
Distributed Sliding Mode Control for Average
Formation Tracking of Multi-agent Systems with

Multiple Active Leaders
Xin Cai, Xiaozhou Zhu, Wen Yao

Abstract—This article adopts sliding mode technology to
investigate average formation tracking issue of multi-agent
systems, followers can track reference trajectory derived from
average state of multiple leaders, while achieving expected time-
varying formation. Firstly, multiple active leaders with bounded
but unknown control inputs are introduced that can manipulate
the motion trajectory of the swarm system in response to
changes or threats in the environment. Secondly, utilizing
sliding mode theory method and states of adjacent agents, the
distributed protocol is proposed, and the stableness is demon-
strated through Lyapunov criterion. Finally, the performance
of the constructed scheme is validated via the numerical case
of multi-unmanned aerial vehicle(UAV) formation.

Index Terms—average formation, active leaders, multi-agent
systems, sliding mode, Lyapunov criterion.

I. INTRODUCTION

RECENTLY, cooperative algorithm has been investi-
gated in some industries that is logistics transportation,

search and rescue, localization and monitoring [1], [2].
Cooperative control involves multiple aspects, formation is
a significant issue and has been widely used in autonomous
underwater vehicle, unmanned aerial vehicle, spacecraft and
so on. With more complex scenarios, it is very important and
challenging to design efficient, stable, and robust formation
protocol.

Many methods to study the formation problem have
been proposed. [3] adopted the leader-follower strategy to
complete formation control task. [4] solved the formation
problem through swarm behavior. The scheme based on
virtual structure was used in [5]. [6] studied a protocol using
the information exchanged between agents, and proposed
that classical formation methods can be unified under the
consensus control framework. Due to the consensus theory
has made great progress, consensus-based methods have been
adopted to study formation control. Based on consensus
theory, [7] proposed an event-triggering function to generate
a series of control quantity, avoiding frequent controller
updates and saving communication resources. [8] studied
the formation strategy of the swarm systems under varying
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topologies, proposed a robust control method consisting of
position and attitude controllers, and carried out UAVs flight
experiment. [9] discussed the distributed formation control
problem with external disturbance, and proposed the finite-
time observer to compensate external disturbance.

Significantly, the formation formed by above methods is
time-invariant. In many scenarios, the formation needs to
change in real-time to adapt to dynamically changing envi-
ronments, so it promotes the development of time-varying
formation [10]. Utilizing the commonly used Lyapunov
method and riccati equation technology, a formation control
law was designed in [11]. In [12], the formation control of
fractional-order system was discussed, the formation problem
was convert to the asymptotic stability problem through
linear transformations.

Considering the tracking leader in the swarm systems, it
translates to formation tracking control. The swarm systems
consist of two types of agents: followers and leaders. The
goals of leaders are to generate a desired trajectory, while
followers are responsible for forming the expected formation
and tracking the reference trajectory. In [13], a continuous
repulsive vector was incorporated into the speed of the
agent to ensure that the swarm systems complete formation
tracking and avoids obstacles. [14] explored the formation
tracking control using a broad learning system, taking into
account input saturation and actuator fault. [15] solved the
autonomous formation tracking problem by utilizing model
predictive control. However, it is worth noting that in [13],
[14], [15], the assumption is made that there is only one
leader, it has certain limitations. In many practical sce-
narios, in scenarios such as coordinated flight of multiple
manned/unmanned aerial vehicles, it becomes necessary for
the formation to track trajectories generated by multiple
leaders [16]. This is particularly crucial for ensuring the
safety of manned aerial vehicles. Multiple UAVs maintain
a formation centered around the average position of the
manned aerial vehicles, effectively encircling them. This
configuration allows for the performance of dangerous and
dirty tasks by the unmanned aerial vehicles. Dealing with
multiple leaders adds an extra layer of complexity to the
problem compared to the case of a single leader.

Inspired by the above problem discussed, formation track-
ing control is studied. The major contributions of this article
are

1) The formation is time-varying, with both position and
velocity components varying, rendering it more appli-
cable to real-world situations. The second-order system
is adopted to describe dynamics of each individual
agent, it can be applied to actual robot systems.

IAENG International Journal of Applied Mathematics, 53:4, IJAM_53_4_38

Volume 53, Issue 4: December 2023

 
______________________________________________________________________________________ 



2) Multiple active leaders with unknown control inputs
are introduced to provide reference signals for multi-
agent systems. It allows team behavior to be modified
to deal with environmental threats, thus avoiding un-
expected situations.

3) Based on information interaction between neighbors,
the distributed control law is proposed via sliding mode
strategy, the Lyapunov criterion is utilized to evaluate
the stableness.

The rest of this article are arranged as. The problem formu-
lation is provided in Section II. The distributed sliding mode
control protocol is constructed in Section III. An application
example is given in Section IV. The article is concluded in
Section V.

Notations: ‖ · ‖ is the 2-norm. Rn represents n × 1 real
vectors. ⊗, IN denote the Kronecker product and n × n
identity matrices. The vector 1n is a column vector where
elements are 1.

II. PRELIMINARIES AND PROBLEM DESCRIPTION

A. Graph theory
The multi-agent systems includes M leaders and N fol-

lowers. The information topology among agents is described
by the weighted directed graph G = (V, E , A), where V
indicates the set of nodes, E indicates the set of edges, and the
adjacency matrix is expressed by A. Each edge eij connects
nodes Vi and Vj , and the weight of the edge is denoted by
aij . If eij exists in E , then aij is positive; otherwise, it is
zero. Denote L as the Laplacian matrix.

The weight among leaders and follower i is represented by
ai0. If followers can get the status of one or more leaders,
then ai0 = 1, and if not ai0 = 0. Moreover, define Q =
diag (a10, a20, . . . , aN0), LQ = L +Q. If a follower has at
least one leader in its neighbor set, it is referred to as an
informed follower. Conversely, if its neighbor set does not
include any leaders, it is considered an uninformed follower.
Furthermore, an informed one is classified as a well-informed
agent if its neighbor set includes all leaders.

Assumption 1: Each informed one is well-informed, while
each uninformed follower is connected to at least one well-
informed agent through the directed path.

Assumption 2: The communication is unidirectional be-
tween leaders and followers, meaning that followers can get
the information of leaders, but they cannot send information
to leaders.

Lemma 1: [17] Let equation ẋ = f(x), x ∈ Rn, if V
is a positive continuously function and satisfies V̇ (x) 6
−c(V (x))ϑ, c > 0, 0 < ϑ < 1. In this case, the
system is stabilized within a finite time T , and T meets
T ≤ (V (x0))

1−ϑ
/c(1− η).

B. Problem description
The mathematical model of follower i is{

ṗi = vi
v̇i = ui

(1)

where the control input ui ∈ Rn, pi ∈ Rn, vi ∈ Rn are the

states. Define xi =
[
pTi , v

T
i

]T
, A =

[
0 1
0 0

]
, B =

[
0 1

]T
,

the dynamics model (1) can be rewritten as

ẋi = Axi +Bui (2)

Define U = [u1, u2, ..., uN ]
T
, X =

[
xT1 , x

T
2 , . . . , x

T
N

]T
,

then the multi-agent systems is described

Ẋ = (IN ⊗A)X + (IN ⊗B)U (3)

Similarly, the dynamics of each leader is written

τ̇k = Aτk +Brk (4)

where τk =
[
pTk , v

T
k

]T ∈ R2n. The control input |rk| 6 ς ,
ς > 0.

Remark 1: In [18], leaders are passive and have no control
input. However, in this paper, leaders are active and have
unknown but bounded inputs, which means that their motion
trajectory can be manipulated in real time to deal with
complex environments.

Definition 1: Let H =
[
hT1 , h

T
2 , . . . , h

T
N

]T
is the time-

varying formation, where hi =
[
hTip, h

T
iv

]T ∈ R2n is
differentiable and continuous. For the multi-agent systems
(3):

lim
t→∞

‖xi − hi − x0‖ = 0 (5)

where x0 = 1
M

∑M
k=1 τk, then the multi-agent systems that

include multiple leaders are capable of completing average
formation tracking.

Remark 2: Definition 1 includes two tasks to be com-
pleted simultaneously. As shown in Fig. 1, one is that fol-
lowers’ states keep offset signal hi, followers are responsible
for completing formation task. Additionally, the followers’
states converge to a consensus on the reference signal, it
corresponds to the average state of the leaders.

Leader

Follower
h1(t1)

h1(t0)

h1(t2)

x1(t0)

x0(t0) x1(t2)

x0(t2)

Reference

Fig. 1. Demonstration of time-varying formation tracking.

Hence, the major purpose addressed is to propose a con-
trol method for followers to accomplish average formation
tracking task defined in Definition 1.

III. CONTROL PROTOCOL DESIGN

The formation error system for follower i is denoted as

εi =
N∑
j=1

aij (xi − hi − xj + hj) + ai0 (xi − hi − x0)

(6)

The following switching function si is denoted by using
sliding mode control method

si = Kεi (7)

where K = [k1, k2] ∈ R1×2.
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The switching function S = [s1, s2, . . . , sN ]
T is defined

as

S = (LQ ⊗K) (X −H)− (Q⊗K) (1N ⊗ x0) , (8)

Lemma 2: The multi-agent systems (3) successfully ac-
complish the desired tracking task, as expressed by the vector
H , when the switching function S achieves and maintains a
state of S = 0.

Proof: From (6), we can get the state error equation

εip =
N∑
j=1

aij (pi − hip − pj + hjp) + ai0 (pi − hip − p0) ,

εiv =
N∑
j=1

aij (vi − hiv − vj + fjv) + ai0 (vi − hiv − v0) .

(9)

one has εi = [εip, εiv]
T, ε̇ip = εiv . The switching function

(7) is

si = k1εip + k2εiv. (10)

Let P = [p1, p2, . . . , pN ]
T
, V = [v1, v2, . . . , vN ]

T
, Hp =

[h1p, h2p, . . . , hNp]
T , and Hv = [h1v, h2v, . . . , hNv(t)]

T .
Moreover, define

P̃ = P −Hp − 1N ⊗ p0
Ṽ = V −Hv − 1N ⊗ v0

(11)

then it gets ˙̃P = Ṽ . The equation (8) is rewritten

S = k1LQP̃ + k2LQṼ (12)

Take Lyapunov function as

Vε =
1

2
P̃TP̃ (13)

and it gets

V̇ε = P̃T ˙̃P = P̃TṼ (14)

When S = 0, it gets

k1LQP̃ + k2LQṼ = 0 (15)

Due to the invertibility of LQ, V̇ε is expressed

V̇ε = −
k1
k2
P̃TP̃

≤ −2k1
k2

Vε

(16)

From the Lyapunov stability theory, we can get
limt→∞ Vε = 0, and it has limt→∞ P̃ = 0. In addition,
it obtains that limt→∞ Ṽ = 0. Thus, it gets

lim
t→∞

‖xi − hi − x0‖ = 0 (17)

From Definition 1, it gets that the multi-agent systems (3)
complete tracking task. This completes the proof.

The goal of the sliding mode method is to guarantee
that follower agent i reaches and maintains si = 0. Thus,
by utilizing Lemma 2, the formation tracking control can

be converted to the sliding mode problem. Consequently, a
distributed control protocol is developed as follows:

ui =(KB (di + ai0))
−1

KB N∑
j=1,j 6=i

aijuj − [KA ((di

+ ai0)xi −
N∑

j=1,j 6=i

aijxj

− ai0KAx0−
ai0KBς + ρ sgn (si)−K

(
(di + ai0) ḣi−

N∑
j=1,j 6=i

aij ḣj


(18)

where ρ > 0, di =
∑N
j=1,j 6=i aij .

Theorem 1: If the matrix K = [k1, k2] satisfies the
conditions k1 > 0, k2 > 0, and ρ > 0, Assumption 1
and Assumption 2 hold, then the swarm systems (3) are
capable of achieving the average formation tracking through
the control law (18).

Proof: From (8), one has

Ṡ = (LQ ⊗K) (Ẋ − Ḣ)− (Q⊗K) (1N ⊗ ẋ0) (19)

Let u0 = 1
M

∑M
k=1 rk, and substituting Ẋ , ẋ0 into the

system (19), it gets

Ṡ = (LQ ⊗K) ((IN ⊗A)X + (IN ⊗B)U)−
(LQ ⊗K) Ḣ − (Q⊗K) (1N ⊗ (Ax0 +Bu0))

(20)

Define U = [u1, u2, . . . , uN ]
T, the protocol is rewritten

U = − (LQ ⊗ (KB))
−1

((LQ ⊗KA)X −Q1⊗

(KAx0 +KBς) + ρ sgn(S)− (LQ ⊗K) Ḣ
) (21)

Combine (20) and (21), we can get

Ṡ = −ρ sgn(S)−Q1 ⊗ (KB (u0(t)− ς)) (22)

For each agent i, it obtains

ṡi = −ρ sgn (si)− ai0KB (u0 − ς) (23)

Take the Lyapunov function

Vis =
1

2
s2i (24)

It is further concluded that

V̇is = siṡi (25)

Due to − (u0(t)− ς) ≤ 0, it has ṡi ≤ −ρ sgn (si). Hence,

V̇is = siṡi

≤ si (−ρ sgn (si))

≤ −
√
2ρ (Vis)

1
2

(26)

From the Lemma 1, each agent can reach the sliding
surface si = 0. Further, according to Lemma 2 , the swarm
systems (3) has achieved average formation tracking. The
proof is completed.
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Fig. 2. Formation tracking process of multiple UAVs.
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Fig. 3. Dual closed-loop control framework of UAV.
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Fig. 4. Communication graph.

IV. NUMERICAL SIMULATION

To illustrate the performance of designed control frame-
work, a numerical example involving multiple unmanned
aerial vehicles (UAVs) is provided. Fig. 2 depicts the tracking
process of UAVs.

The altitude channel of the UAV can be independently
controlled to enable the UAV to fly at the specified altitude.
Hence, the main focus is on the control of formation tracking
for UAVs on the horizontal plane, once the desired altitude
has been achieved. For each UAV in the swarm systems,
Fig. 3 illustrates the dual closed-loop control structure of the
UAV. Within this framework, the outer loop is responsible for
guiding the agent towards the expected position, a inner loop
controller is tasked with tracking the attitude. Notably, the
position controller exhibits a larger time constant compared
to the attitude controller. This article applies the designed
control protocol to the outer loop system to achieve multi-
UAV formation tracking. Denote pi = [piX , piY ]

T
, vi =

[viX , viY ]
T , where piX,piY indicate the positions, viX,viY

are the velocities, the outer loop dynamics of UAV i in the

swarm systems are depicted as follows{
ṗi = vi
miv̇i = −TτiRie3 +mige3i = 1, 2, . . . , N

(27)

where mi, g represent the the mass and gravitational ac-
celeration, respectively. Ri ∈ R3×3 is the rotation matrix,
Tτi is lift, e3 = [0, 0, 1]T . Furthermore, let control input
ui = −Tτimi

Rie3 + ge3, then the UAV dynamics (27) can
be transformed into the model described in (2). The multi-
UAV system comprises of three leaders and six followers.
The interaction topology is depicted in Fig. 4.

The initial state of UAVs are randomly generated. The
expected formation is defined:

hi = 2


sin
(
t+ i

3π
)

cos
(
t+ i

3π
)

cos
(
t+ i

3π
)

− sin
(
t+ i

3π
)
 , i = 1, 2, · · · , 6 (28)

The unknown control input rk = [rkX , rkY ]
T
(k = 1, 2, 3)

of leaders are given by r1 = [6.5 cos 0.1t, 5.4 sin 0.1t]T , r2 =
[6.2 cos 0.1t, 5.8 sin 0.1t]T , r3 = [5.3 cos 0.1t, 6.8 sin 0.1t]T ,
and ς is selected as 4. The gain matrix K is chosen as K =
I2 ⊗ [3, 0.5], and the parameter ρ is 5.

The simulation results are presented in Figs. 5-7. Fig. 5
gives state snapshots of the UAVs at different time instances,
specifically t = 0.2 s, 1.5 s, and 3 s. In the simulation,
the leaders are depicted by diamonds in various colors,
while the followers are represented by pentagrams. At the
initial moment, UAVs are randomly distributed in space. To
complete formation tracking tasks, UAVs begin to move. At
t = 3s, the snapshot shows the followers form the hexagonal
formation around the leaders. Fig. 6 shows the trajectories
of the UAVs within 50 s. Define L =

[
eT1 , e

T
2 , · · · , eT6

]T
,

where ei = xi − hi − x0, it can be observed that the
combined formation errors LTL of the whole multi-UAV
systems converge to 0 in the finite time in Fig. 7.

V. CONCLUSION

This article discussed average formation tracking issue,
where the leaders have unknown control inputs. By employ-
ing the sliding mode technique, a tracking control proto-
col was developed. Additionally, a sufficient condition for
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Fig. 5. State snapshots of the UAVs at different times.
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Fig. 7. Time-varying formation error

achieving formation tracking task was provided. In the future,
the research can be extended to the group formation tracking
problem, and several subgroups can complete different tasks.
Furthermore, it is of great significance to take into account
additional practical constraints, such as actuator failure, col-
lision avoidance and input saturation, which obviously makes
the problem more complex and challenging.
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