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Abstract—The Lotka-Volterra competition model consisting
of two equations is studied. The existence and uniqueness
of solutions on an infinite interval are proved by using the
Schauder fixed point theorem, Gronwall’s inequality and some
special analytical techniques. Some conditions of existence for
positive solutions are obtained. Iterative algorithms and error
estimations for solving this model are established. The results
of this paper can be generalized to the cases consisting of more
than two equations.

Index Terms—Lotka-Volterra model; Gronwall’s inequality;
existence and uniqueness; iterative algorithms; infinite interval

I. INTRODUCTION

THE Lotka-Volterra competition model was initially pro-
posed independently by American mathematician Al-

fred J. Lotka and Italian mathematician Vito Volterra around
1925. It is usually used to describe interactions between
species, including predator-prey, competition, and symbiosis
relationships. In the past few decades, many researchers
have improved and expanded this model, attempting to better
describing and analyzing various interactions in ecosystems
or other similar systems through different methods and per-
spectives. This model can be applied not only to biological
systems, but also to various other fields such as market
competition, financial derivatives, energy consumption, and
environmental pollution. We review a few recent results
for this model (especially, the practical applications). The
existence results of the fractional-order model and positive
periodic solutions were proved ( [1], [2]); the traveling wave
solutions and almost periodic solution were presented ( [3],
[4]); the study of fractal dimension analysis and control of
Julia set were considered [5]; the dynamical study was inves-
tigated ( [6], [7]). Lotka-Volterra method has been applied
to many fields, such as China’s manufacturing industry [8],
product competition between smart TVs and flat panel TVs
[9], Taiwan’s retail industry [10], the stock index futures
market [11], a scenario analysis for inter-port interactions
[12], energy consumption forecasting [13], and pollution
shares [14].

In practical applications, the most common Lotka-Volterra
competition model may be written as
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du

dt
= u(t) [σ1(t)− b1(t)u(t)− c1(t)v(t)]

:= f(t, u(t), v(t)), t > 0,

dv

dt
= v(t) [σ2(t)− b2(t)v(t)− c2(t)u(t)]

:= g(t, u(t), v(t)), t > 0,

u(0) = u0 > 0, v(0) = v0 > 0.

(1)

See, for instance, [8]–[10], where u(t), v(t) represent the
numbers of two species at time t, σ1(t), σ2(t) are the
parameters related to the number of species u(t) and v(t);
b1(t), b2(t) represent the own limiting coefficients of species
u(t) and v(t); c1(t), c2(t) are the interaction coefficients
between species u(t) and v(t), respectively. Generally,
σi(t), bi(t), ci(t) are assumed to satisfy the following basic
assumption:

(P) σi(t), bi(t), ci(t) are all continuous, and
σi(t), bi(t), ci(t) : [0,∞) → (0,∞)(i = 1, 2).

Remark 1. If σi(t), bi(t), ci(t) are positive constants, then
(P) is satisfied naturally.

For (1), the following three problems must be addressed:
(a) If (u, v) is a solution of (1), it should be nonnegative

or positive, that is, u(t) ≥ 0, v(t) ≥ 0 or u(t) > 0, v(t) > 0
for time t within an existence interval.

(b) If (1) has a solution, what is the maximum existence
interval of that? Is this solution unique?

(c) If (1) has a solution, can it be approximated by iterative
sequences?

However, a solution of (1) obtained by existing methods
may not necessarily satisfy (a). Meanwhile, we remark that
the usual methods of positive solutions for self mapping
defined on a cone [15], [16] cannot be used to treat (1) due to
the nonlinear terms with sign-changing in (1). Regarding (b),
seeking the maximum existence interval of solutions for (1)
is very interesting and important under the basic condition
(P). To the best of our knowledge, there is little study on
them (especially (c)).

In this paper, under the basic assumption (P), by using the
Schauder fixed-point theorem, the Gronwall’s inequality and
some special analytical techniques, we prove the existence
and uniqueness of solutions for (1) and obtain that the
maximum existence interval of solutions for (1) is the infinite
interval [0,∞). Also, the iterative algorithms and error
estimations of solutions are established. Finally, we point
out that the results obtained in this paper can be extended
to the Lotka-Volterra models consisting of more than two
equations.

This paper is organized as follows: In Section 2, we
make some preliminaries. In Section 3, we prove the main
results of the existence and uniqueness of solutions and
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positive solutions. In Section 4, we establish some iterative
algorithms and error estimations of solutions. In Section 5,
we summarize the conclusions of this paper and give some
comments.

II. SOME PRELIMINARIES

Let T ∈ (0,∞) be a constant. We denote by C[0, T ]
the Banach space consisting of all continuous functions
on [0, T ] with the norm ∥u∥ = max {|u(t)| : t ∈ [0, T ]}.
C+[0, T ] = {u : u(t) ∈ C[0, T ], u(t) ≥ 0, t ∈ [0, T ]}
and C1[0, T ] = {u : u ∈ C[0, T ], u(t) has the first order
continuous derivative on [0, T ]}.

Let u, v ∈ (C+[0, T ] \ {0})∩C1[0, T ] and (u, v) satisfies
(1). Then (u, v) is called to be a solution of (1); If u(t) > 0,
v(t) > 0 for t ∈ [0, T ], (u, v) is called to be a positive
solution.

Integrating (1) from 0 to t, we obtain the following integral
system:u(t) =

∫ t

0
f(s, u(s), v(s))ds+ u0, t ≥ 0,

v(t) =
∫ t

0
g(s, u(s), v(s))ds+ v0, t ≥ 0.

(2)

It is easy to know that (u, v) is a solution of (1) if and only if
u, v ∈ C+[0, T ] \ {0} and (u, v) satisfy (2). Hence, we only
need to study the existence and uniqueness of nonnegative
solutions in C[0, T ] for the integral system (2).

The following inequality is the famous Gronwall’s one in
differential equations [17].

Gronwall’s Inequality. Let x ∈ C1[0, T ] and a(t) ∈
C[0, T ]. If

dx(t)

dt
≤ a(t)x(t), t > 0, x(0) = x0, then

x(t) ≤ x0e
∫ t
0
a(s)ds, 0 ≤ t ≤ T .

From the Gronwall’s inequality, we can easily know that

if (1) has a solution, then u0 > 0, v0 > 0 by
du

dt
≤

σ1(t)u(t),
dv

dt
≤ σ2(t)v(t), t ≥ 0.

Let X be a Banach space, D ⊂ X be a nonempty set. The
mapping S : D → X is called to be a compact mapping if
(i) S is continuous;

(ii) S(Ω) is relatively compact for any bounded set Ω ⊆ D.
The following theorem is the known Schauder fixed point
theorem [15], [16].

Schauder Fixed Point Theorem. Let D be a bounded
non-empty closed convex set and S map D into D. If S is
a compact mapping, then S has a fixed point in D, that is,
there exists x ∈ D such that Sx = x.

The following function is used to construct the special
mapping, which plays a crucial role in this study.

Let k ∈ (0,∞) be a constant. We define function

rk(z) :=


k, if z > k,

z, if 0 ≤ z ≤ k,

0, if z < 0.

(3)

It is obvious that rk(z) is continuous in (−∞,∞) , 0 ≤
rk(z) ≤ k for −∞ < z < ∞ and it is easy to verify

|rk(z2)− rk(z1)| ≤ |z2 − z1| for z2, z1 ∈ (−∞,∞). (4)

It is easy to verify that the following proposition is true and
the proof is omitted.

Proposition 1. Let

h1(t, u, v) = u[σ1(t)− b1(t)u− c1(t)v],

h2(t, u, v) = v[σ2(t)− b2(t)v − c2(t)u)]

for t, u, v ∈ [0,∞). Then

h1(t, u, v)− h1(t, z, w)

= (σ1(t)− b1(t)(u+ z)

− c1(t)v)(u− z)− c1(t)z(v − w),

h2(t, u, v)− h2(t, z, w)

= (σ2(t)− b2(t)(v + w)

− c2(t)u)(v − w)− c2(t)w(u− z).

Notation

k = max
{
u0e

∫ T
0

σ1(s)ds, v0e
∫ T
0

σ2(s)ds
}
. (5)

Let E = C[0, T ] × C[0, T ] with the norm ∥(u, v)∥ =
max{∥u∥, ∥v∥}. We define a mapping S : E → E by
S(u, v)(t) = (A(u, v)(t), B(u, v)(t)), where{

A(u, v)(t) =
∫ t

0
f (s, rk[u(s)], rk[v(s)]) ds+ u0,

B(u, v)(t) =
∫ t

0
g (s, rk[u(s)], rk[v(s)]) ds+ v0,

0 ≤ t ≤ T.

Theorem 2. For any fixed T ∈ (0,∞), S has a fixed point
in E, that is, there exists (u∗, v∗) ∈ E such that

{
u∗(t) =

∫ t

0
f (s, rk [u∗(s)] , rk [v∗(s)]) ds+ u0,

v∗(t) =
∫ t

0
g (s, rk [u∗(s)] , rk [v∗(s)]) ds+ v0,

(6)

0 ≤ t ≤ T.
Proof: Since 0 ≤ rk(z) ≤ k, we see

|f (t, rk[u(t)], rk[v(t)])|
≤ rk[u(t)] (σ1(t) + b1(t)rk[u(t)] + c1(t)rk[v(t)])

≤ k (σ1(t) + kb1(t) + kc1(t)) ,

|g (t, rk[u(t)], rk[v(t)])|
≤ rk[v(t)] (σ2(t) + b2(t)rk[v(t)] + c2(t)rk[u(t)])

≤ k (σ2(t) + kb2(t) + kc2(t)) .

The continuity of σi(t), bi(t), ci(t) on [0, T ] implies for any
(u, v) ∈ E,

f (t, rk[u(t)], rk[v(t)]) , g (t, rk[u(t)], rk[v(t)])

are bounded on [0, T ], that is, there exists a constant M > 0
such that

|f (t, rk[u(t)], rk[v(t)])| ≤ M,

|g (t, rk[u(t)], rk[v(t)])| ≤ M, t ∈ [0, T ].

Let R = MT +u0+v0, D = {(u, v) ∈ X : ∥u∥ ≤ R, ∥v∥ ≤
R}. Then

|A(u, v)(t)| ≤
∫ T

0

|f (s, rk[u(s)], rk[v(s)])| ds+ u0

≤ MT + u0 ≤ R,

|B(u, v)(t)| ≤
∫ T

0

|g (s, rk[u(s)], rk[v(s)])| ds+ v0

≤ MT + v0 ≤ R,

IAENG International Journal of Applied Mathematics, 53:4, IJAM_53_4_36

Volume 53, Issue 4: December 2023

 
______________________________________________________________________________________ 



we know that S maps a bounded closed convex set D into D.
From the continuity of f and g, a standard argument shows
that S is compact, and there exists (u∗, v∗) ∈ E such that
(6) holds by the Schauder fixed point theorem.

III. EXISTENCE AND UNIQUENESS OF SOLUTIONS ON
[0,∞)

We are in a position to prove the existence and uniqueness
of solutions for (1) and conclude that the maximum existence
interval of solutions for (1) is the infinite interval [0,∞) un-
der the basic assumption (P). Some conditions of existence
for positive solutions are obtained.

Theorem 3. The fixed point (u∗, v∗) in Theorem 2 is a
nonnegative solution of (2).

Proof: Step 1. u∗(t) ≥ 0, v∗(t) ≥ 0, 0 ≤ t ≤ T .
If there exists t0 ∈ (0, T ) such that u∗ (t0) < 0. Since

u∗(0) = u0 > 0 and rk(z) = 0, z ≤ 0, there must exists
[a, b] ⊆ (0, t0) (a < b) satisfying

u∗(a) = 0, u∗(t) < 0, t ∈ (a, b].

Therefore rk [u∗(t)] = 0(t ∈ [a, b]), and we can get

du∗(t)

dt
= f (t, rk [u∗(t)] , rk [v∗(t)])

= f (t, 0, rk [v∗(t)]) = 0, t ∈ [a, b].

This implies u∗(t) = u∗(a) = 0, t ∈ (a, b], it is a
contradiction. Therefore u∗(t) ≥ 0, t ∈ [0, T ].

If there exists t0 ∈ (0, T ) such that v∗ (t0) < 0. Similarly,
we can obtain v∗(t) ≥ 0, t ∈ [0, T ] and the details are
omitted.

Step 2. u∗(t) ≤ k, v∗(t) ≤ k(t ∈ [0, T ]).
By (6), we know

du∗(t)

dt
≤ σ1(t)rk [u∗(t)] ≤ σ1(t)u∗(t), t > 0,

dv∗(t)

dt
≤ σ2(t)rk [v∗(t)] ≤ σ2(t)v∗(t), t > 0,

u∗(0) = u0 > 0, v∗(0) = v0 > 0.

Utilizing the Gronwall’s differential inequality, we have

u∗(t) ≤ u0e
∫ t
0
σ1(s)ds, v∗(t) ≤ v0e

∫ t
0
σ2(s)ds, t > 0. (7)

This, together with step 1, implies 0 ≤ u∗(t) ≤ k, 0 ≤
v∗(t) ≤ k(t ∈ [0, T ]), rk [u∗(t)] = u∗(t), rk [v∗(t)] = v∗(t).
Step 3. u∗(t) and v∗(t) belong to C+[0, T ] \ {0}.

If u∗(t) ≡ 0 or v∗(t) ≡ 0 , by (6), we get u0 = 0 or
v0 = 0, it is a contradiction.

The proof is completed.

Theorem 4. The nonnegative solution of (2) in C[0, T ] is
unique.

Proof: Let (u∗, v∗) be another nonnegative solution of
(2) in C[0, T ]. We prove that (u∗, v∗) = (u∗, v∗).

Let

k1(t) = σ1(t)− c1(t)v∗(t)− b1(t)(u∗(t) + u∗(t)),

k2(t) = σ2(t)− c2(t)u∗(t)− b2(t)(v∗(t) + v∗(t)).

Since ri(t), σi(t), ci(t) are continuous functions on [0, T ],
we may assume that

|k1(t)| ≤ M1, c1(t) |u∗(t)| ≤ M2,

|k2(t)| ≤ M3, c2(t) |v∗(t)| ≤ M4,

for t ∈ [0, T ], where M1,M2,M3,M4 are constants.
Dividing [0, T ] into N equal parts such that

ρ1 = (M1 +M2)h < 1, ρ2 = (M3 +M4)h < 1,

where h = T
N .

Let

∥u∗ − u∗∥h = max {|u∗(t)− u∗(t)| , 0 ≤ t ≤ h} ,
∥v∗ − v∗∥h = max {|v∗(t)− v∗(t)| , 0 ≤ t ≤ h} .

Therefore, we have by Proposition 1 (setting (u, v) =
(u∗, v∗), (z, w) = (u∗, v∗)) when 0 ≤ t ≤ h

|u∗(t)− u∗(t)|

=

∣∣∣∣∫ t

0

[f (s, u∗(s), v∗(s))− f (s, u∗(s), v∗(s))] ds

∣∣∣∣
=

∣∣∣∣∫ t

0

[k1(s) (u∗(s)− u∗(s))

−c1(s)u
∗(s) (v∗(s)− v∗(s))] ds

∣∣∣∣
≤

∫ t

0

|k1(s) (u∗(s)− u∗(s))

−c1(s)u
∗(s) (v∗(s)− v∗(s))| ds

≤ (M1 ∥u∗ − u∗∥h +M2 ∥v∗ − v∗∥h)h
≤ (M1 +M2)hmax {∥u∗ − u∗∥h , ∥v∗ − v∗∥h}
= ρ1 max {∥u∗ − u∗∥h , ∥v∗ − v∗∥h} ,

|v∗(t)− v∗(t)|

=

∣∣∣∣∫ t

0

[g (s, u∗(s), v∗(s))− g (s, u∗(s), v∗(s))] ds

∣∣∣∣
=

∣∣∣∣∫ t

0

[k2(s) (v∗(s)− v∗(s))

−c2(s)v
∗(s) (u∗(s)− u∗(s))] ds

∣∣∣∣
≤

∫ t

0

|k2(s) (v∗(s)− v∗(s))

−c2(s)v
∗(s) (u∗(s)− u∗(s))| ds

≤ (M3 ∥v∗ − v∗∥h +M4 ∥u∗ − u∗∥h)h
≤ (M3 +M4)hmax {∥u∗ − u∗∥h , ∥v∗ − v∗∥h}
= ρ2 max {∥u∗ − u∗∥h , ∥v∗ − v∗∥h} .

Hence

∥u∗ − u∗∥h ≤ ρ1 max {∥u∗ − u∗∥h , ∥v∗ − v∗∥h}
∥v∗ − v∗∥h ≤ ρ2 max {∥u∗ − u∗∥h , ∥v∗ − v∗∥h}

and

max {∥u∗ − u∗∥h , ∥v∗ − v∗∥h}
≤ ρmax {∥u∗ − u∗∥h , ∥v∗ − v∗∥h} ,

where ρ = max {ρ1, ρ2} < 1. This implies
max {∥u∗ − u∗∥h , ∥v∗ − v∗∥h} = 0 and u∗(t) =
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u∗(t), v∗(t) = v∗(t), 0 ≤ t ≤ h. Repeating this process
on [(i − 1)h, ih](i = 2, 3, ..., N), we can conclude
u∗(t) = u∗(t), v∗(t) = v∗(t) on [0, T ]. Therefore, (u∗, v∗)
is a unique nonnegative solution of (2) on [0, T ].

The following theorem shows that the existence interval
of solutions for (1) is the infinite interval [0,∞).

Theorem 5. (2) has a unique nonnegative solution on
C[0,∞).

Proof: For any natural number N ≥ 1, we denote by
u
(N)
∗ and v

(N)
∗ the unique nonnegative solution on [0, N ]

obtained in Theorem 4. The uniqueness of the solution shows
that u

(k)
∗ (t) = u

(N+1)
∗ (t), v

(k)
∗ (t) = v

(N+1)
∗ (t), 0 ≤ t ≤

k, k = 1, 2, . . . , N. Therefore

ũ(t) =



u
(1)
∗ (t), 0 ≤ t ≤ 1,

u
(2)
∗ (t), 1 < t ≤ 2,

. . . . . .

u
(N)
∗ (t), N − 1 < t ≤ N,

. . . . . .

ṽ(t) =



v
(1)
∗ (t), 0 ≤ t ≤ 1,

v
(2)
∗ (t), 1 < t ≤ 2,

. . . . . .

v
(N)
∗ (t), N − 1 < t ≤ N,

. . . . . .

are well defined on [0,∞). Clearly, ũ(t), ṽ(t) ∈ C[0,∞).
By Theorem 4, we obtain immediately that (ũ, ṽ) is a unique
nonnegative solution of (2) on C[0,∞).

Theorem is proved.

Corollary 1. Let σ∗
i , di : [0,∞) → (0,∞) and be contin-

uous (i = 1, 2). If σ∗
i (t) > di(t)(t ∈ [0,∞), then Lotka-

Volterra competition system of the following form
du
dt = u(t) [σ∗

1(t)− b1u(t)− c1(t)v(t)]− d1(t)u(t), t > 0
dv
dt = v(t) [σ∗

2(t)− b2v(t)− c2(t)u(t)]− d2(t)v(t), t > 0

u(0) = u0 > 0, v(0) = v0 > 0

has a unique solution on C[0,∞).

Let σi(t) = σ∗
i (t) − di(t). We can rewrite it as (1) and

obtain the desired result.
In the end of this section, we present some conditions of

existence for positive solutions.

Theorem 6. (2) has a unique positive solution on C[0, T̃ ) if

σ1(t)− b1(t)u0e
∫ t
0
σ1(s)ds − c1(t)v0e

∫ t
0
σ2(s)ds ≥ 0,

σ2(t)− b2(t)v0e
∫ t
0
σ2(s)ds − c2(t)u0e

∫ t
0
σ1(s)ds ≥ 0,

for t ∈ [0, T̃ ), where T̃ > 0 may take ∞.

Proof: By (7), we

u∗(t) ≤ u0e
∫ t
0
σ1(s)ds, v∗(t) ≤ v0e

∫ t
0
σ2(s)ds, t > 0.

This implies

f(t, u∗(t), v∗(t)) = σ1(t)− b1(t)u∗(t)− c1(t)v∗(t) ≥ 0,

g(t, u∗(t), v∗(t)) = σ2(t)− b2(t)v∗(t)− c2(t)u∗(t) ≥ 0,

for t ∈ [0, T̃ ) and u∗(t) > 0, v∗(t) > 0 in [0, T̃ ) by (2). The
proof is completed.

Remark 2. There are many functions to satisfy the conditions
of Theorem 6, for example, σi(t) = e−t, bi(t) = e−it,
ci(t) = e−3t, u0 < e−1/2, v0 < e−1/2, i = 1, 2, T̃ = ∞.

IV. ITERATIVE ALGORITHMS AND ERROR ESTIMATIONS

In this section, we establish the iterative algorithms and
error estimations of solutions for (2).

Let T ∈ (0,∞) and

m1 = max{σ1(s) + 2b1(s)k + c1(s)k : t ∈ [0, T ]},

m2 = max{σ2(s) + 2b2(s)k + c2(s)k : t ∈ [0, T ]},

m = max {m1,m2} ,

en =
n∑

j=0

(mT )j

j!
,

where k is in (5). We define the iterative sequences as follows

un(t) = A (rk[un−1], rk[vn−1]) (t), n = 1, 2, ... (8)

vn(t) = B (rk[un−1], rk[vn−1]) (t), n = 1, 2, ... (9)

u0(t) = u0, v0(t) = v0, t ∈ [0, T ].

Theorem 7. u∗(t) = limn→∞ un(t), v∗(t) = limn→∞ vn(t)
on t ∈ [0, T ] and

|u∗(t)− un(t)| ≤ 2k
(
emT − en−1

)
,

|v∗(t)− vn(t)| ≤ 2k
(
emT − en−1

)
,

for t ∈ [0, T ].

Proof:
Let

αn(t) = σ1(t)−c1(t)rk[vn(t)]−b1(t)(rk[un(t)]+rk[un−1(t)]),

βn(t) = σ2(t)−c2(t)rk[un(t)]−b2(t)(rk[vn(t)]+rk[vn−1(t)]).

Since 0 ≤ rk(z) ≤ k for any z ∈ (−∞,∞), we
know |αn(t)| ≤ m1, |βn(t)| ≤ m2 on [0, T ] and 0 ≤
c1(t)rk[un−1(t)] ≤ m1, 0 ≤ c2(t)rk[vn−1(t)] ≤ m2 on
[0, T ].

We prove

|un(t)− un−1(t)| ≤ 2k
(mT )n−1

(n− 1)!
, 0 ≤ t ≤ T, n ≥ 1,

(10)

|vn(t)− vn−1(t)| ≤ 2k
(mT )n−1

(n− 1)!
, 0 ≤ t ≤ T, n ≥ 1.

(11)
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From (n ≥ 2), we have by Proposition 1(setting (u, v) =
(un, vn), (z, w) = (un−1, vn−1))

|un+1(t)− un(t)|

≤
∫ t

0

|f (s, rk[un(s)], rk[vn(s)])

−f (s, rk[un−1(s)], rk[vn−1(s)])| ds

=

∫ t

0

|αn(s)(rk[un(s)]− rk[un−1(s)])

−c1(s)rk[un−1(s)](rk[vn(s)]− rk[vn−1(s)])| ds

≤
∫ t

0

(|αn(s)||rk[un(s)]− rk[un−1(s)]|

+ c1(s)rk[un−1(s)]|rk[vn(s)]− rk[vn−1(s)]|)ds

≤ m1

∫ t

0

(|rk[un(s)]− rk[un−1(s)]|

+ |rk[vn(s)]− rk[vn−1(s)]|)ds,

|vn+1(t)− vn(t)|

≤
∫ t

0

|g (s, rk[un(s)], rk[vn(s)])

−g (s, rk[un−1(s)], rk[vn−1(s)])| ds

=

∫ t

0

|βn(s)(rk[vn(s)]− rk[vn−1(s)])

− c2(s)rk[vn−1(s)](rk[un(s)]− rk[un−1(s)])|ds

≤
∫ t

0

(|βn(s)||rk[vn(s)]− rk[vn−1(s)]|

+ c2(s)rk[vn−1(s)]|rk[un(s)]− rk[un−1(s)]|)ds

≤ m2

∫ t

0

(|rk[un(s)]− rk[un−1(s)]|

+ |rk[vn(s)]− rk[vn−1(s)]|)ds,

we have
|un+1(t)− un(t)|+ |vn+1(t)− vn(t)|

≤ (m1 +m2)

∫ t

0

(|rk[un(s)]− rk[un−1(s)]|

+ |rk[vn(s)]− rk[vn−1(s)]|)ds

= m

∫ t

0

(|rk[un(s)]− rk[un−1(s)]|

+ |rk[vn(s)]− rk[vn−1(s)]|)ds.

(12)

Noting that

|rk[un(t)]− rk[un−1(t)]| ≤ k,

|rk[vn(t)]− rk[vn−1(t)]| ≤ k,

we obtain
|un+1(t)− un(t)|+ |vn+1(t)− vn(t)|

≤ m
∫ t

0
2kds = 2kmt.

(13)

By |rk[u(t)] − rk[v(t)]| ≤ |u(t) − v(t)| for u, v ∈ C[0, T ]
(see (4)) and (12), we see

|un+1(t)− un(t)|+ |vn+1(t)− vn(t)|

≤ m

∫ t

0

(|rk[un(s)]− rk[un−1(s)]|

+ |rk[vn(s)]− rk[vn−1(s)]|)ds

≤ m

∫ t

0

(|un(s)− un−1(s)|+ |vn(s)− vn−1(s)|)ds.

(14)

Let δn(t) = |un(t)− un−1(t)| + |vn(t)− vn−1(t)| . By
combining (13) and (14), we get δn+1(t) ≤ 2kmt, δn+1(t) ≤
m

∫ t

0
en(s)ds, n ≥ 2. By induction, we have

δn(t) ≤ 2k
(mt)n−1

(n− 1)!
≤ 2k

(mT )n−1

(n− 1)!
, 0 ≤ t ≤ T, n ≥ 2.

(15)
(15) implies that (10) and (11) hold.

By (10) and (11), we see for p ≥ 1 and n ≥ 2

|un+p(t)− un(t)| ≤
n+p∑

j=n+1

|uj(t)− uj−1(t)|

≤
n+p∑
j=n

δj(t) ≤ 2k

n+p∑
j=n+1

(mT )j−1

(j − 1)!

= 2k

n+p−1∑
j=n

(mT )j

j!
,

(16)

|vn+p(t)− vn(t)| ≤
n+p∑

j=n+1

|vj(t)− vj−1(t)|

≤
n+p∑
j=n

δj(t) ≤ 2k

n+p∑
j=n+1

(mT )j−1

(j − 1)!

= 2k

n+p−1∑
j=n

(mT )j

j!
.

(17)

The inequalities (16)-(17) imply that {un(t)}, {vn(t)} con-
verge uniformly on [0, T ] the limits are denoted by

ũ(t) = limn→∞ un(t), ṽ(t) = limn→∞ vn(t).

Then ũ, ṽ ∈ C[0, T ]. Letting n → ∞ in (16) and (17), we
have

ũ = A (rk[ũ], rk[ṽ]) , ṽ = B (rk[ũ], rk[ṽ]).

By Theorem 3 and Theorem 4, we have (ũ, ṽ) = (u∗, v∗).
Letting p → ∞ in ((16),(17)), we obtain

|u∗(t)− un(t)| ≤ 2k
∑∞

j=n
(mT )j

j! = 2k
(
emT − en−1

)
,

|v∗(t)− vn(t)| ≤ 2k
∑∞

j=n
(mT )j

j! = 2k
(
emT − en−1

)
.

V. CONCLUSIONS AND GENERALIZATION

Under the basic assumption (P), we prove the existence
and uniqueness of solutions and positive solutions of (1) and
the existence interval of the solutions is [0,∞), the existence
interval is the best answer we expect, see Theorem 5 and
Theorem 6. The iterative algorithms and error estimations are
established (Theorem 7). It is well known that studying the
existence of solutions on unbounded domains is difficult. The
feature of this study is that the existence interval of solutions
is the infinite interval and solutions can be approximated by
iterative sequences. Hence, the results of this paper will be
a solid theoretical support for future applications.

The results of this paper can be generalized to systems
consisting of more than two equations (L− V )n:
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du1

dt
= u1(t) [σ1(t)− a11(t)u1(t)− a12(t)u2(t)−

. . .− a1n(t)un(t)]

:= f1 (t, u1(t), u2(t), . . . , un(t)) ,

du2

dt
= u1(t) [σ2(t)− a21(t)u1(t)− a22(t)u2(t)−

. . .− a2n(t)un(t)]

:= f2 (t, u1(t), u2(t), . . . , un(t)) ,

. . . . . .

dun

dt
= un(t) [σn(t)− an1(t)u1(t)− an2(t)u2(t)−

. . .− ann(t)un(t)]

:= fn (t, u1(t), u2(t), . . . , un(t)) ,

ui(0) = ui > 0, i = 1, 2, . . . , n,

for t ≥ 0, where σi, aij satisfy the basic assumption
(P), that is, σi, aij : [0,∞) → (0,∞) are continuous,
i, j = 1, 2, . . . , n, we may prove that the same results as
Theorem 5, Theorem 6 and Theorem 7 hold and provide
only a framework of main results.

Let T ∈ (0,∞) and

k = max
{
u
(0)
i e

∫ T
0

σi(s)ds : i = 1, 2, . . . , n
}
.

We define

S (u1, u2, . . . , un)

= (A1 (u1, u2, . . . , un) , A2 (u1, u2, . . . , un) ,

. . . , An (u1, u2, . . . , un)),

where

Ai (u1, u2, . . . , un) (t)

=

∫ t

0

fi (s, rk[u1(s)], rk[u2(s)], . . . , rk[un(s)]) ds+ u
(0)
i ,

for (u1, u2, . . . , un) ∈ C[0, T ], i = 1, 2, . . . , n,

u
(k)
i (t) = Ai

(
u
(k−1)
1 , u

(k−1)
2 , . . . , u(k−1)

n

)
(t), (18)

k = 1, 2, . . . , n.

We can prove

Theorem 8. S has a fixed point (u∗
1, u

∗
2, . . . , u

∗
n) (u∗

i ∈
C[0, T ], i = 1, 2, . . . , n) and (u∗

1, u
∗
2, . . . , u

∗
n) is a unique

solution of (L− V )n.

Theorem 9. (1) The system (L−V )n has a unique solution
on C[0,∞). (2) The system (L−V )n has a unique positive
solution on C[0, T̃ ) if

σi(t)− Σn
j=1aiju

(0)
j e

∫ t
0
σj(s)ds ≥ 0

for t ∈ [0, T̃ ), where T̃ > 0 may take ∞.

Theorem 10. {(u(k)
1 , u

(k)
2 , . . . , u

(k)
n )} converges uniformly

to (u∗
1, u

∗
2, . . . , u

∗
n) on [0, T ], where

u
(i)
∗ (t) = limk→∞ u

(k)
i (t), i = 1, 2, . . . , n.

We may establish error estimations that are similar to
Theorem 7, all details (including the proof of Theorem 8
to Theorem 10) are omitted due to the duplication of most
work.
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