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Abstract—In epidemiological models, a transmission rate
function plays an important role in the transmission of diseases.
The transmission rate is usually affected by many factors, such
as media coverage, density of population and life style. In
this work, we study the SIRS epidemic models with general
functions of transmission rate. Firstly, we establish conditions
for the existence and uniqueness of disease-free and endemic
equilibria under general conditions on the transmission rate
functions. The disease-free equilibrium is investigated to cal-
culate the basic reproduction number. Next, we analyze the
local stability of each equilibrium. In addition, the Lyapunov’s
functions are used to prove global stability of the model’s
equilibria. Finally, various classes of numerical simulations are
illustrated to support the analytical results with some examples
of the transmission rate functions, such as bilinear, saturated
and media coverage functions.

Index Terms—SIRS model, basic reproduction number, trans-
mission rate function, Lyapunov function, global stability.

I. INTRODUCTION

EPIDEMIC models of outbreak and transmission of
many diseases, such as dengue fever, malaria, influenza

and HIV/AIDS, have been developed and studied by many
scholars. Many mathematical models for the transmission of
infectious diseases are based on the classical susceptible-
infectious-recovered (SIR) model of Kermack and McK-
endrick [1]. In the SIR model, a population is divided
into three groups, which are a susceptible group (S) who
can become infected with a disease through contact with
an infectious person, an infectious group (I) who have
the disease and can infect a susceptible person through
contact, and a recovered group (R) who have recovered
from the disease. The SIR model assumes that a person
who has recovered from the disease has acquired lifelong
immunity to the disease. For some classes of diseases, the
infected individuals can acquire only temporary immunity on
recovery and then become susceptible to infection again. In
this case, an SIRS model is used. One of the basic SIRS
epidemic models is described by

dS

dt
= Λ−G(I)S − µS + δR,

dI

dt
= G(I)S − (µ+ γ)I, (1)

dR

dt
= γI − (µ+ δ)R.
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In (1), G(I) is the infectious force function which plays
an important role in the transmission of diseases as it
represents the rate at which one susceptible individual can be
infected by contact with the infectious population I(t). The
linear infectious force function G(I) = βI was the original
function used by Kermack and McKendrick [1] and it is still
frequently used in many literatures (see, e.g. Anderson and
May [2]).

The variables and parameters which are used in (1) are
summarized in Table I and Table II, respectively. Note that all
variables are assumed to be non-negative and all parameters
are assumed to be positive.

TABLE I
DEFINITIONS OF MODEL’S VARIABLES.

Variables Unit Definition
t day time

S(t) person The number of susceptible individuals at time t
I(t) person The number of infectious individuals at time t
R(t) person The number of recovered individuals at time t

TABLE II
DEFINITIONS OF MODEL’S PARAMETERS.

Parameter Unit Meaning
Λ person· day−1 The recruitment rate of susceptible

individuals
µ day−1 The natural death rate
γ day−1 The recovery rate of infectious

individuals
δ day−1 The rate of loss of immunity by

recovered individuals

Many researchers are now interested in cases of G(I)
as the formulation of nonlinear infectious force functions.
Capasso and Serio [3] introduced an infectious force function
G(I) into epidemic SIR models, which saturates at high
levels of I . This general force function can be used to
explain psychological effects which occur when a very
large number of infectious people in a region might cause
susceptible people to avoid crowded areas, such as shopping
centers and schools. In addition, the infectious force function
G(I) = βI/N has been used in [4]-[5] as a model for
extreme case, where a high percentage of the population is
infected.

Liu et al. [6]-[7] analyzed the SIRS models with the
infectious force function

G(I) =
kI l

1 + αIh
. (2)

Ruan and Wang [8] studied the SIRS epidemic model with
the special case of (2), where l = h = 2. In addition, Xiao
and Ruan [9] studied the SIRS epidemic model with the
special case of (2) l = 1 and h = 2. Moreover, Li et al.
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[10] also studied the SIR model with the special case when
l = h = 1 in (2).

In real life, the infectious force function G(I) may be
affected by many factors, such as media coverages, density
of population, life styles, and behavior changing of people
when a disease enters a population. There are variety of force
functions that have been discussed in preview literatures.

From many previous works, it can be seen that I is a
factor of G(I) function. Hence, we can write the infectious
force function as G(I) = g(I)I , where g(I) is the rate of
infection of a susceptible individual through contact with an
infectious individual.

For examples, Cui and Tao [11] studied the SIS model
with a general awareness-induced incidence f(I) to inves-
tigate effects of media coverage of an epidemic on the
transmission dynamics using the force function G(I) =
g(I)I = (β1 − β2f(I))I , where β1 is the contact rate
before the media alerts, and the term β2f(I) represents the
reduction in the contact rate when the media reports the
epidemic. Korobeinikov [12], Mei and Fuqin [13] studied
the SIR models with general incidence rate G(I, S) under
the constant population size assumption. Moreover, Udom-
chalermpat et al. [14] analyzed dynamics of the generalized
tumor-virotherapy model with general classes of transmission
rate functions.

In our study, we study some properties of the SIRS model
with a general transmission rate function as a function of
infectious individual I . The model is adapted from Miaochan
and Huitao [15] as

dS

dt
= Λ− g(I)IS − µS + δR, (3)

dI

dt
= g(I)IS − (µ+ γ)I, (4)

dR

dt
= γI − (µ+ δ)R, (5)

where the total population is N(t) = S(t) + I(t) +R(t) and

dN

dt
= Λ− µN. (6)

The assumptions for the transmission rate function g(I)
are stated as follows.

Assumption 1: We make the assumptions for the trans-
mission rate function g(I) as follows :
(A1) the function g(I) : R+ → R+ is a continuous and

differentiable function,
(A2) g(0) = g0 > 0 and g(I) > 0 for all I > 0,
(A3) g′(I) ≤ 0 for all I ≥ 0.

The rest of this paper is organized as follows. In Section
II, we show the non-negativity and boundedness of the
solutions of (3)-(5). In Section III, we investigate the basic
reproduction number, R0. Moreover, we find all equilibria
of the model and investigate conditions for the existence
of unique endemic equilibrium. In Section IV, we analyze
local stability of the disease-free equilibrium and the endemic
equilibrium. In Section V, we analyze global stability of all
equilibria by using the Lyapunov’s direct method. In Section
VI, we provide some numerical simulations to support our
analytical results. Finally, we provide brief discussion and
summary of the main results.

II. NON-NEGATIVITY AND BOUNDEDNESS OF
SOLUTIONS

In this section, we study the positivity and boundedness
of solutions for model (3)-(5), which is subjected to positive
initial conditions:

S(0) = S0 > 0, I(0) = I0 > 0, R(0) = R0 > 0.
(7)

The solutions of (3)-(5) with initial conditions (7) are in the
non-negative bounded set Γ defined by

Γ =

{
(S, I,R) ∈ R

3
+ ∪ {0} | 0 ≤ S + I +R ≤ Λ

µ

}
⊂ R

3
+. (8)

The set Γ is closed and bounded, and hence it is a compact
set. Next, we will show that all solutions of (3)-(5) are
non-negative and bounded in R3

+.

Theorem 2.1: Solutions of the SIRS model (3)-(5) with
initial conditions (7) are non-negative for all t ≥ 0.

Proof: Let (S(t), I(t), R(t)) be a solution of (3)-(5)
with initial conditions (7).

From (4), it follows that

I(t) = I0e

∫ t

0
{g(I(τ))S(τ)−(µ+γ)}dτ ≥ 0, (9)

for all t ≥ 0 since I0 ≥ 0.
From (5), we have

dR

dt
= γI − (µ+ δ)R ≥ −(µ+ γ)R.

Because R0 ≥ 0, then it can be shown that

R(t) ≥ R0e
−(µ+γ)t, (10)

for all t ≥ 0. According to (3), since Λ > 0 and R ≥ 0, then
we obtain that
dS

dt
= Λ− g(I)IS − µS + δR ≥ −(g(I)I − µ)S.

Therefore, we have

S(t) ≥ S0e
−
∫ t

0
(g(I(τ))I(τ)+µ)dτ ≥ 0, (11)

for all t ≥ 0 since S0 > 0.
As the results, it can be concluded that S(t), I(t) and R(t)

are non-negative for all t ≥ 0.

Theorem 2.2: If the set Γ is defined in (8), then it is a
positive invariant set and all solutions of the SIRS model (3)-
(5) with the initial conditions (7) are ultimately bounded.

Proof: From Theorem 2.1, solutions of (3)-(5) with the
initial conditions (7) are positive for all t ≥ 0.

Using the related rates in (3)-(5), it follows the relation
(6) :

dN

dt
= Λ− µN,

which is a linear differential equation and the solution is

N(t) =
Λ

µ
+

(
N0 −

Λ

µ

)
e−µt, (12)

where N(0) = N0. From (6) and (8), N(0) = S(0)+I(0)+
R(0) ≤ Λ

µ . Therefore, N(t) < Λ
µ for all t > 0. Thus S(t),

I(t) and R(t) are ultimately bounded. The proof is complete.
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III. EXISTENCE OF EQUILIBRIA

In this section, we investigate the basic reproduction
number R0 and find conditions for an existence of unique
positive equilibrium of (3)-(5). Suppose that a disease-free
equilibrium denoted by E∗0 is the steady-state solution where
there is no infection, and an endemic equilibrium denoted
by E∗+ is a positive steady-state solution where the disease
persists in the population.

A. The disease-free equilibrium

The equilibria of (3)-(5) can be found by assuming that
all derivative terms are zero. Let E∗ = (S∗, I∗, R∗) be
an equilibrium of the model. Then the system of nonlinear
algebraic equations for finding equililbria are given by

Λ− g(I∗)I∗S∗ − µS∗ + δR∗ = 0, (13)
I∗[g(I∗)S∗ − (µ+ γ)] = 0, (14)

γI∗ − (µ+ δ)R∗ = 0. (15)

We solve this system by first writing S∗ and R∗ as functions
of I∗. From (15), we have

R∗ =
γI∗

µ+ δ
. (16)

From (14), we have

I∗ = 0, or S∗ =
µ+ γ

g(I∗)
. (17)

For the case that I∗ = 0, it is not difficult to show that the
DFE is

E∗0 = (
Λ

µ
, 0, 0). (18)

B. The basic reproduction number
For epidemic models, we usually find the basic reproduc-

tion number, R0, which is the most fundamental parameter
used by epidemiologists. In epidemic models, R0 is defined
as the average number of secondary cases caused by an
infectious individual in a completely susceptible population
[2]. It is an important parameter that gives us whether an
infection will spread through the population. To obtain R0,
we use the next-generation matrix technique described in
[16]. Firstly let x = [I∗, R∗], then Eqs. (3)-(5) can be written
as dx

dt = F(x)− V(x), where

F(x) =

[
g(I)SI

0

]
and V(x) =

[
(µ+ γ)I

−γI + (µ+ δ)R

]
.

Then we linearize (3)-(5) about the disease-free equilibrium,
E∗0 = (Λ

µ , 0, 0), by taking the first partial derivatives of F
and V at E∗0 to obtain the matrices F and V respectively,
where

F =

[ g0Λ
µ 0

0 0

]
and V =

[
µ+ γ 0
−γ µ+ δ

]
.

Then the product of F and V−1 is

FV−1 =

[ g0Λ
µ(µ+γ) 0

0 0

]
.

The basic reproduction number R0 is the spectral radius of
FV−1. Hence, the basic reproduction number of (3)-(5) is

R0 =
g0Λ

µ(µ+ γ)
. (19)

C. The endemic equilibrium

The basic reproduction number R0 in (19) is used to
analyze for existency of the endemic equilibrium. Firstly,
we state the following theorem.

Theorem 3.1: If all conditions in Assumption 1 are sat-
isfied and R0 < 1, then model (3)-(5) has no endemic
equilibrium. On the other hand, if R0 > 1, then model (3)-
(5) has unique endemic equilibrium, which is

E∗+ = (S∗+, I
∗
+, R

∗
+) =

(
µ+ γ

g(I∗+)
, I∗+,

γI∗+
µ+ δ

)
, (20)

where I∗+ is the solution of

g(I) =
µ(µ+ δ)(µ+ γ)

Λ(µ+ δ)− µ(µ+ γ + δ)I
. (21)

Proof: In (17), if I∗ 6= 0 and S∗ = µ+γ
g(I∗) , then we have

R∗ = γI∗

µ+δ . Substituting S∗ and R∗ into (13), we can solve
for I∗. Then I∗ must satisfies

g(I∗) =
µ(µ+ δ)(µ+ γ)

Λ(µ+ δ)− µ(µ+ γ + δ)I∗
. (22)

Let E∗ = (S∗, I∗, R∗) be an equilibrium and I∗ can be
found by solving (22). We will prove that (22) has unique
solution of I∗. To find I∗, let the right-hand side of (22) be
h(I), namely

h(I) =
µ(µ+ δ)(µ+ γ)

Λ(µ+ δ)− µ(µ+ γ + δ)I
, (23)

where I 6= Λ(µ+ δ)

µ(µ+ γ + δ)
.

Suppose that I∗ is the root of (22), then I∗ must satisfy
g(I∗) = h(I∗). At I∗ = 0, we have g(0) = g0 > 0 and
h(0) = µ(µ+γ)

Λ > 0. Find derivatives of g(I) and h(I).
From (A3), g′(I) < 0, i.e., g(I) is non-increasing function
for all I ≥ 0. Then we have

h′(I) =
µ2(µ+ δ)(µ+ γ)(µ+ δ + γ)

[Λ(µ+ δ)− µ(µ+ δ + γ)I]2
> 0, (24)

where I 6= Λ(µ+ δ)

µ(µ+ γ + δ)
.

Hence, h(I) is a monotonically increasing function. If g(I)
is a non-increasing function with the initial condition g0 >
h0, which related to R0 = g0Λ

µ(µ+γ) > 1, then two curves
g(I) and h(I) of (22) have a unique positive intersection on
I ∈ [0, Λ

µ ], which is a unique solution where I = I∗. We
denote that I∗ = I∗+ 6= 0 and E∗+ = (S∗+, I

∗
+, R

∗
+) is only

a unique positive endemic equilibrium of (3)-(5). It can also
be seen that if g0 < h0 = µ(µ+γ)

Λ or R0 = g0Λ
µ(µ+γ) < 1,

then g(I) = h(I) cannot have a positive solution for I∗, i.e.,
an endemic equilibrium does not exist.

As the results, the endemic equilibrium is E∗+ =
(S∗+, I

∗
+, R

∗
+), where

S∗+ =
µ+ γ

g(I∗+)
, R∗+ =

γI∗+
µ+ δ

, (25)

and I∗+ is the solution of (22)
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Fig. 1. The intersection of the curves g(I) and h(I) indicate the existence
of I∗.

IV. LOCAL STABILITY OF EQUILIBRIA

In this section, we analyze local stability properties of the
disease-free equilibrium (E∗0) and the endemic equilibrium
(E∗+) using the linearization method. We prove that the
disease-free equilibrium E∗0 is locally asymptotically stable
if R0 < 1, and it is unstable if R0 > 1. Moreover,
we also show that the endemic equilibrium E∗+ is locally
asymptotically stable when R0 > 1.

Firstly, rewrite the right-hand side of (3)-(5) with functions
F1, F2 and F3, respectively. Then change the variables by
defining

S = S∗ + s, I = I∗ + i and R = R∗ + r, (26)

where s, i and r are deviations from the equilibrium.
By the linearization method, we obtain the Jacobian matrix

of (3)-(5) at the equilibrium E∗ = (S∗, I∗, R∗) is

J(E∗) =[
−g(I∗)I∗ − µ −g(I∗)S∗ − g′(I∗)I∗S∗ δ
g(I∗)I∗ g(I∗)S∗ + g′(I∗)I∗S∗ − (µ+ γ) 0

0 γ −(µ+ δ)

]
.

(27)

The eigenvalues are the solutions of the characteristic equation

J(E∗) = det(J − λI) = 0, (28)

where I is the identity matrix.

A. Asymptotic stability of the disease-free equilibrium

In this part, we analyze the asymptotic stability of the
disease-free equilibrium E∗0 = (Λ

µ , 0, 0). The aim is to find
the conditions in which all real parts of eigenvalues of the
Jacobian matrix are negative.

Theorem 4.1: Suppose that all conditions in Assump-
tion 1 holds. The disease-free equilibrium E∗0 is locally
asymptotically stable if R0 < 1, and it is unstable if R0 > 1.

Proof: From (27), the Jacobian matrix of (3)-(5) about
E∗0 = (Λ

µ , 0, 0) is

J(E∗0) =

 −µ − g0Λ
µ

δ

0 g0Λ
µ
− (µ+ γ) 0

0 γ −(µ+ δ)

 . (29)

The characteristic equation of (29) is

(λ+ µ)(λ+ µ+ δ)

(
λ− g0Λ

µ
+ µ+ γ

)
= 0. (30)

From (30), we have two negative eigenvalues which are λ1 =
−µ and λ2 = −(µ+ δ). The third eigenvalue is λ3 = g0Λ

µ −
(µ + γ) = −(µ + γ)(1 − R0). Note that λ3 is negative if
R0 < 1 and it is positive if R0 > 1. Therefore, if R0 <
1, then all eigenvalues of (29) are negative. Hence, it can
be concluded that the disease-free equilibrium E∗0 is locally
asymptotically stable.

On the contrary, if R0 > 1, then λ3 is positive. Thus, in
this case, the disease-free equilibrium E∗0 is unstable.

B. Asymptotic stability of the endemic equilibrium

From Theorem 3.1, if R0 > 1 and all conditions
in Assumption 1 holds, then the endemic equilibrium
E∗+ = (S∗+, I

∗
+, R

∗
+) of (3)-(5) exists. In this part, we

will analyze the local asymptotic stability of the endemic
equilibrium E∗+ defined in (20). The local asymptotic
stability is proved by using the Routh-Hurwitz criteria. We
will investigate the conditions in which all eigenvalues of
Jacobian matrix (27) at E∗+ have negative real parts.

Theorem 4.2: If the endemic equilibrium E∗+ exists and
satisfies all conditions in Assumption 1, then E∗+ is locally
asymptotically stable.

Proof: We have already proved in Theorem 3.1 that E∗+
exists if and only if R0 > 1.

Substitute the endemic equilibrium E∗+ defined in (20) into
(27). From (27) the Jacobian matrix about E∗+ is

J(E∗+) = −g(I∗)I∗ − µ −(µ+ γ)− (µ+γ)g′(I∗)I∗

g(I∗) δ

g(I∗)I∗
(µ+γ)g′(I∗)I∗

g(I∗) 0

0 γ −(µ+ δ)

 .
. (31)

The eigenvalues, λ, of (31) can be evaluated by solving the
characteristic equation

P (λ) = A0λ
3 +A1λ

2 +A2λ+A3 = 0, (32)

where

A0 = g(I∗),

A1 = (2µ+ δ + g(I∗)I∗)g(I∗)− (µ+ γ)g′(I∗)I∗,

A2 = (2µ+ γ + δ)(g(I∗))2I∗ + µ(µ+ δ)g(I∗)

−(µ+ γ)(2µ+ δ)g′(I∗)I∗,

A3 = µ(µ+ γ + δ)(g(I∗))2I∗ − µ(µ+ γ)(µ+ δ)g′(I∗)I∗.

(33)

According to the condition A1 in Asssumption 1, g′(I∗) <
0, it can be seen that the values of A0, A1, A2 and A3 are
positive. By the Descarte’s rule of signs [17], the character-
istic equation (32) can not have any positive real roots. Also,
zero is also not a root of (32).
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Next, we apply the Routh-Hurwitz criterion [18] to prove
that all roots of P (λ) in (32) have negative real parts. Three
Hurwitz matrices corresponding to the coefficients of (32)
are given by

H1 = [A1], H2 =

[
A1 A0

A3 A2

]
,

and H3 =

 A1 A0 0
A3 A2 A1

0 0 A3

 .
From the Routh-Hurwitz conditions, all real parts of the
eigenvalues of J(E+

∗ ) defined in (31) are negative if the
following three conditions are satisfied:

1. det(H1) = A1 = g(I∗) > 0,

2. det(H2) = A1A2 −A0A3

=
[
(2µ+ δ + g(I∗)I∗)g(I∗)− (µ+ γ)g′(I∗)I∗

]
×
[
(2µ+ γ + δ)(g(I∗))2I∗ + µ(µ+ δ)g(I∗)

−(µ+ γ)(2µ+ δ)g′(I∗)I∗
]

−g(I∗)
[
µ(µ+ γ + δ)(g(I∗))2I∗ −µ(µ+ γ)(µ+ δ)g′(I∗)I∗

]
≥
[
µg(I∗)− (µ+ γ)g′(I∗)I∗ + (g(I∗))2I∗

]
×
[
γ(g(I∗))2I∗ + µ(µ+ δ)g(I∗)

]
+µ(µ+ γ)(µ+ δ)g′(I∗)g(I∗)I∗ − µ(µ+ γ + δ)(g(I∗))3I∗

= µ2(µ+ δ)(g(I∗))2 − γ(µ+ γ)(g(I∗))2(I∗)2g′(I∗)

+γ(g(I∗))4(I∗)2

> 0,

3.det(H3) = A3 det(H2) > 0. (34)

The proof is complete.

V. GLOBAL STABILITY OF EQUILIBRIA

In this section, We prove the global stability of the disease-
free equilibrium E∗0 and the endemic equilibrium E∗+. The
aim is to analyze the global stability by constructing the
Lyapunov functions releted to the Lyapunov theorem [19].

A. Global stability analysis of the disease-free equilibrium

To prove global stability of the disease-free equilibrium
E∗0 in (18), we firstly reduce parameter by setting Λ = µS∗0 .
Then, substitute Λ into (3)-(5) and rearrange system. We
obtain the reduced system as

dS

dt
= −µ(S − S∗0 )− g(I)IS + δR,

dI

dt
= g(I)IS − (µ+ γ)I, (35)

dR

dt
= γI − (µ+ δ)R.

Theorem 5.1: Consider the function

V (S, I,R) = S − S∗ − S∗ ln

(
S

S∗

)
+ I +mR, (36)

There exists a positive value of a constant m for which
the function V (S, I,R) is a Lyapunov function with unique
minimum at (S, I,R) = (S∗0 , I

∗
0 , R

∗
0). The disease-free

equilibrium E∗0 of (3)-(5) is therefore globally asymptotically
stable.

Proof: It is clear that for all m > 0, the function
V (S, I,R) satisfies two conditions of the Lyapunov function,
i.e.,

1) function V is a continuous function.

2) function V ≥ 0 for all t ≥ 0 with the unique
minimum value V (S∗0 , I

∗
0 , R

∗
0) = 0 at the disease-free

equilibrium E∗0, because all variables are nonnegative
and all parameters are positive.

Next, we will prove that V satisfies the third condition of
the Lyapunov theorem by proving that dV

dt ≤ 0 for all t ≥ 0
for a selected positive value of the constant m.

The derivative of V along the solutions of (36) is

dV

dt
=

(
1− S∗0

S

)
dS

dt
+
dI

dt
+m

dR

dt

= −µ
S

(S − S∗0 )2 − g(I)I(S − S∗0 ) + δ

(
1− S∗0

S

)
R

+g(I)IS − (µ+ γ)I +mγI −m(µ+ δ)R

= −µ
S

(S − S∗0 )2 + δ

(
1− S∗0

S

)
R−m(µ+ δ)R

+I[−(µ+ γ) +mγ + g(I)S∗0 )].

Because I ≥ 0 and g(I) ≤ g0, we have that

dV

dt
≤ −µ

S
(S − S∗0 )2 + δ

(
1− S∗0

S

)
R−m(µ+ δ)R

−I[µ+ γ −mγ − g0S
∗
0 )].

Substitute S∗0 = Λ
µ and R0 = g0Λ

µ(µ+γ) , then we obtain that

dV

dt
≤ −µ

S
(S − S∗0 )2 + δ

(
1− S∗0

S

)
R−m(µ+ δ)R

−I(−mγ + (µ+ γ)(1−R0)). (37)

For R0 < 1, let m = (µ+γ)(1−R0)
γ > 0. Because S ≤ S∗0

and R ≥ 0, the inequality (37) becomes

dV

dt
≤ −µ

S
(S − S∗0 )2 + δ

(
1− S∗0

S

)
R

− (µ+ γ)(µ+ δ)

γ
(1−R0)R

≤ 0, (38)

This satisfies the third condition of the Lyapunov function,
therefore the disease-free equilibrium E∗0 is globally stable.

We also note that dVdt = 0 only at E∗0, i.e., at S = S∗0 , I =
0 and R = 0. Therefore E∗0 is globally asymptotically stable.
The proof is complete.

B. Global stability analysis of the endemic equilibrium
Let E∗+ = (S∗+, I

∗
+, R

∗
+) be the endemic equilibrium

defined in (20). From Theorem 3.1, the endemic equilibrium
of (3)-(5) exists and it is unique if all conditions in Assump-
tion 1 holds. From (13)-(15), we can reduce parameters in
term of the endemic equilibrium as

µ+ γ = g(I∗+)S∗+, µ+ δ =
γI∗+
R∗+

Λ = g(I∗+)S∗+I
∗
+ + µS∗+ − δR∗+ or Λ = µ(S∗+ + I∗+ +R∗+).

(39)

Substitute (39) into (3)-(5) and rearrange the system, then
we obtain that

dS

dt
= −(µ+ g(I)I)(S − S∗+) + δ(R−R∗+)

−(g(I)I − g(I∗+)I∗+)S∗+,

dI

dt
= I[(g(I)− g(I∗+))S + g(I∗+)(S − S∗+)]

dR

dt
= γ(I − I∗+)− γI∗+

R∗+
(R−R∗+). (40)
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It follows from (40) that

dS

dt
+
dI

dt
= −µ(S − S∗+ + I − I∗+) + δ(R−R∗+)− γ(I − I∗+)

(I − I∗+)

I

dI

dt
=

(g(I)− g(I∗+))

I − I∗+
S(I − I∗+)2

+g(I∗+)(S − S∗+)(I − I∗+). (41)

Theorem 5.2: Consider the function

V (S, I,R) =
1

2

(
S − S∗+ + I − I∗+ +R−R∗+

)2
+m1(S − S∗+ + I − I∗+)2 +m2(R−R∗+)2

+2m3

(
I − I∗+ − I∗+ ln

I

I∗+

)
. (42)

There exist positive values of the constants m1,m2 and m3

for which the function V (S, I,R) is a Lyapunov function
with unique minimum at (S, I,R) = (S∗+, I

∗
+, R

∗
+) and the

endemic equilibrium E∗+ of (3)-(5) is globally asymptotically
stable.

Proof: We have already proved in Theorems 2.1 and
2.2 that all populations are positive and bounded above if
R0 > 1. Now, we will prove that function V satisfies two
conditions of the Lyapunov function, i.e.,

1) function V is clearly a continuous function,
2) function V ≥ 0 for all t ≥ 0 with unique minimum

value V (S∗+, I∗+, R∗+) = 0 at the endemic equilib-
rium E∗+ because all variables are nonnegative and all
parameters are positive.

Next, we will prove the third condition of the Lyapunov

function, i.e. the derivative
dV

dt
≤ 0 along the solutions of

(40) to find the values of the constants m1,m2 and m3.

The derivative of V along the solutions of (42) is

dV

dt
=(S − S∗+ + I − I∗+ +R−R∗+)

(
dS

dt
+
dI

dt
+
dR

dt

)
+2m1(S − S∗+ + I − I∗+)

(
dS

dt
+
dI

dt

)
+ 2m2(R−R∗+)

dR

dt

+2m3

(I − I∗+)

I

dI

dt

=−µ(S − S∗+ + I − I∗+ +R−R∗+)2 − 2µm1(S − S∗+ + I − I∗+)2

+2m1(S − S∗+ + I − I∗+){δ(R−R∗+)− γ(I − I∗+)}

+2γm2(I − I∗+)(R−R∗+)− 2m2

γI∗+
R∗+

(R−R∗+)2

+2m3

(g(I)− g(I∗+))

I − I∗+
S(I − I∗+)2 + 2m3g(I

∗
+)(S − S∗+)(I − I∗+)

= −(µ+ 2µm1)(S − S∗+)2 −
(
µ+ 2m2

γI∗+
R∗+

)
(R−R∗+)2

−(µ+ 2γm1 + 2µm1)(I − I∗+)2

+2(δm1 − µ)(S − S∗+)(R−R∗+)

−2
(
µ+ γm1 + 2µm1 −m3g(I

∗
+)
)

(S − S∗+)(I − I∗+)

+2(γm2 + δm1 − µ)(I − I∗+)(R−R∗+)

+2m3

(g(I)− g(I∗+))

I − I∗+
S(I − I∗+)2.

Let m1 = µ
δ > 0 and m3 = µ+(γ+2µ)m1

g(I∗
+

) > 0. It
can be seen that 2(m1δ − µ)(S − S∗+)(R − R∗+) = 0 and
2
(
µ+ γm1 + 2µm1 −m3g(I∗+)

)
(S − S∗+)(I − I∗+) = 0.

Then, we obtain that

dV

dt
= −(µ+ 2µm1)(S − S∗+)2 − (µ+ 2γm1)(I − I∗+)2

−µ(R−R∗+)2 + 2m3

(g(I)− g(I∗+))

I − I∗+
S(I − I∗+)2

−2γm2

(
I∗+
R∗+
−

γm2

4µm1

)
(R−R∗+)2

−2µm1

{
I − I∗+ −

γm2

2µm1
(R−R∗+)

}2

.

Setting m2 =
4µm1I

∗
+

γR∗+
, then we have

2γm2

(
I∗+
R∗+
− γm2

4µm1

)
(R−R∗+)2 = 0.

From Assumption (A3), the function g(I) is nonincreasing
for I ≥ 0. Therefore,

if I ≤ I∗+,
g(I)− g(I∗+)

I − I∗+
≤ 0

and if I > I∗+,
g(I)− g(I∗+)

I − I∗+
< 0,

then

2m3
(g(I)− g(I∗+))

I − I∗+
S(I − I∗+)2 ≤ 0.

We then have that

dV

dt
= −(µ+ 2µm1)(S − S∗+)2 − (µ+ 2γm1)(I − I∗+)2

−µ(R−R∗+)2 − 2µm1

{
I − I∗+ −

γµ2

2µm1
(R−R∗+)

}2

+2m3
(g(I)− g(I∗+))

I − I∗+
S(I − I∗+)2

≤ 0. (43)

Clearly, we have
dV

dt
= 0, only if S = S∗+, I = I∗+ and

R = R∗+.
Now, we have already proved that V (S, I,R) is a Lya-

punov function and then the endemic equilibrium is globally
asymptotically stable.

VI. NUMERICAL RESULTS

In general, there are many different incidence rate func-
tions G(I)S = g(I)IS. In this section, we will show some
numerical results of the solutions for system (1) with three
examples of g(I)IS as follows

Bilinear function : g(I)IS = βIS,

Saturated function : g(I)IS =
βI

(α+ I)
S,

Media coverage function : g(I)IS =

(
β1 −

β2I

(α+ I)

)
IS. (44)

It is clear that all functions defined in (44) satisfy all
conditions in Assumption 1.
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Fig. 2. All solutions of (45) converge to E∗0 = (10, 0, 0).
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Fig. 3. All trajectories of (45) for different initial conditions in (46), when
R0 = 0.6364 < 1, converge to E∗0 = (10, 0, 0).
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Fig. 4. All solutions of (45) converge to E∗+ = (1, 4.5, 4.5).
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R0 = 10 > 1, converge to E∗+ = (1, 4.5, 4.5).
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A. The bilinear incidence function

For the SIRS model (1) with the bilinear incidence func-
tion G(I)S = g(I)IS = βIS, where β is the transmission
rate. The model (1) becomes

dS

dt
= Λ− βIS − µS + δR,

dI

dt
= βIS − (µ+ γ)I, (45)

dR

dt
= γI − (µ+ δ)R.

TABLE III
PARAMETERS FOR THE SIRS MODEL WITH THE BILINEAR INCIDENCE

FUNCTION

Parameter Values used Unit Reference
DFE EE

Λ 9 1 day−1 Estimated
µ 0.9 0.1 day−1 [20]
δ 0.6 0.5 day−1 [20]
γ 0.2 0.6 day−1 [20]
β 0.07 0.7 day−1 Estimated

We apply the parameter values in Table III to examine
dynamical behaviors of the disease-free equilibrium and the
endemic equilibrium of (45)
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Fig. 6. Two possible cases of the intersection of the curves, g(I) and h(I)
to show the existence of positive equilibria : (a) for E∗0 , R0 = 0.6364 < 1,
(b) for E∗+, R0 = 10 > 1.

Substitute all parameters from Table III into (21), we
obtain that functions g(I) and h(I) are depended on the
infected population I . Fig. 6 shows two possible cases of the
intersection of the curves g(I) and h(I). It is obvious to see
that h(I) is a increasing function and g(I) is non-increasing
function. Fig 6(a) shows that two curves do not intersect with
initial condition g0 < h0 when R0 = 0.6364 < 1. It implies
that (3)-(5) has no endemic equilibrium. Fig 6(b) shows that
two curves intersect at only one positive values in [0, Λ

µ ] with
initial condition g0 > h0 when R0 = 10 > 1. It implies that
(3)-(5) has unique endemic equilibrium.

Next, we show the numerical simulations of (45) using
the parameter values given in Table III. Here, we obtain that
the disease-free equilibrium is E∗0 = (10, 0, 0) and the basic
reproduction number is R0 = 0.6364 < 1. The eigenvalues
of the characteristic equation at E∗0 are

λ1 = −0.9 < 0, λ2 = −1.5 < 0, λ3 = −0.4 < 0.

It can be seen that all eigenvalues are negative. Therefore E∗0
is asymptotically stable.

According to the parameter values in Table III, the en-
demic equilibrium is E∗+ = (1, 4.5, 4.5), and the basic
reproduction number is R0 = 10 > 1. The eigenvalues are

λ1 = −0.1000 < 0, λ2 = −1.8750− 0.5142i,
λ3 = −1.8750 + 0.5142i.

It can be seen that all eigenvalues have negative real parts.
Therefore E∗+ is asymptotically stable.

The numerical solutions of the SIRS model of (45) with
different initial conditions in (46),

f1(0) = (S1(0), I1(0), R1(0)) = (2, 1, 4.5),

f2(0) = (S2(0), I2(0), R2(0)) = (4, 2, 3),

f3(0) = (S3(0), I3(0), R3(0)) = (6, 2.5, 2), (46)
f4(0) = (S4(0), I4(0), R4(0)) = (8, 3, 1.5),

f5(0) = (S5(0), I5(0), R5(0)) = (12, 3.5, 1),

f6(0) = (S6(0), I6(0), R6(0)) = (14, 4.5, 0.5),

are shown in Fig.2 to Fig.5. It can be seen in Fig. 2
that all solutions converge to the disease-free equilibrium
E∗0 = (10, 0, 0). Moreover, Fig. 4 shows that all solutions
converge to the endemic equilibrium E∗+ = (1, 4.5, 4.5) with
different initial conditions in (46). Fig.3 and Fig.5 shows
the relations between S(t), I(t) and R(t) with different
initial conditions in (46). In Fig.3 if R0 = 0.6364 < 1,
then all solutions (S(t), I(t), R(t)) converge to the disease-
free equilibrium E∗0 = (10, 0, 0). On the other hand, in
Fig.5 if R0 = 10 > 1, then all solutions (S(t), I(t), R(t))
converge to the endemic equilibrium E∗+ = (1, 4.5, 4.5). The
results suggest that under the appropriate conditions and the
parameter values provided in Table III, if R0 < 1, then
the disease-free equilibrium E∗0 is globally asymptotically
stable. However if R0 > 1, then the endemic equilibrium
E∗+ becomes a globally asymptotic stability.

B. The saturated incidence function

For the SIRS model (1) with the saturated incidence
function G(I) = g(I)IS = βI/(α + I)S, where β is the
proportionality constant and α is the parameter affected by
the psychological or inhibitory effect. Replacing G(I)S as
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Fig. 7. All solutions of (47) converge to E∗0 = (10, 0, 0).
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Fig. 8. All trajectories of (47) for different initial conditions in (46), when
R0 = 0.833333 < 1, converge to E∗0 = (10, 0, 0).
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Fig. 9. All solutions of (47) converge to E∗+ = (3.7624, 4.4554, 1.7822).
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Fig. 10. All trajectories of (47) for different initial conditions in (46), when
R0 = 14.5 > 1, converge to E∗+ = (3.7624, 4.4554, 1.7822).
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the saturated incidence function, model (1) becomes

dS

dt
= Λ− βI

(α+ I)
S − µS + δR,

dI

dt
=

βI

(α+ I)
S − (µ+ γ)I, (47)

dR

dt
= γI − (µ+ δ)R.

We illustrate solutions of (47) with the parameter values
provided in Table IV to examine dynamical behaviors of both
disease-free and endemic equilibria of (47).

TABLE IV
PARAMETERS FOR THE SIRS MODEL WITH THE SATURATED INCIDENCE

FUNCTION

Parameter Values used Unit Reference
DFE EE

Λ 2 2 day−1 Estimated
µ 0.2 0.2 day−1 [21]
δ 0.3 0.3 day−1 [21]
γ 0.4 0.2 day−1 Estimated
β 0.05 0.58 day−1 [21]
α 1 1 day−1 [21]

In this case, we obtain that the disease-free equilibrium
E∗0 = (10, 0, 0) and the basic reproduction number is R0 =
0.833333 < 1. The eigenvalues of the characteristic equation
at E∗0 are

λ1 = −0.2 < 0, λ2 = −0.1 < 0, λ3 = −0.5 < 0.

It can be seen that all eigenvalues are negative. Therefore E∗0
is asymptotically stable. For the endemic equilibrium, E∗+ =
(3.7624, 4.4554, 1.7822), the basic reproduction number is
R0 = 14.5 > 1. The eigenvalues are

λ1 = −0.6502 + 0.2687i, λ2 = −0.1999 < 0,
λ3 = −0.6502− 0.2687i.

It can be seen that all eigenvalues have negative real parts.
Therefore E∗+ is asymptotically stable.

The numerical simulations of (47) are shown from Fig. 7
to Fig. 10. In Fig. 7, with different initial conditions in
(46), all numerical solutions converge to E∗0 = (10, 0, 0).
Fig. 8 shows the trajectories of the solutions, when R0 < 1.
It can be seen that all solutions (S(t), I(t), R(t)) con-
verge to E∗0. In addition, Fig. 9 shows that all numeri-
cal solutions converge to the endemic equilibrium E∗+ =
(3.7624, 4.4554, 1.7822). Note that, from Fig. 10, all trajec-
tories converge to E∗+. The result suggests that each equilib-
rium is globally asymptotically stable under the appropriate
conditions of parameters.

C. Media coverage

For the SIRS model (1), we investigate effects of
media coverage on the transmission incidence function

g(I)IS =

(
β1 −

β2I

α+ I

)
IS, where β1 > 0 is the contact

rate before media alerts and the term β2I/(α + I) measure
the effect of reduction of the contact rate when infectious
individuals are reported in the media. Because the coverage
report cannot prevent disease from spreading completely, we

have β1 ≥ β2 > 0 [15]. Model (1) becomes

dS

dt
= Λ−

(
β1 −

β2I

α+ I

)
IS − µS + δR,

dI

dt
=

(
β1 −

β2I

α+ I

)
IS − (µ+ γ)I, (48)

dR

dt
= γI − (µ+ δ)R.

Use the parameter values in Table V, the disease-free
equilibrium is E∗0 = (10, 0, 0) and the endemic equilibrium
is E∗+ = (4.5913, 3.4419, 1.9668).

TABLE V
PARAMETERS FOR THE SIRS MODEL WITH MEDIA COVERAGE

INCIDENCE FUNCTION

Parameter Values used Unit Reference
DFE EE

Λ 2 2.5 day−1 Estimated
µ 0.2 0.25 day−1 [22]
δ 0.2 0.1 day−1 [22]
γ 0.1 0.2 day−1 [22]
β1 0.02 0.16 day−1 Estimated
β2 0.008 0.08 day−1 Estimated
α 1 1 day−1 [22]

The numerical solutions of (48) for the disease-free equi-
librium E∗0 = (10, 0, 0), with the basic reproduction number
R0 = 0.6667 < 1. The eigenvalues of the characteristic
equation at E∗0 are

λ1 = −0.4 < 0, λ2 = −0.2 < 0, λ3 = −0.1 < 0.

It can be seen that all eigenvalues are negative. Therefore E∗0
is asymptotically stable.

On the other hand, for the endemic equilibrium E∗+ =
(4.5913, 3.4419, 1.9668), the basic reproduction number
R0 = 3.5556 > 1. The eigenvalues are

λ1 = −0.3757 + 0.2585i, λ2 = −0.2499 < 0,
λ3 = −0.3757− 0.2585i.

It can be seen that all eigenvalues have negative real parts.
Therefore E∗+ is asymptotically stable.

The numerical solutions of the SIRS model (48) which are
shown in Fig. 11 to Fig. 14. For the disease-free equilibrium,
Fig. 11 and Fig. 12 show that, with different initial conditions
in (46), all numerical solutions converge to the disease-free
equilibrium E∗0 = (10, 0, 0). On the contrary, Fig. 13 and
Fig. 14 show that all numerical solutions converge to the
endemic equilibrium E∗+ = (4.5913, 3.4419, 1.9668). The
result suggests that if R0 < 1, then E∗0 is asymptotically
stable. However if R0 > 1, then E∗+ becomes asymptotically
stable.

VII. CONCLUSION

In this work, we have developed and studied the SIRS epi-
demic model (1) with general incidence function G(I)S. In
the analytical part, we proved the positivity and boundedness
of the model’s solutions in Theorems 2.1 and 2.2. Next, we
computed the basic reproduction number R0 by using the
next generation method. The result in Theorem 3.1 shows
conditions for the existence of the model’s equilibria and the
conditions for biological meaning of each equilibrium. Next,
we analyze the conditions of function g(I). If g(I) is a non-
increasing function with R0 > 1, then the model has unique
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Fig. 11. All solutions of (48) converge to E∗0 = (10, 0, 0).
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Fig. 13. All solutions of (48) converge to E∗+ = (4.5913, 3.4419, 1.9668).
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Fig. 14. All trajectories of (48) for different initial conditions in (46), when
R0 = 3.5556 > 1, converge to E∗+ = (4.5913, 3.4419, 1.9668).
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endemic equilibrium. The theorems for locally asymptotic
stability of equilibria are stated in Theorem 4.1 and Theorem
4.2. Finally, we constructed the Lyapunov functions to show
globally asymptotic stability of all equilibria in Theorem 5.1
and Theorem 5.2.

In the part of numerical simulations, we apply the ana-
lytical results to the bilinear, saturated and media coverage
incidence functions. For the bilinear function, we present
numerical simulations with two sets of parameter values in
Table III. The results are shown in Fig.2 to Fig.4. For the
saturated function, the numerical results with two different
sets of parameter values in Table IV are shown in Fig.7 to
Fig.10. Finally, for the media coverage function, we show the
numerical results with two sets of parameter values in Table
V. The results are shown in Fig.11 and Fig.14. For all classes
of the incidence functions, all solutions converge to the
equilibrium, which related to the analytical and theoretical
results.
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