
subgraph.

The graphs G1 and G2 (Figure 2) are the partial chain
graphs in the family Gf = PCG(2, 1, 1; 1, 1, 3).

Fig. 2. The graph G1, G2 ∈ Gf = PCG(2, 1, 1; 1, 1, 3)

The authors of the article [9] gave the expressions for rank,
determinant and permanent of partial chain graphs.

We obtain energy of some classes of partial chain graphs
and partial threshold graphs with respect to their adjacency
matrix using the concept of equitable partition of the graph.
In the theory of graph spectra, equitable partitions play an
important role.

For a given graph G, a partition D : W1 ∪W2 ∪ . . .∪Wk

of V (G) is called an equitable partition if every vertex in
Wi has the same number of neighbours in Wj , say dij , for
all i, j ∈ 1, 2, . . . , k. Then the k×k matrix with entries [dij ]
is called the divisor matrix of D.

II. PRELIMINARY RESULTS

Some of the important results which are useful in the next
sections are listed below.

Theorem 2.1: [7] Let M be a real symmetric matrix with
a divisor matrix D. Then the characteristic polynomial of D
divides the characteristic polynomial of M.

Theorem 2.2: [6] Let D be an equitable partition of the
connected graph G. Then A(G) and the divisor matrix AD

of D have the same spectral radius λ1(G).
An eigenvalue of a graph is said to be a main eigenvalue
if it has an eigenvector not orthogonal to the main vector
J = (1, 1, . . . , 1)T .

Theorem 2.3: [14] Let D be an equitable partition of
the connected graph G. Then an eigenvalue λ of G is main
eigenvalue if and only if it is a main eigenvalue of the divisor
matrix AD of D.

Theorem 2.4: [10] Let G be a graph of order n and size
m. Then

2
√
m ≤ E(G) ≤ 2m.

Theorem 2.5: [10] Let G be a graph of order n and size
m. Then,

E(G) ≤
√
2mn.

Theorem 2.6: [10] Let G be a graph of order n and size
m. Then,

E(G) ≤ λ1(G) +
√
(n− 1)(2m− λ1(G)2),

where λ1(G) is the largest eigenvalue of the graph G.
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Theorem 2.7: [15] For a connected graph G,

λ1(G) ≤
√
2m− n+ 1

with equality if and only if G is isomorphic to the star graph
or the complete graph.

Theorem 2.8: [13] For any graph G of order n and size
m,

λ1(G) ≤ 1

2

(
−1 +

√
1 + 8m

)
with equality holds when m =

(
n
2

)
.

Theorem 2.9: [12] Let G be any partial threshold graph
of order n and size m. Then,(

n/2

2

)
+ n− 1 ≤ m ≤

(
n/2

2

)
+

n2

4
.

Theorem 2.10: [8] Let G =
PCG(m1,m2, . . . ,mh;n1, n2, . . . , nh) be a partial chain
graph of order n and size m. Then

h∑
j=1

mj

(
h−j+1∑
i=1

ni

)
≤ m ≤

h∑
j=1

mj

(
h−j+1∑
i=1

ni

)
+
k(k − 1)

2

where k =
h∑

i=1

ni.

The following lemma gives the multiplicity of the eigen-
values 0 and −1 of A(G) in the graph G based on its
structure.

Lemma 2.11: Given a graph G, let S be a subset of V (G)
of the size p.
(i) If S is a clique (i.e., induces a complete subgraph of G)
and N(u) \ S = N(v) \ S for all u, v ∈ S, then −1 is an
eigenvalue of A(G) with multiplicity at least p− 1.
(ii) If S is a co-clique (i.e., induces an empty subgraph of G)
and N(u) = N(v) for all u, v ∈ S, then 0 is an eigenvalue
of A(G) with multiplicity at least p− 1.

III. PARTIAL THRESHOLD GRAPHS

In this section, we obtain the bounds for the energy and
spectral radius of partial threshold graphs. The class of
partial threshold graphs with exactly two main eigenvalues
is obtained along with the spectrum of some strong partial
threshold graphs.

Theorem 3.1: Let G be a partial threshold graph of order
n. Then,

E(G) ≤ n

2

√
3n− 2

with equality if and only if n = 2.
Proof: Proof follows from Theorems 2.5 and 2.9.

Using Theorems 2.4 and 2.9, the next theorem follows.
Theorem 3.2: Let G be a partial threshold graph of order

n. Then,√
1

2
(n2 + 6n− 8) ≤ E(G) ≤ n

4
(3n− 2)

with equality if and only if n = 2.
Theorem 3.3: Let G be a partial threshold graph of order

n with largest eigenvalue λ1(G), of the adjacency matrix of
the graph G. Then,

E(G) ≤ λ1(G) +
1

2

√
(n− 1)(3n2 − 2n− 4λ1(G)2).

Proof: From Theorems 2.6 and 2.9, the result follows.

The following theorem gives a class of strong partial thresh-
old graphs with zero determinant and permanent.

Theorem 3.4: Let G =
PTG(m1,m2, . . . ,mh; 1, n2, . . . , nh = mh) be a
strong partial threshold graph on n vertices and
deg(v) = 1, v ∈ V1h where mh > 1. Then,
per(G) = det(G) = 0 and 0,−1 are the eigenvalues
of A(G) with multiplicity at least mh − 1.

Proof: From Lemma 2.11, we observe that 0 and −1 are
the eigenvalues of A(G) with multiplicity at least mh − 1.
Hence det(G) = 0. As G has more than one pendant vertices,
there is no elementary subgraph which spans all the vertices
of G. Hence per(G) = 0.

Theorem 3.5: Let G be a partial threshold graph of order
n. Then,

λ1(G) ≤ 1

2

√
3n2 − 6n+ 4.

The equality in the above inequality for n > 2, will never
hold.

Proof: From Theorems 2.7 and 2.9, we have

λ1(G) ≤
√
2m− n+ 1

≤

√
2

((n
2

2

)
+

n2

4

)
− n+ 1

=
1

2

√
3n2 − 6n+ 4.

As the equality in the above expression holds if and only if
G is complete (or a star graph), which is not possible for
n > 2.

Theorem 3.6: Let G be a partial threshold graph of order
n, then

λ1(G) ≤ 1

2

(
−1 +

√
3n2 − 2n+ 1

)
.

The equality in the above inequality for n > 2, will never
hold.

Proof: From Theorems 2.8 and 2.9, we have

λ1(G) ≤ 1

2

[
−1 +

√
1 + 8m

]
≤ 1

2

[
−1 +

√
1 + 8

((n
2

2

)
+

n2

4

)]
=

1

2

(
−1 +

√
3n2 − 2n+ 1

)
As the equality in the above expression holds if and only if
G is complete, which is not possible for n > 2.

The spectral radius of a strong partial threshold graph G =
PTG(p; p), with the graph induced by one of the sets is a
regular graph, is given below.

Theorem 3.7: Let G = PTG(p; p) be a strong partial
threshold graph on n = 2p vertices and the graph induced
by the set V1 is a regular graph with regularity r. Then,

λ1(G) =
(p− 1) +

√
5p2 − 2p+ 4r(r + 1− p) + 1

2
.

Proof: Checking the structure of graph G, we can obtain
an equitable partition D : V1 ∪ V2 of G. The divisor matrix
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AD of D is given by

AD =

[
r p
p p− r − 1

]
.

Thus, χ(AD) = λ2+λ(1−p)+rp−r2−r−p2. By Theorem
2.2, the result follows.

Recently, Alazemi et al. [1] obtained the chain graphs with
exactly 2 main eigenvalues. The next theorem discusses
a class of partial threshold graphs with exactly 2 main
eigenvalues.

Theorem 3.8: Let G = PTG(p; p) be a non-regular
partial threshold graph with ⟨V1⟩ is a regular with regularity
r. Then, G has exactly two main eigenvalues.

Proof: We have AD =

[
r p
p p− r − 1

]
.

From Theorem 2.3, all main eigenvalues of G are also
the main eigenvalues of any divisor matrix. If r ̸= p−1

2 ,
we show that the 2 eigenvalues of AD are main, using
the fact that ”a graph G has two main eigenvalues if and
only if {J,A(G)J,A(G)2J} are linearly dependent and
{J,A(G)J} are linearly independent”. It is easy to observe
that {J,A(G)J} is linearly independent, if r ̸= p−1

2 . Con-
sider A2

DJ = αJ + βADJ .

=⇒
[
r2 + p2 p2 − p
p2 − p 2p2 + r2 − 2rp− 2p+ 2r + 1

] [
1
1

]
=

[
α
α

]
+ β

[
r p
p p− r − 1

] [
1
1

]

=⇒
[

r2 + 2p2 − p
3p2 + r2 − 2rp− 3p+ 2r + 1

]
=

[
α+ β(r + p)

α+ β(2p− r − 1)

]
On solving we get the values of α and β which are not zero

always, provided r ̸= p−1
2 .

The energy of few strong partial threshold graphs are dis-
cussed below.

Theorem 3.9: Let G = PTG(m1,m2;m1,m2) be a
strong partial threshold graph on n = 2p, p ≥ 2 vertices
with ⟨V1⟩ ∼= DNG(m1;m2). Then,

E(G) =
4∑

i=1

|λi|+ p− 2, where λ1, . . . , λ4 are the roots of

the polynomial,
λ4+(2−m1−m2)λ

3+(1−m1−m2
1−m2−2m1m2)λ

2+
(−m2

1−4m1m2+m2
1m2+2m1m

2
2)λ+(−m1m2−m2

1m2+
m1m

2
2 + 2m2

1m
2
2).

Proof: From Lemma 2.11, it is observed that λ and λ+1
are the factors of χ(G) with multiplicity at least p− 2. The
partition D : V11 ∪ V12 ∪ V21 ∪ V22 of V (G) induces an
equitable partition of G.

Fig. 3. Partial Threshold Graph : U1 and U2 are co-cliques and U3, U4

are cliques, each thick line indicates the edge set of a complete bipartite
subgraph between Ui, Uj .

The divisor matrix AD of D is given by,

AD =


0 m2 m1 m2

m1 0 m1 0
m1 m2 m1 − 1 0
m1 0 0 m2 − 1

 .

Now, |AD − λI| =

∣∣∣∣∣∣∣∣
−λ m2 m1 m2

m1 −λ m1 0
m1 m2 m1 − 1− λ 0
m1 0 0 m2 − 1− λ

∣∣∣∣∣∣∣∣ .
By performing, Ri −→ Ri +

(
m1

λ

)
R1 for i = 2, 3 and 4,

we get
|AD − λI| =∣∣∣∣∣∣∣∣∣
−λ m2 m1 m2

0 −λ2+m1m2

λ
m1λ+m2

1

λ
m1m2

λ

0 m2λ+m1m2

λ
(m1−1−λ)λ+m2

1

λ
m1m2

λ

0 m1m2

λ
m2

1

λ
(m2−1−λ)λ+m1m2

λ

∣∣∣∣∣∣∣∣∣ .
=⇒ |AD − λI| = −1

λ2∣∣∣∣∣∣
−λ2 +m1m2 m1λ+m2

1 m1m2

m2λ+m1m2 (m1 − 1− λ)λ+m2
1 m1m2

m1m2 m2
1 (m2 − 1− λ)λ+m1m2

∣∣∣∣∣∣ .
Now, by performing R2 −→ R2 −

(
m2λ+m1m2
−λ2+m1m2

)
R1,

R3 −→ R3 −
(

m1m2
−λ2+m1m2

)
R1 and by further reduction we get,

|AD − λI| = λ4 + (2 − m1 − m2)λ
3 + (1 − m1 −

m2
1 − m2 − 2m1m2)λ

2 + (−m2
1 − 4m1m2 + m2

1m2 +
2m1m

2
2)λ + (−m1m2 −m2

1m2 +m1m
2
2 + 2m2

1m
2
2). Therefore,

Spec(G) =

(
−1 0 λ1 λ2 λ3 λ4

p− 2 p− 2 1 1 1 1

)
where λ1, . . . , λ4 are the roots of |AD − λI|.

Corollary 3.10: Let G = PTG(1, p − 1; 1, p − 1) be a
strong partial threshold graph on n = 2p, p ≥ 2 vertices,
with ⟨V1⟩ ∼= K1,p−1 with dominating vertex being the central

vertex. Then, E(G) =
4∑

i=1

|λi|+ p− 2, where λ1, . . . , λ4 are

the roots of the polynomial,
[λ4+(2−p)λ3+(2−3p)λ2+(4−7p+2p2)λ+5−8p+3p2],
and per(G) = 0.

Proof: Proof follows by substituting m1 = 1 and m2 =
p− 1 in Theorem 3.9 and per(G) = 0 by Theorem 3.4.

Theorem 3.11: Let G = PTG(m1,m2;n1, n2) with
m1 < n1 be a strong partial threshold graph on n =
2p, p ≥ 3 vertices and ⟨V1⟩ ∼= DNG(m1;m2). Then,

E(G) =
5∑

i=1

|λi|+ p− 3, where λ1, λ2, . . . , λ5 are the roots

of the polynomial,
[−λ5 + (p − 3)λ4 + (2p + m2

1 + m1m2 + m2n1 − 3)λ3 +
(p + m2

1 + 2m3
1 + 3m1m2 + 2m2

1m2 + m1n1 − 2m2
1n1 +

2m2n1−m1m2n1+m1n2−2m2
1n2−m1m2n2−m2n1n2−

1)λ2 + (2m3
1 + 3m1m2 + 2m2

1m2 + 3m3
1m2 + m1n1 −

2m2
1n1+m2n1−3m2

1m2n1+m1n2−2m2
1n2−2m1m2n2−

2m2
1m2n2 −m2n1n2)λ+m1m2(1 + 3m2

1 + n1 − 3m1n1 −
n2 −m1n2 − 2m2

1n2 − n1n2 + 2m1n1n2)].

Proof: From Lemma 2.11, we note that λ and λ+1 are
the factors of χ(G) with multiplicity at least p−2 and p−3
respectively.

The partition D : U1 ∪ U2 ∪ U3 ∪ U4 ∪ U5 of V (G) as
shown in Figure 4 induces an equitable partition of G with
U1 = V11, U2 = V12, U5 = V22 and U3, U4 ∈ V21. Here
|U3| = m1, |U4| = n1 −m1.
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Fig. 4. Partial Threshold Graph : U1 and U2 are co-cliques and U3, U4, U5

are cliques, each thick line indicates the edge set of a complete bipartite
subgraph between Ui, Uj .

The divisor matrix AD of D is given by,

AD =


0 m2 m1 n1 −m1 n2

m1 0 m1 n1 −m1 0
m1 m2 m1 − 1 0 0
m1 m2 0 n1 −m1 − 1 n2

m1 0 0 n1 −m1 n2 − 1

 .

Then, Spec(G) =

(
−1 0 λ1 λ2 λ3 λ4 λ5

p− 3 p− 2 1 1 1 1 1

)
,

where λ1, . . . , λ5 are the roots of |AD − λI|. Hence the
proof.

Theorem 3.12: Let G = PTG(m1,m2;n1, n2) with
m1 > n1 be a strong partial threshold graph on n =
2p, p ≥ 3 vertices, with ⟨V1⟩ ∼= DNG(m1;m2). Then,

E(G) =
5∑

i=1

|λi| + p − 3, where λ1, . . . , λ5 are the roots

of the polynomial,
[−λ5+(p−3)λ4+(2p+m2

1+m1m2+m2n1−3)λ3+(p+
2m2

1 + 4m1m2 − 3m2
1m2 −m1m

2
2 + 2m2n1 +m1m2n1 −

m2
2n1+m2n

2
1−1)λ2+(m2

1+4m1m2−4m2
1m2−2m1m

2
2+

m2
1m

2
2+m2n1+3m1m2n1−m2

1m2n1−m2
2n1−2m1m

2
2n1+

m2n
2
1+m1m2n

2
1−m2

2n
2
1)λ+m1m2(1−p+m1m2+2n1−

m1n1 − 3m2n1 + 2m1m2n1 + n2
1 − 2m2n

2
1)].

Proof: From Lemma 2.11, it is observed that λ and λ+1
are the factors of χ(G) with multiplicity at least p − 2 and
p− 3 respectively.
There exists a partition D : ∪5

i=1Ui of V (G) which induces
an equitable partition of G with U1 = V11, U2 = V12, U3 =
V21 and U4, U5 ∈ V22. Here |U4| = m1−n1 and |U5| = m2.
The divisor matrix AD of D is given by,

AD =


0 m2 n1 m1 − n1 m2

m1 0 n1 0 0
m1 m2 n1 − 1 m1 − n1 0
m1 0 n1 m1 − n1 − 1 0
m1 0 0 0 m2 − 1

 .

Then, Spec(G) =

(
−1 0 λ1 λ2 λ3 λ4 λ5

p− 3 p− 2 1 1 1 1 1

)
,

where λ1, λ2, . . . , λ5 are the roots of |AD − λI| and the
proof follows.

Theorem 3.13: Let G = PTG(2, r+s; 2, r+s) be a strong
partial threshold graph on n = 2p = 2(r+ s+ 2), (r, s ≥ 1)
vertices, with ⟨V1⟩ ∼= DNG(1, r; 1, s) and the dominating
vertices of the partial threshold graph be the dominating

vertices of DNG(1, r; 1, s). Then, E(G) =
8∑

i=1

|λi|+ p− 4,

where λ1, . . . , λ8 are the roots of the polynomial,
[λ8 + (2− r− s)λ7 − (4 + 7r+ 7s)λ6 + (8rs− 14− 14r+
3r2−14s+3s2)λ5+(12r2−9s+34rs+12s2−13−9r)λ4+
(r+15r2+s+46rs−11r2s+15s2−11rs2−4)λ3+(2r+

6r2+2s+24rs−31r2s+6s2−31rs2)λ2+(4rs−21r2s−
21rs2 + 10r2s2)λ+ 17r2s2 − 2r2s− 2rs2].

Proof: From Lemma 2.11, it is observed that λ and λ+1
are the factors of χ(G) with multiplicity at least p− 4.

There exists a partition D : ∪8
i=1Ui of V (G) which

induces an equitable partition of G with U1, U2 ∈
V11, U3, U4 ∈ V12, U5, U6 ∈ V21 and U7, U8 ∈ V22. Here
|U1| = |U2| = |U5| = |U6| = 1, |U3| = |U7| = r, |U4| =
|U8| = s. The divisor matrix AD of D is given by,

AD =



0 1 0 s 1 1 r s
1 0 r 0 1 1 r s
0 1 0 0 1 1 0 0
1 0 0 0 1 1 0 0
1 1 r s 0 0 r 0
1 1 r s 0 0 0 s
1 1 0 0 1 0 r − 1 s
1 1 0 0 0 1 r s− 1


.

Then, Spec(G) =

(
−1 0 λ1 λ2 · · · λ8

p− 4 p− 4 1 1 · · · 1

)
,

where λ1, λ2, . . . , λ8 are the roots of |AD − λI|.
Theorem 3.14: Let G = PTG(m1,m2;m1,m2) be a

strong partial threshold graph on n = 2p, p ≥ 3 vertices
and ⟨V1⟩ ∼= NSG(m1;m2) with partition V1 = V11 ∪ V12,
where V11 induces a clique and V12 induces a co-clique.

Then, E(G) =
4∑

i=1

|λi|+ p− 2, where λ1, λ2, λ3, λ4 are the

roots of the polynomial,
[λ4 + (2− p)λ3 + (1− p−m2

1 − 2m1m2)λ
2 + (2m1m

2
2 −

m2
1 − 3m1m2)λ+m1m2(m2 + 2m1m2 − 1−m1)].

Proof: From Lemma 2.11, we note that 0 and −1 are
the eigenvalues of G with multiplicity at least p − 2. The
partition D : V11 ∪ V12 ∪ V21 ∪ V22 of V (G) induces an
equitable partition of G. The divisor matrix AD of D is
given by,

AD =


m1 − 1 m2 m1 m2

m1 0 m1 0
m1 m2 0 0
m1 0 0 m2 − 1

 .

Therefore, Spec(G) =

(
−1 0 λ1 λ2 λ3 λ4

p− 2 p− 2 1 1 1 1

)
,

where λ1, λ2, λ3, λ4 are the roots of |AD − λI|.
Theorem 3.15: Let G = PTG(m1,m2;n1, n2) be a

strong partial threshold graph with m1 < n1, n = 2p, p ≥ 3
vertices and ⟨V1⟩ ∼= NSG(m1;m2) with partition V1 =
V11∪V12, where V11 induces a clique and V12 induces a co-

clique. Then, E(G) =
5∑

i=1

|λi|+ p− 3, where λ1, λ2, . . . , λ5

are roots of the polynomial,
[−λ5+(p−3)λ4+(p−3+m2

1+m1m2+m2n1)λ
3+(p−1+

2m2
1+m3

1+3m1m2+2m2
1m2−m2

1n1+2m2n1−m1m2n1−
m2

1n2 − m1m2n2 − m2n1n2)λ
2 + (m2

1 + m3
1 + 3m1m2 +

4m2
1m2+m3

1m2−m2
1n1+m2n1−2m1m2n1−m2

1m2n1−
m2

1n2 − 2m1m2n2 − 2m2
1m2n2 −m2n1n2)λ+m1m2(1−

p+ 2m1 +m2
1 −m1n1 − 2m1n2 −m2

1n2 +m1n1n2)].

Proof: From Lemma 2.11, we note that 0 and −1 are
the eigenvalues of G with multiplicity at least p−2 and p−3
respectively. The partition D : ∪5

i=1Ui induces an equitable
partition of G with U1 = V11, U2 = V12, U3, U4 ∈ V21 and
U5 = V22. Here |U3| = m1, |U4| = n1 − m1. The divisor
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matrix AD of D is given by,

AD =


m1 − 1 m2 m1 n1 −m1 n2

m1 0 m1 n1 −m1 0
m1 m2 0 0 0
m1 m2 0 n1 −m1 − 1 n2

m1 0 0 n1 −m1 n2 − 1

 .

Then, Spec(G) =

(
−1 0 λ1 λ2 λ3 λ4 λ5

p− 2 p− 2 1 1 1 1 1

)
,

where λ1, λ2, λ3, λ4, λ5 are the roots of |AD − λI|.

Theorem 3.16: Let G = PTG(m1,m2;n1, n2) be a
strong partial threshold graph with m1 > n1 on n =
2p, p ≥ 3 vertices and ⟨V1⟩ ∼= NSG(m1;m2) with partition
V1 = V11 ∪ V12, where V11 induces a clique and V12

induces a co-clique. Then, E(G) =
5∑

i=1

|λi| + p − 2, where

λ1, λ2, . . . , λ5 are roots of the polynomial,
[−λ5 + (p − 2)λ4 + (p − 1 +m1n1 +m2n1 +m1n2)λ

3 +
(m1n1+2m2n1−m2

2n1+m1n2−m1m2n2)λ
2+m2n1(1+

m1 −m2 −m1m2 −m1n2)λ+ n1m1m2(m2 −m2
2 − n2 +

m2n2)].

Proof: From Lemma 2.11, we note that 0 and −1 are
the eigenvalues of G with multiplicity at least p−3 and p−2
respectively. The partition D : U1∪U2∪U3∪U4∪U5 induces
an equitable partition of G with U1 = V11, U2 = V12, U3 =
V21 and U4, U5 ∈ V22. Here |U4| = n2 − m2, |U5| = m2.
The divisor matrix AD of D is given by,

AD =


m1 − 1 m2 n1 n2 −m2 m2

m1 0 n1 0 0
m1 m2 0 0 0
m1 0 0 0 0
m1 0 0 0 m2 − 1

 .

Then, Spec(G) =

(
−1 0 λ1 λ2 λ3 λ4 λ5

p− 2 p− 2 1 1 1 1 1

)
,

where λ1, λ2, . . . , λ5 are the roots of |AD − λI|.

Theorem 3.17: Let G = PTG(m1,m2;m1,m2), with
m1,m2 ≥ 2 be a strong partial threshold graph on n =
2p, p ≥ 4 vertices, with ⟨V1⟩ ∼= NSG(1,m1− 1; 1,m2− 1)
with the partition V1 = V11∪V12, where V11 induces a clique

and V12 induces a co-clique. Then, E(G) =
8∑

i=1

|λi|+ p− 4,

where λ1, λ2, . . . , λ8 are the roots of the polynomial,
[λ8 + (4− p)λ7 + (6− 3p−m2

1 − 2m1m2)λ
6 + (6− 4p−

4m2
1 − 2m2 − 5m1m2 + m2

1m2 + m2
2 + m1m

2
2)λ

5 + (7 −
m1−9m2

1−9m2−9m1m2+7m2
1m2+2m2

2+5m1m
2
2)λ

4+
(6 + 4m1 − 11m2

1 − 8m2 − 13m1m2 + 14m2
1m2 + 2m2

2 +
8m1m

2
2−2m2

1m
2
2)λ

3+(1+7m1−8m2
1−m2−17m1m2+

16m2
1m2+10m1m

2
2−7m2

1m
2
2)λ

2+(2m1−2m2
1−6m1m2+

6m2
1m2 + 4m1m

2
2 − 4m2

1m
2
2)λ+ 1− 2p+m2

1 + 4m1m2 −
2m2

1m2 +m2
2 − 2m1m

2
2 +m2

1m
2
2].

Proof: From Lemma 2.11, we note that 0 and −1 are the
eigenvalues of G with multiplicity at least p−4. There exists
a partition D : ∪8

i=1Ui of V (G) which induces an equitable
partition of G with U1, U2 ∈ V11, U3, U4 ∈ V12, U5, U6 ∈
V21 and U7, U8 ∈ V22. Here, |U1| = |U3| = |U5| = |U7| = 1,
|U2| = |U6| = m1 − 1 and |U4| = |U8| = m2 − 1. Then the

divisor matrix AD of D is given by,

AD =



0 m1 − 1 1 m2 − 1 1 m1 − 1 1 m2 − 1
1 m1 − 2 1 0 1 m1 − 1 1 m2 − 1
1 m1 − 1 0 0 1 m1 − 1 0 0
1 0 0 0 1 m1 − 1 0 0
1 m1 − 1 1 m2 − 1 0 0 0 0
1 m1 − 1 1 m2 − 1 0 0 0 m2 − 1
1 m1 − 1 0 0 0 0 0 m2 − 1
1 m1 − 1 0 0 0 m1 − 1 1 m2 − 2


.

Then, Spec(G) =

(
−1 0 λ1 λ2 · · · λ8

p− 4 p− 4 1 1 · · · 1

)
,

where λ1, λ2, . . . , λ8 are the roots of |AD − λI|.
Theorem 3.18: Let G =

PTG(m1,m2, . . . ,mh;m1,m2, . . . ,mh) be a strong
partial threshold graph on n = 2p, p ≥ h vertices and

⟨V1⟩ ∼= Km1,m2,...,mh
. Then, E(G) =

2h∑
i=1

|λi| + p − h,

where λ1, λ2, . . . , λ2h are the eigenvalues of AD, where
AD is the divisor matrix of the equitable partition D of G
of order 2h which is given by,



0 m2 · · · mh m1 m2 · · · mh

m1 0 · · · mh m1 m2 · · · 0
m1 m2 · · · mh m1 m2 · · · 0
...

...
. . .

...
...

... . .
. ...

m1 m2 · · · 0 m1 0 · · · 0
m1 m2 · · · mh m1 − 1 0 · · · 0
m1 m2 · · · 0 0 m2 − 1 · · · 0
...

... . .
. ...

...
...

. . .
...

m1 m2 · · · 0 0 0 · · · 0
m1 0 · · · 0 0 0 · · · mh − 1


.

Proof: From Lemma 2.11, we note that 0 and −1 are
the eigenvalues of G with multiplicity at least p− h.

There exists a partition D : U1 ∪ U2 ∪ . . . ∪ U2h

of V (G) which induces an equitable partition of G with
Ui = V1i, 1 ≤ i ≤ h and Uh+j = V2j , 1 ⩽ j ⩽ h. Then
the divisor matrix AD of D can be obtained. Therefore,

Spec(G) =

(
−1 0 λ1 λ2 · · · λ2h

p− h p− h 1 1 · · · 1

)
where λ1, λ2, . . . , λ2h are the eigenvalues of |AD − λI|.

IV. PARTIAL CHAIN GRAPHS

In this section, the characteristic polynomials of some
partial chain graphs are obtained. First we give a bound for
the energy and spectral radius of a partial chain graph.

Theorem 4.1: Let G =
PCG(m1,m2, . . . ,mh;n1, n2, . . . , nh) be a partial chain
graph of order n and size m, then

2

√
h∑

j=1

mj

(
h−i+1∑
i=1

ni

)
≤ E(G) ≤ 2

h∑
j=1

mj

(
h−i+1∑
i=1

ni

)
+

k(k − 1) where k =
h∑

i=1

ni.

Theorem 4.2: Let G(V1 ∪ V2, E) be a partial chain graph
of order n. Then,

λ1(G) ≤

√√√√2

h∑
j=1

mj

(
h−j+1∑
i=1

ni

)
+ k(k − 1)− n+ 1,

where k =
n∑

i=1

ni. Equality in the upper bound holds if and
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only if either |V1| = 1, |V2| = n− 1 and the graph induced
by V2 is a complete graph on n−1 vertices, or |V1| = n−1
and |V2| = 1.

Proof: The proof of the upper bound follows from
Theorems 2.7 and 2.10. In order for equality to hold in the
inequality 2.7, G must be a complete graph or a star graph
of order n, from which the equality conditions hold.

Theorem 4.3: Let G(V1 ∪ V2, E) be a partial chain graph
of order n. Then,

λ1(G) ≤ 1

2

−1 +

√√√√8

n∑
j=1

(
h−j+1∑
i=1

ni

)
+ 4k(k − 1)− 8n+ 9

 ,

where k =
n∑

i=1

ni. Equality in the upper bound holds if and

only if either |V1| = 1, |V2| = n− 1 and the graph induced
by V2 is a complete graph on n− 1 vertices.

Proof: The proof of the upper bound follows from
Theorems 2.8 and 2.10. In order for equality to hold in the
inequality 2.8, G must be a complete graph of order n, from
which the equality holds.

The spectral radius of G = PCG(p; p) with the graph
induced by one of the set is regular is given below.

Theorem 4.4: Let G = PCG(p; p) be a partial chain
graph on n = 2p vertices and the graph induced by the
set V1 is regular graph with regularity r. Then,

λ1(G) =
r +

√
r2 + 4p2

2
.

Proof: Checking the structure of graph G, we can obtain
an equitable partition D : V1 ∪ V2 of G. Then, the divisor
matrix AD of D is given by

AD =

[
r p
p 0

]
.

Thus, χ(AD) = λ2 − rλ − p2. By Theorem 2.2, the result
follows.
We show that a non-regular PCG(p; q) with ⟨V1⟩ a regular
graph has exactly 2 main eigenvalues in the following
theorem.

Theorem 4.5: Let G = PCG(p; q) be a non-regular graph
with ⟨V1⟩ is a regular with regularity r. Then G has exactly
two main eigenvalues.

Proof: We have AD =

[
r q
p 0

]
. As all main eigenvalues

of G are also the main eigenvalues of any divisor matrix,
we show that the 2 eigenvalues of AD are main, using the
fact that ”a graph G has two main eigenvalues if and only
if J,A(G)J,A(G)2J are linearly dependent”. Now suppose
that

A2
DJ = αJ + βADJ

=⇒
[
r2 + pq rq

pr pq

] [
1
1

]
=

[
α
α

]
+ β

[
r q
p 0

] [
1
1

]

=⇒
[
r2 + pq + rq

pr + pq

]
=

[
α+ β(r + q)

α+ βp

]
On solving we get, α = pq and β = r provided p − q ̸= r.

Theorem 4.6: Let G = PCG(m1,m2;n1, n2) be a partial
chain graph on n ≥ 4 vertices, with ⟨V1⟩ ∼= DNG(m1;m2).

Then, E(G) =
4∑

i=1

|λi| where λ1, . . . , λ4 are the roots of the

polynomial,
[λ4 − (m1m2 +m1n1 +m2n1 +m1n2)λ

2 − 2m1m2n1λ+
m1m2n1n2].

Proof: From Lemma 2.11, we note that 0 is the eigen-
value of G with multiplicity at least n − 4. The partition
D : V11 ∪ V12 ∪ V21 ∪ V22 induces an equitable partition of
G. The divisor matrix AD of D is given by,

AD =


0 m2 n1 n2

m1 0 n1 0
m1 m2 0 0
m1 0 0 0

 .

Then, Spec(G) =

(
0 λ1 λ2 λ3 λ4

n− 4 1 1 1 1

)
where λ1, . . . , λ4 are the roots of |AD − λI|.

Theorem 4.7: Let G = PCG(2, r+s;n1, n2) be a partial
chain graph on n ≥ 6 vertices, with ⟨V1⟩ ∼= DNG(1, r; 1, s)
with partition V1 = V11 ∪ V12 and the dominating ver-
tices of the partial chain graph be the dominating ver-

tices of DNG(1, r; 1, s). Then, E(G) =
6∑

i=1

|λi|, where

λ1, λ2, . . . , λ6 are the roots of the polynomial,
[λ6 − (1 + 2(n1 + n2) + (r+ s)(n1 +1))λ4 − 2(n1(1 + r+
s) + n2)λ

3 + ((2n1 + 1)(rs+ (r + s)n2))λ
2 + 2n1(n2(r +

s) + rs)λ− 4n1n2rs].

Proof: From Lemma 2.11, we note that 0 is the eigen-
value of G with multiplicity at least n − 6. The partition
D : ∪6

i=1Ui induces an equitable partition of G with
U1, U2 ∈ V11, U3, U4 ∈ V12, U5 = V21 and U6 = V22. Here
|U1| = |U2| = 1, |U3| = r and |U4| = s. The divisor matrix
AD of D is given by,

AD =


0 1 0 s n1 n2

1 0 r 0 n1 n2

0 1 0 0 n1 0
1 0 0 0 n1 0
1 1 r s 0 0
1 1 0 0 0 0

 .

Then, Spec(G) =

(
0 λ1 λ2 λ3 λ4 λ5 λ6

n− 6 1 1 1 1 1 1

)
,

where λ1, . . . , λ6 are the roots of |AD − λI|.

Theorem 4.8: Let G = PCG(m1,m2;n1, n2) be a partial
chain graph on n ≥ 5 vertices, with ⟨V1⟩ ∼= DNG(1;m1 −
1) with a dominating vertex being the dominating vertex of

DNG(1;m1−1). Then, E(G) =
5∑

i=1

|λi| , where λ1, . . . , λ5

are the roots of the polynomial,
[−λ5+(m1+m2+m1n1+m2n1+m1n2−1)λ3+2(m1n1+
m2n1 − n1 − n2 +m1n2)λ

2 +m2n2(1−m1 −m1n1)λ+
2m2n1n2(1−m1)].

Proof: From Lemma 2.11, we note that 0 is the eigen-
value of G with multiplicity at least n − 5. The partition
D : U1 ∪ U2 ∪ . . . ∪ U5, with U1, U2 ∈ V11, U3 = V12, U3 =
V21 and U5 = V22 induces an equitable partition of G. Here,
|U1| = 1, |U2| = m1 − 1. The divisor matrix AD of D is
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given by,

AD =


0 m1 − 1 m2 n1 n2

1 0 0 n1 n2

1 0 0 n1 0
1 m1 − 1 m2 0 0
1 m1 − 1 0 0 0


Then, Spec(G) =

(
0 λ1 λ2 λ3 λ4 λ5

n− 5 1 1 1 1 1

)
,

where λ1, . . . , λ5 are the roots of |AD − λI|.
Theorem 4.9: Let G =

PCG(m1,m2, . . . ,mh;n1, n2, . . . , nh) be a partial chain
graph on n,≥ 2h vertices, with ⟨V1⟩ ∼= Km1,m2,...,mh

.

Then, Then, E(G) =
2h∑
i=1

|λi| where λ1, . . . , λ2h are the

eigenvalues of AD, where AD is the divisor matrix of G of
order 2h which is given by

0 m2 m3 · · · mh n1 n2 · · · nh−1 nh

m1 0 m3 · · · mh n1 n2 · · · nh−1 0
m1 m2 0 · · · mh n1 n2 · · · 0 0
...

...
...

. . .
...

...
... . .

. ...
...

m1 m2 m3 · · · 0 n1 0 · · · 0 0
m1 m2 m3 · · · mh 0 0 · · · 0 0
m1 m2 m3 · · · 0 0 0 · · · 0 0
...

...
... . .

. ...
...

...
. . .

...
...

m1 m2 0 · · · 0 0 0 · · · 0 0
m1 0 0 · · · 0 0 0 · · · 0 0


.

Proof: From Lemma 2.11, we note that 0 is the eigen-
value of G with multiplicity at least n − 2h. The partition
D : V11∪V12∪. . .∪V1h∪V21∪. . .∪V2h induces an equitable
partition of G. The divisor matrix AD of D can be obtained.

Therefore, Spec(G) =

(
0 λ1 λ2 · · · λ2h

n− 2h 1 1 · · · 1

)
,

where λ1, λ2, . . . , λ2h are the eigenvalues of the divisor
matrix AD.

Theorem 4.10: Let G = PCG(m1,m2;n1, n2) be a par-
tial chain graph on n vertices, with ⟨V1⟩ ∼= Km1

∪ Km2
.

Then, E(G) =
4∑

i=1

|λi|+m1+m2−2, where λ1, . . . , λ4 are

the roots of the polynomial,
[λ4+(2−m1−m2)λ

3+(1−m1−m2+m1m2−m1n1−
m2n1 −m1n2)λ

2 + (2m1m2n1 −m1n1 −m2n1 −m1n2 +
m1m2n2)λ+m1m2n1n2].

Proof: From Lemma 2.11, we note that 0 and −1 are
the eigenvalues of G with multiplicity at least n1 + n2 − 2
and m1 +m2 − 2. The partition D : V11 ∪ V12 ∪ V21 ∪ V22

induces an equitable partition of G. The divisor matrix AD

of D is given by,
m1 − 1 0 n1 n2

0 m2 − 1 n1 0
m1 m2 0 0
m1 0 0 0

 .

Then, Spec(G) =(
−1 0 λ1 λ2 λ3 λ4 λ5

m1 +m2 − 2 n1 + n2 − 2 1 1 1 1 1

)
,

where λ1, . . . , λ5 are the roots of |AD − λI|.
Theorem 4.11: Let G = PCG(m1, . . . ,mh;n1, . . . , nh)

be a partial chain graph on n ≥ 2h vertices, with ⟨V1⟩ ∼=
Km1

∪ Km2
∪ . . . ∪ Kmh

. Then, E(G) =
∑
i=1

2h |λi| +

∑h
i=1 mi−h, where λ1, . . . , λ2h are the eigenvalues of AD,

where AD is the divisor matrix of G of order 2h which is
given by,



m1 − 1 0 · · · 0 n1 n2 · · · nh−1 nh

0 m2 − 1 · · · 0 n1 n2 · · · nh−1 0
0 0 · · · 0 n1 n2 · · · 0 0
...

...
. . .

...
...

... . .
. ...

...
0 0 · · · mh − 1 n1 0 · · · 0 0
m1 m2 · · · mh 0 0 · · · 0 0
m1 m2 · · · 0 0 0 · · · 0 0
...

... . .
. ...

...
...

. . .
...

...
m1 m2 · · · 0 0 0 · · · 0 0
m1 0 · · · 0 0 0 · · · 0 0


.

Proof: From Lemma 2.11, we note that 0 and −1 are the
eigenvalues of G with multiplicity at least

∑h
i=1 ni − h and∑h

i=1 mi−h. The partition D : V11∪V12∪ . . .∪V1h∪V21∪
. . . ∪ V2h induces an equitable partition of G. The divisor
matrix AD of D can be obtained.
Therefore, Spec(G) =(

−1 0 λ1 λ2 · · · λ2h∑h
i=1 mi − h

∑h
i=1 ni − h 1 1 · · · 1

)
where λ1, λ2, . . . , λ2h are the eigenvalues of the divisor
matrix AD.

Theorem 4.12: Let G = PCG(m1,m2;n1, n2) be a
partial chain graph on n ≥ 6 vertices, with ⟨V1⟩ ∼=
NSG(1,m1 − 1; 1,m2 − 1) with partition V1 = V11 ∪ V12,
where V11 induces a clique and V12 induces a co-clique.

Then, E(G) =
6∑

i=1

|λi| +m1 − 2, where λ1, . . . , λ6 are the

roots of the polynomial,
[λ6 + (2 − m1)λ

5 + (2 − 2m1 − m2 − m1n1 − m2n1 −
m1n2)λ

4 + (2 − 2m1 − 2m2 + m1m2 + 2n1 − 3m1n1 −
4m2n1 +m1m2n1 −m1n2)λ

3 + (1−m1 −m2 +m1m2 +
4n1−4m1n1−5m2n1+3m1m2n1+n2−m1n2−m2n2+
m1m2n2+m1m2n1n2)λ

2+n1(2−2m1−2m2+2m1m2+
m1m2n2)λ+ n1n2(m1m2 − 1−m1m2)].

Proof: From Lemma 2.11, we note that 0 and −1 are
the eigenvalues of G with multiplicity at least n − m1 − 4
and m1 − 2 respectively. The partition D : ∪6

i=1Ui with
U1, U2 ∈ V11, U3, U4 ∈ V12, U5 = V21 and U6 = V22 induces
an equitable partition of G. Here |U1| = |U3| = 1, |U2| =
m1 − 1 and |U4| = m2 − 1. The divisor matrix AD of D is
given by,

AD =


0 m1 − 1 1 m2 − 1 n1 n2

1 m1 − 2 1 0 n1 n2

1 m1 − 1 0 0 n1 0
1 0 0 0 n1 0
1 m1 − 1 1 m2 − 1 0 0
1 m1 − 1 0 0 0 0

 .

Then, Spec(G) =(
−1 0 λ1 λ2 λ3 λ4 λ5 λ6

m1 − 2 n1 + n2 − 2 1 1 1 1 1 1

)
,

where λ1, . . . , λ6 are the roots of |AD − λI|.
Theorem 4.13: Let G = PCG(m1,m2;n1, n2) be a

partial chain graph on n ≥ 4 vertices, with ⟨V1⟩ ∼=
NSG(m1;m2) with partition V1 = V11 ∪ V12, where V11

induces a clique and V12 induces a co-clique. Then,

E(G) =
4∑

i=1

|λi| + m1 − 1, where λ1, . . . , λ4 are the roots
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of the polynomial,
[λ4 + (1−m1)λ

3 − (m1m2 +m1n1 +m2n1 +m1n2)λ
2 −

m2n1(1 +m1)λ+m1m2n1n2].
Proof: From Lemma 2.11, we note that 0 and −1 are

the eigenvalues of G with multiplicity at least n−m1−3 and
m1 − 1 respectively. The partition D : V11 ∪V12 ∪V21 ∪V22

induces an equitable partition of G. The divisor matrix of D
is given by,

AD =


m1 − 1 m2 n1 n2

m1 0 n1 0
m1 m2 0 0
m1 0 0 0

 .

Then,

Spec(G) =

(
−1 0 λ1 λ2 λ3 λ4

m1 − 1 n−m1 − 3 1 1 1 1

)
,

where λ1, . . . , λ4 are the roots of |AD − λI|.

V. CONCLUSION

Recently, the authors of the article [11] introduced the
concept of k-nested graphs by extending the nesting property
from bipatiteness to k-partite graphs. One can obtain the
spectral properties of a k-nested graph.
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