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Abstract—Meshless methods have numerous advantages over
mesh-based approaches, but their high computational cost has
significantly hindered their progress, particularly for time-
dependent problems. In this study, we propose a time-adaptive
meshless approach aimed at improving the computational
efficiency of the method for addressing time-dependent issues.
Specifically, we use the element-free Galerkin (EFG) method
for spatial discretization, and the trapezoidal rule (TR) with
adaptive time stepping for time integration. Additionally, we
incorporate the explicit second-order Adams-Bashforth (AB2)
method to control the error. The adaptive control of the time
step effectively resolves issues related to non-convergence and
low computational efficiency caused by inappropriate selection
of the time step. To validate the efficacy and accuracy of
the algorithm, we provide several numerical examples. The
numerical results demonstrate that the EFG method combined
with TR-AB2 method (EFG-TR-AB2) exhibits significant po-
tential in solving two-dimensional transient heat conduction
problems, which can maintain computational accuracy and
improve computational efficiency.

Index Terms—time-adaptive, element-free Galerkin, trape-
zoidal rule, second-order Adams-Bashforth, transient heat con-
duction

I. INTRODUCTION

HEAT transfer [1] is one of the most common physical
phenomena in nature, playing a crucial role in various

energy conversion methods and the production process of
objects, including heat conduction, convection, and radiation.
Specifically, the transient heat conduction problem aims to
investigate the heat transfer generated by the change of heat
energy in the temporal domain. In recent decades, it has
attracted attention because of its importance in engineering
applications, including nanomaterials, energy systems, and
thermoelectric devices.

Therefore, seeking an analytical solution for the transient
heat conduction issue holds significant engineering and theo-
retical significance. However, analytical solutions are difficult
to solve except few simplified cases because of the com-
plexity of the problem, including factors such as boundary
conditions and geometrical shapes. As a result, numerical
solutions are commonly studied. Numerical methods used
to solve such problems can be broadly categorized into two
types, one is mesh-based method, including finite element
method (FEM) [2], boundary element method [3], and so
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on, and the other is meshless method [4]. In these mesh-
based methods, mesh generation can be both time-consuming
and tedious. In addition, in the case where the geometry of
the solution region is complex, distorted meshes are often
inevitably generated, further deteriorating the performance of
the method. Therefore, meshless methods have gained wide
attention as novel approaches to overcome these challenges.
In the meshless method, discrete nodes are used to replace
mesh elements, and shape function (SF) can be constructed
by defining only the nodes, which avoids complex mesh
generation.

Meshless methods can be categorized into two groups:
meshless methods based on collocation strong form and
meshless methods based on Galerkin weak form [5]. The
representative collocation meshless methods are radial basis
collocation method (RBCM) [6], reproducing kernel colloca-
tion method (RKCM) [7], etc. However, the meshless method
based on collocation strong form is less accurate and unstable
than the meshless method based on Galerkin weak form.
The typical Galerkin meshless methods are EFG method [8],
reproducing kernel particle method (RKPM) [9], etc. Among
them, the EFG method has greatly advanced the development
of the meshless method due to its high calculation accuracy
and rapid convergence speed.

In recent decades, the study of meshless methods has been
widely concerned on heat conduction problems. Take EFG
method as an example. The nonlinear transient heat conduc-
tion problem of material properties varying with temperature
is studied by Singh et al. [10] using EFG method. Sharma
[11] used EFG method to study transient heat conduction
problems of viscous fluid flow. Cheng et al. [12] combined
the dimension splitting (DS) method with the improved com-
plex variable EFG method to solve transient heat conduction
problems. Although EFG method is widely employed in
transient heat conduction research, its computational time is
comparatively higher than that of the mesh-based method due
to variations in shape functions (SFs) and their derivatives
at different points. In addition, the process of calculating the
SF involves the inversion of the matrix and the multiplication
between multiple matrices, which are more complicated.
Compared with the mesh-based algorithm, the computational
efficiency is not competitive, which hinders the development
of the EFG method. Therefore, it is necessary to find
some ways to enhance the computational efficiency of EFG
method, especially for time-dependent problems.

To solve the above problems, many scholars have made
corresponding efforts. zhang et al. [13] proposed an improved
EFG (IEFG) method to study transient heat conduction
problems by combining the EFG method with the improved
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moving least squares (MLS) approximation. While maintain-
ing the same accuracy, the IEFG method exhibits higher com-
putational efficiency compared to the EFG method. Sun et
al. proposed an improved interpolating EFG (IIEFG) method
[14] by combining the EFG method with the improved inter-
polation MLS (IIMLS) method [15]. The IIEFG method can
directly apply the displacement boundary conditions, which
saves a lot of calculation time than the EFG method. Wang et
al. proposed a dimension-splitting MLS (DS-MLS) method
by coupling DS with MLS method [16], and then, DS-MLS
method is coupled with the EFG method to propose an
improved EFG method (IEFGM) [17]. The IEFGM method
offers improved calculation accuracy and reduced computa-
tion time for some two-dimensional potential problems in
irregular regions. These methods improve the computational
efficiency to some extent, but the effect is not very significant
for long time simulation problems.

To tackle this issue, we find that we can start with another
method, namely adaptive control time step. In numerical
calculation, to enhance calculation accuracy, the smaller time
step is usually set, which will lead to high calculation costs.
If the large time step is set to save calculation cost, it may
lead to the divergence of the calculation results or even the
sudden interruption of the calculation. Time adaptation can
effectively solve the issue related to non-convergence and low
computational efficiency caused by inappropriate selection of
time step, which has been proved in mesh-based methods.
Bosco et al. [18] proposed an adaptive FEM approach
for solving the evolution convection-diffusion problem by
combining FEM with the TR-AB2 [19] method, and it is
verified through numerical examples the effectiveness of
this approach. Gee et al. [20] proposed an adaptive time-
stepping fluid-structure interaction (FSI) solvers. Numerical
examples show that this method can achieve the required
accuracy control and save computational costs. Wang et al.
[21] proposed an adaptive time-stepping semi-Lagrangian
method aimed at obtaining higher simulation accuracy and
solving advection problems. However, there are few reports
on the combination of meshless method and time adaptive
method thus far. In this study, we propose the EFG-TR-AB2
method, which combines the EFG method with the renowned
TR-AB2 method. The TR-AB2 method is absolutely stable.
To assess the effectiveness of the EFG-TR-AB2 method,
we compare it with the EFG method combined with the
Crank-Nicolson (EFG-CN) method. The EFG-CN method
utilizes spatial discretization through the EFG method and
time integration using the Crank-Nicolson (CN) method.
The CN method usually adopts a fixed time step and is
unconditionally stable.

An outline of the paper is as follows. In Section II, the
governing equation of transient heat conduction is provided.
In Section III, the EFG method is used for spatial discretiza-
tion. In Section IV, the TR-AB2 method is used for time
discretization. In Section V, we provide several numerical
examples and summarized in Section VI.

II. MODEL PROBLEM

The governing equations and initial conditions of two-
dimensional transient heat conduction can be generally ex-
pressed as [22]

ρcp
∂T

∂t
=

∂

∂x
(kx

∂T

∂x
) +

∂

∂y
(ky

∂T

∂y
), in Ω, (1)

T (x, y, 0) = T0, in Ω, (2)

and subject to the conditions on the boundary Γ = Γb ∪ Γq

T = Tb, on Γb, (3)

kx
∂T

∂x
nx + ky

∂T

∂y
ny = q, on Γq, (4)

where T is temperature, ρ is material density, cp is mate-
rial specific heat, kx, ky is the thermal conductivity in x
and y directions, respectively; T0 is the initial temperature,
n = (nx, ny) is the outward unit normal to Γ, Tb and q
are the prescribed temperature and heat fluxes on Dirichlet
boundaries Γb and Neumann boundaries Γq , respectively.

III. NUMERICAL IMPLEMENTATION OF EFG METHOD

To obtain the approximate solution of two-dimensional
transient heat conduction equation, the discrete system equa-
tion of the problem needs to be established. Initially, we write
the Eq. (1) in weak form.

Let V = {v ∈ H1(Ω) : v|Γb
= Tb}, where H1(Ω) is

Hilbert space [23]. Multiplying a test function w ∈ V0 =
{v ∈ H1(Ω) : v|Γb

= 0} with Eq. (1), and using Green’s
formula for integration by parts, we can derive the weak form
of Eq. (1): find T ∈ V such that

∫
Ω

ρcpw
∂T

∂t
dΩ +

∫
Ω

(kx
∂w

∂x

∂T

∂x
+ ky

∂w

∂y

∂T

∂y
)dΩ

=

∫
Γq

wqdΓ, ∀w ∈ V0.
(5)

Let Vh represent a finite-dimensional subspace of infinite-
dimensional space V , Vh,0 = Vh ∩ V0, and derive the
discrete system equation, it is necessary to find the meshless
approximation function Th ∈ Vh∫

Ω

ρcpwh
∂Th
∂t

dΩ +

∫
Ω

(kx
∂wh
∂x

∂Th
∂x

+ ky
∂wh
∂y

∂Th
∂y

)dΩ

=

∫
Γq

whqdΓ, ∀wh ∈ Vh,0.

(6)

In different meshless methods, approximate function
method is different. EFG method is usually the MLS method.

A. MLS Approximation

Firstly, the MLS approximation function Th(x) of the
unknown function T (x) on the field Ω can be expressed
as [24]

Th(x) =
m∑
i=1

Qi(x)ξi(x) = QT (x)ξ(x), (7)

where ξ(x) = {ξ1(x), ξ2(x), · · · , ξm(x)}T in Eq. (7) is an
unknown coefficient vector.
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For two-dimensional problems, in order to facilitate the
calculation, the linear basis function is generally chosen as
basis function, and its form is

Q(x) = [1, x, y]T .

ξ(x) is obtained by weighted least squares fitting, that
is, for any point x, the choice of ξ(x) always takes the
minimum value of the following discrete L2 norm

J =
n∑
i=1

ω(x− xi)[QT (xi)ξ(x)− Ti]2. (8)

There are multiple choices for weight functions ω(x−xi),
including exponential function, Gauss function, cubic spline
function (CSF) [25], etc. In this paper, CSF is selected

ω(x− xi) = ωi(γ)

=


2
3 − 4γ2 + 4γ3, γ ≤ 1

2 ,
4
3 − 4γ + 4γ2 − 4γ3

3 , 1
2 < γ ≤ 1,

0, γ > 1,

(9)

where γ = ||x−xi||
ρi

, ||x − xi|| represents the distance
between x and xi, ρi = αdi is the influence radius of node
xi, di represents the distance between adjacent nodes near
interpolation point, and α is the influence factor.
J minimizes with respect to ξ(x)

∂J

∂ξ
= A(x)ξ(x)−B(x)T = 0, (10)

where

A(x) =

n∑
i=1

ωi(x)Q(xi)Q
T (xi), (11)

B(x) = [ω1(x)Q(x1), ω2(x)Q(x2), · · · , ωn(x)Q(xn)].
(12)

By Eq. (10), we can get

ξ(x) = A−1(x)B(x)T . (13)

Substituting Eq. (13) into Eq. (7), it can be obtained

Th(x) = QT (x)ξ(x)

= QT (x)A−1(x)B(x)T = ΦT (x)T ,
(14)

where Φ(x) is the MLS shape function (MLS-SF)

ΦT (x) = QT (x)A−1(x)B(x). (15)

In general, the SF calculated using the MLS method can-
not satisfy the Kronecker Delta function property (KDFP),
which means that the Dirichlet boundary condition cannot be
directly applied. Currently, numerous scholars have proposed
some methods to overcome this shortcoming. For exam-
ple, Lagrange multiplier method [26] and penalty function
method [27], etc. However, these methods either increase
the computational workload, or the choice of parameters is
not very convenient. This paper adopts the convex polygon
influence domain technology proposed by Zhang et al [28].
This method extends the rectangular influence domain to any
convex polygon shape and for any convex polygonal node
influence domain, while the influence factor approaches 1,
the value of the MLS-SF at the node is almost equal to 1.
This implies that as the dimensionless size is close to 1, the

MLS-SF at the node nearly has the KDFP. In this way, the
EFG method can impose boundary conditions as simple as
the FEM. The specific introduction of this method can be
referred to [28].

First-order partial derivatives of approximate functions for
x and y are involved in the numerical calculation, which can
usually be transformed into the calculation of the first-order
partial derivatives of SF Φ for x and y. To avoid the inverse
multiplication of multiple matrices and reduce the workload,
Eq. (15) is reformulated as [29]

ΦT (x) = ΘT (x)B(x), (16)

that is to say

ΘT (x) = QT (x)A−1(x). (17)

A is a symmetric matrix, so Θ(x) can be obtained by Eq.
(17)

AΘ = Q. (18)

The first-order partial derivatives of Θ for x and y can be
calculated by

A
∂Θ

∂x
=
∂Q

∂x
− ∂A

∂x
Θ, (19)

A
∂Θ

∂y
=
∂Q

∂y
− ∂A

∂y
Θ, (20)

then the first-order partial derivatives of Φ for x and y can
be calculated by

∂ΦT

∂x
=
∂ΘT

∂x
B + ΘT ∂B

∂x
, (21)

∂ΦT

∂y
=
∂ΘT

∂y
B + ΘT ∂B

∂y
. (22)

B. The Formula of EFG Method

Substituting Eqs. (14), (21) and (22) into Eq. (6), a semi-
discrete ordinary differential equation (ODE) is obtained

MṪ +KT = F , (23)

where T is the vector of the temperature of the unknown
node, Ṫ is the first derivative of T for time, and the heat
capacitance matrix M , the heat conductance matrix K and
the load vector F are as follows:

M ij =

∫
Ω

ρcpφi(x)φj(x)dΩ, (24)

Kij =

∫
Ω

(kx
∂φi
∂x

∂φj
∂x

+ ky
∂φi
∂y

∂φj
∂y

)dΩ, (25)

F i =

∫
Γq

qφi(x)dΓ. (26)
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IV. TIME DISCRETIZATION

There are many methods available for solving ODE,
including the forward Euler method, the backward Euler
method, the CN method, etc. Generally speaking, these
methods employ fixed step sizes which require very small
time steps to ensure accuracy. However, when there is min-
imal change in solution behavior, utilizing small time steps
becomes inefficient. To enhance the efficiency of meshless
computing, we can control the time step adaptively. In this
paper, the TR-AB2 method is used to integrate the Eq.
(23). This algorithm consists of three main components: time
integration, time step selection method, and stabilization of
the integrator. The following is a detailed explanation.

A. Time Integration

Rewrite Eq. (23) as

Ṫ = M−1(F −KT ), (27)

from the trapezoidal rule, we can get:

T n+1 = T n +
1

2
∆tn(Ṫ n+1 + Ṫ n)

= T n +M−1(F − 1

2
K(T n+1 + T n)).

(28)

It should be noted that because there is often a rounding
error accumulation, it will lead to the generation of time
step asymptotes, and prevent them from increasing at the
desired speed. That is to say, the implementation of this
linear multistep in the adaptive algorithm is likely to have
a “stall” tendency. Moreover, Eq. (28) requires matrix in-
version, which can be time-consuming. To minimize the
potential rounding instability and enhance the computational
efficiency, the TR-AB2 method updates the vector scaled by
time step. To be specific, given the T n, Ṫ n and T̈ n, T̃ n can
be calculated first by [19]

(M +
1

2
∆tnK)T̃ n = MṪ n −KT n + F , (29)

M , K and F can be obtained from Eqs. (24), (25) and (26).
Then use the obtained T̃ n to update the TR solution vec-

tor T n+1. Additionally, calculate the time derivative Ṫ n+1

required for the next operation

T n+1 =
1

2
∆tnT̃ n + T n, (30)

Ṫ n+1 = T̃ n − Ṫ n. (31)

The adaptive time step is implemented through control of
the local truncation error (LTE) related to each time step. The
TR-AB2 method uses the explicit AB2 method to estimate
the LTE. Firstly, the AB2 method updates T̄n by

T̄ n = Ṫ n +
1

2
(Ṫ n+1 − Ṫ n), (32)

then use T̄ n to calculate LTE [30]:

dn =
∆tn

3(1 + ∆tn−1/∆tn)
(
1

2
T̃ n − T̄ n). (33)

In program implementation, because the AB2 can not self-
start, first few steps should be guided by a one-step method,

and then turn to the multi-step method. Therefore, we first
calculate Ṫ 0 = M−1(F − KT 0) through Eq. (23), take
∆t1 = ∆t0 as a small value (for example 10−9), and use
Eqs. (29) and (31) to calculate Ṫ 1. Then turn on the error
control and ∆t change at the third time step.

B. Time Step Selection

Because of the need to achieve an adaptive time step
by controlling the LTE associated with each time step, we
have estimated the LTE in the previous section, and then
need to predict the LTE at the next step. The ratio of the
continuous LTE ||dn+1||

||dn|| is proportional to the cube of the
ratio of the continuous time steps (∆tn+1

∆tn
)3. Consequently,

though setting a user-specified tolerance (this article selects
ε = 10−4) can control the next LTE ||dn+1|| ≤ ε [31]. Then
the next time step can be selected, that is, the time step
selection heuristic is obtained:

∆tn+1 = ∆tn(ε/||dn+1||)
1
3 , (34)

where || · || is a properly defined vector norm. The choice of
this norm affects the required LTE tolerance value to achieve
a certain level of global accuracy. However, it is anticipated
that it will not have a substantial influence on the qualitative
behavior of the adaptive time-stepping algorithm. This paper
refers to the reference [19], using the L2 norm

||dn|| = (dTnMdn)1/2. (35)

C. Stabilization of the Integrator

TR is highly recommended because it has A-stability and
optimal accuracy [32], and adaptive time steps that accom-
modate error control [33]. However, the TR scheme is also
known to suffer from “ringing” instability. This ringing effect
occurs from the absence of L-stability in the TR method,
resulting in a ringing effect when the time step is too large.
But this, in turn, can cause the adaptive time step algorithm
to stall, meaning that even if the physical conditions allow,
the time step cannot continue to grow and remains smaller
than required. As a result, computing efficiency cannot be
effectively improved. To counteract the ringing effect that
TR is prone to, that is, to suppress oscillations, Gresho et
al. [19] proposed a stable trapezoidal rule using time step
average. The details of the implementation are given, that
is, for every n∗ step, the following steps are periodically
followed to stabilize the integrator.

1) Calculate T n, Ṫ n and set

tn+1 = tn +
1

2
∆tn. (36)

2) Update T n to the average of T n and T n−1

T n =
1

2
(T n + T n−1). (37)

3) Update the derivative Ṫ n to the average of Ṫ n and
Ṫ n−1

Ṫ n =
1

2
(Ṫ n + Ṫ n−1). (38)

4) Update T̃ n by Eq. (29), and update T n+1 and Ṫ n+1

with the known T̃ n
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T n+1 = T n +
1

4
∆tnT̃ n, (39)

Ṫ n+1 =
1

2
T̃ n. (40)

Then, the next time step is calculated through Eq. (34),
and the integral is continued.

Through the average process, the integrator is stabilized,
and the adaptive trapezoidal rule without stagnation is real-
ized. In this way, a relatively large time step can be obtained,
and the amount of calculation can be effectively reduced.

V. NUMERICAL EXAMPLE

To verify the suitability and effectiveness of the above
algorithm in addressing transient heat conduction problems,
we use EFG-CN and FEM with CN for comparison. The
EFG-CN uses the EFG method for spatial discretization and
the fixed-step CN method for time integration. To compare
the calculation accuracy, this paper uses L∞-norm error,
which is defined as

||Tnum − T exr||L∞ = max
1≤i≤n

|Tnumi − T exri |,

where Tnum is numerical solution, T exr is exact solution or
reference solution.

Example 5.1. The two-dimensional transient heat conduction
problem in a square domain [0, π]× [0, π] is considered, and
the basic parameters used in the calculation are as follows.
The thermal conductivity k, specific heat cp, and density ρ
are taken to be unity. The exact solution is

T (x, y, t) = e−2t sinx cos y.

Initial and boundary conditions are capable of being ob-
tained by exact solutions. The time step of EFG-CN method
is ∆t = 0.01s.

Fig. 1 shows the change of time step obtained by the EFG-
TR-AB2 method with time when the average process is not
used and the average process is used. It can be seen that
without the average process, the ringing effect occurs, and
the time step can no longer continue to grow when it is
still small. Using the average process, the ringing effect is
offset, and the time step can be gradually increased to achieve
the desired effect. Therefore, to improve computational effi-
ciency, the average process is a necessary step. The values
of n∗ in different examples are different. This paper chooses
n∗ = 10.

Fig. 2 shows a comparison between the temperatures
obtained using the EFG-TR-AB2 method and the exact
solution when t = 2s and the number of nodes is 2601.
Fig. 3 shows the temperatures calculated using the EFG-TR-
AB2 method and exact solution along x = π

2 when t = 2s
and the number of nodes is 2601. It can be observed from
Figs. 2 and 3 that the results calculated using EFG-TR-AB2
method exhibit excellent agreement with the exact solutions,
thus verifying the accuracy and feasibility of this proposed
method.

Fig. 4 shows the temperatures calculated by EFG-TR-AB2
method and the exact solution at point A (π2 ,π2 ) changes over
time when the number of nodes is 2601. The details in the
circle box of Fig. 4 are shown in Fig. 5. It can be observed
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(a) The average process is not used to offset stagnation
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(b) The average process is used to offset stagnation

Fig. 1. Comparing the time step obtained by the TR-AB2 method without
using the average process and using the average process when calculating
Example 1.

from Figs. 4 and 5 that the temperatures calculated using
EFG-TR-AB2 method is very close to the exact solution.
Furthermore, from t = 0s to t = 20s, the EFG-TR-AB2
method has only experienced 184 time steps. In contrast,
the EFG-CN method needs to experience 2000 time steps
because the time step is fixed to 0.01. This indicates that
satisfactory accuracy can be achieved using less computa-
tional effort by employing the EFG-TR-AB2 method.

Table I shows the calculation time and error of EFG-
TR-AB2 and EFG-CN methods when t = 20s under the
same node distributions. It is evident from data that as node
numbers increase, results from both methods gradually con-
verge while error decreases and calculation time increases.
In addition, when compared under the same parameters, both
methods have similar levels of accuracy, and the computation
time for EFG-TR-AB2 is significantly shorter than that of
EFG-CN. In conclusion, when the accuracy requirement is
certain, the EFG-TR-AB2 method greatly improves compu-
tational efficiency.

Example 5.2. The two-dimensional nonlinear transient heat
conduction problem in a square domain [0, 1] × [0, 1] is
considered. Fig. 6 illustrated the geometry and boundary
conditions, and basic parameters employed in the calculation
are as follows.

The initial temperature T0 = 0◦C, the specific heat
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(a) EFG-TR-AB2 solution

(b) Exact solution

Fig. 2. The comparison between the EFG-TR-AB2 isotherm and the exact
solution when t = 2s.
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Fig. 3. Comparison of the EFG-TR-AB2 solution along x = π
2

with the
exact solution at t = 2s.

TABLE I
THE COMPUTATIONAL TIME AND ERROR OF EFG-TR-AB2 AND

EFG-CN WHEN t = 20s.

Number of node
error time

EFG-TR-AB2 EFG-CN EFG-TR-AB2 EFG-CN

2601 0.0029 0.0037 0.3718 7.566
10201 0.0012 0.001 1.937 41.21
22801 6.97E-04 5.22E-04 10.70 127.00
40401 3.09E-04 3.47E-04 43.00 236.00

cp = 400J/kg◦C, the density ρ = 9000kg/m3, the thermal
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Fig. 4. The temperature distribution of point A (π
2

,π
2

) with time.
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Fig. 5. The detailed results shown in the circle box of Fig. 4.

conductivity k = 400(1 − 1
2000T )W/m◦C. The boundary

condition T = 200◦C is specified on the left, and the others
are T = 100◦C.

Fig. 6. Geometry and boundary conditions.

EFG-CN method employs the time step ∆t = 1s, and
number of nodes is 2601. The time step of the EFG-TR-AB2
method varies with time as shown in Fig. 7. At the end of the
figure, a decrease in time step size occurs due to calculation
limitations imposed by reaching target times. Fig. 8 shows
the isotherms calculated at t = 1000s by the EFG-TR-AB2
method, EFG-CN method, and FEM with 21379 nodes. It
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Fig. 7. The time step of TR-AB2 method changes with time.

TABLE II
THE COMPUTATIONAL TIME AND ERROR OF EFG-TR-AB2 AND

EFG-CN METHODS ARE CALCULATED WHEN t = 5000s.

Number of node
EFG-CN EFG-TR-AB2

∆t time error time error

1 2.33E+04 0.08
2601 5 4.74E+03 0.29 6.71E+02 0.18

10 2.38E+03 0.67

is evident that the calculation results of EFG-TR-AB2 and
EFG-CN are almost the same as those of FEM with denser
meshes, which further proves the stability of our method.
Fig. 9(a) illustrates the temperature along x = 1

2 at t = 500s,
and Fig. 9(b) illustrates the temperature at point A ( 1

2 , 1
2 ) with

time. As anticipated, results obtained using the EFG-TR-AB2
scheme closely align with those from EFG-CN methods,
thereby validating our proposed approach’s accuracy.

In general, the denser the grid, the higher the accuracy. For
comparison, the solution of the EFG-CN method when the
number of nodes is 160801 and the time step is ∆t = 1s is
used as the reference solution. Table II shows the calculation
time and error of EFG-TR-AB2 and EFG-CN methods
when t = 5000s. It can be observed that when the error
of the two methods is the same order of magnitude, the
EFG-TR-AB2 method requires much less calculation time
than the EFG-CN method. The obtained numerical results
provide additional evidence supporting the effectiveness of
the proposed method.

Example 5.3. The two-dimensional transient heat conduction
problem in the circular region Ω = {(x, y)|x2 + y2 ≤ 0} is
considered, and the basic parameters used in the calculation
are as follows. The thermal conductivity k, specific heat cp,
and density ρ are taken to be unity. The exact solution is

T (x, y, t) = 100(e−2t cosx sin y + e−8t cos(2x) sin(2y)).

Boundary condition on the circumference x2 + y2 = 1
is considered, and the initial condition is capable of being
obtained by the exact solution. EFG-CN method employs the
time step ∆t = 0.01s, and the number of nodes is 2168. The
time step of the EFG-TR-AB2 method varies with time as
depicted in Fig. 10.

Fig. 11 illustrates the isotherms calculated by the EFG-TR-
AB2 method and the exact solution when t = 1s. Fig. 11

100 110 120 130 140 150 160 170 180190

(a) EFG-TR-AB2 solution

100 110 120 130 140 150 160 170 180190

(b) EFG-CN solution

100 110 120 130 140 150 160 170 180190

(c) FEM solution

Fig. 8. When t = 1000s, the isotherms are calculated using the EFG-TR-
AB2 method, EFG-CN method, and FEM respectively.

illustrates excellent agreement between numerical solutions
obtained using the EFG-TR-AB2 scheme and exact solutions,
thus confirming the reliability of our proposed method for
resolving transient heat conduction issues.

Table III shows the calculation time and error of EFG-
TR-AB2 and EFG-CN at t = 20s. From the data provided
by Table III, it is evident that when the error calculated
by the EFG-TR-AB2 and EFG-CN methods is in the same
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) with
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Fig. 9. Comparison of EFG-CN and EFG-TR-AB2 solutions.
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Fig. 10. The time step of TR-AB2 method changes with time.

order of magnitude, the EFG-TR-AB2 method requires less
computation time. This further proves that the method given
in this paper can obtain satisfactory results for various solu-
tion regions, including complex circular regions. Moreover,
the EFG-TR-AB2 method demonstrates accurate and stable
calculation results, highlighting its potential.

Example 5.4. The fourth example is a heat conduction
problem with more complex geometric conditions. Fig. 13
illustrated the geometry and boundary conditions, and the
top and bottom edges and hole boundaries are insulated. The
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(b) Exact solution

Fig. 11. The comparison between the EFG-TR-AB2 isotherm and the exact
solution at t = 1s.

TABLE III
THE COMPUTATIONAL TIME AND ERROR OF EFG-TR-AB2 AND

EFG-CN METHODS ARE CALCULATED WHEN t = 20s.

Number of node
EFG-CN EFG-TR-AB2

∆t time error time error

0.001 57.19 1.69E-04
2168 0.01 5.83 0.0016 0.59 0.0028

0.05 1.16 0.0139
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Fig. 12. The time step of TR-AB2 method changes with time.

initial temperature is T0 = 1◦C, and the necessary boundary
conditions T = 500◦C and T = 20◦C are specified on
the left and right boundaries, respectively. The specific heat
cp = 200J/kg◦C, the density ρ = 5000kg/m3, the thermal
conductivity k = 200W/m◦C [22], [34]. EFG-CN method
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employs the time step ∆t = 0.01s, and the number of nodes
is 4490. The time step of the EFG-TR-AB2 method varies
with time as shown in Fig. 12.

Fig. 13. Geometry and boundary conditions.
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(a) EFG-TR-AB2 solution
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(b) EFG-CN solution
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(c) FEM solution

Fig. 14. When t = 10s, the isotherms are calculated using the EFG-TR-
AB2 method, EFG-CN method, and FEM respectively.

Figs. 14 and 15 illustrate the isotherms calculated at t =
10s and t = 100s by the EFG-TR-AB2 method, EFG-CN
method, and FEM with 20410 nodes. From Figs. 14 and 15, it
is evident that the results calculated using the EFG-TR-AB2

method are almost the same as those of EFG-CN method and
FEM with denser meshes. That is to say, the EFG-TR-AB2
method has a good response to the transient heat conduction
problem.
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(a) EFG-TR-AB2 solution
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(b) EFG-CN solution
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Fig. 15. When t = 100s, the isotherms are calculated using the EFG-TR-
AB2 method, EFG-CN method, and FEM respectively.

To quantify the calculation accuracy of the EFG-TR-AB2,
Fig. 16 shows the temperature calculation results calculated
using the EFG-TR-AB2 method and the EFG-CN method at
points A (0.065, 0.025) and B (0.075, 0.015). It is evident
that under identical node distributions, the results calculated
using EFG-TR-AB2 method and EFG-CN method are very
close.

In addition, under the same computer and the same node
distribution, the time used for example 4 calculations by the
EFG-CN method is 7.108, and the time used for example
4 calculations by the EFG-TR-AB2 method is 1.521, which
also shows that the EFG-TR-AB2 method has a very obvious
effect in shortening the calculation time compared with EFG-
CN method. Numerical results confirm that the EFG-TR-
AB2 method applies to transient heat conduction problems,
and can effectively enhance the computational efficiency,
especially for long-time simulation problems.
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Fig. 16. The temperature at point A (0.065, 0.025) and B (0.075, 0.015)
with time.

VI. CONCLUSION

In this work, the EFG-TR-AB2 method is successfully ap-
plied to the transient heat conduction problem. EFG-TR-AB2
method employs the EFG method for spatial discretization
and the TR-AB2 method for time integration. Compared with
the non-adaptive time step, this method significantly reduces
the number of time step that need calculation, resulting
in substantial savings in wall clock time. Moreover, the
adaptive algorithm autonomously determines an optimal time
step, omitting the time-consuming simulation experiment to
find the appropriate time step. Through several numerical
examples, we confirm the accuracy and effectiveness of the
EFG-TR-AB2 method obtained by combining the TR-AB2
method with the EFG method. Not only does this approach
maintain comparable accuracy to conventional EFG methods
but it also considerably shortens prediction times for heat
conduction problems, particularly those involving long-term
simulations. Furthermore, this method can be easily extended
to other meshless methods based on Galerkin weak form,
such as meshless local Petrov-Galerkin.
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