Fuzzy Topological Graphs in Bipolar and Related Settings

Shu Gong, and Wei Gao, Member, IAENG

Abstract

Bipolar objects are widespread in nature, and their two attributes describe the opposition and unity of the things. Motivated by characterizing fuzzy topological structures by means of fuzzy graphs, we propose a bipolar fuzzy topological graph to measure the features of bipolar fuzzy systems. The topological characteristics in bipolar neutrosophic and bipolar interval-valued fuzzy settings are discussed as well. Several instances are manifested to clarify new definitions and conclusions. Furthermore, the properties of edge calculating and graph isomorphic are determined.

Keywords: bipolar fuzzy topological graph, neutrosophic set, bipolar interval-valued fuzzy topological, homomorphism, isomorphism

I. Introduction

Fuzzy graph research has witnessed many years of contributions from scholars. Kauffman [1] first defined the framework of fuzzy graph which was later expanded by Rosenfield [2]. Akram [3] argued a bipolar fuzzy graph, and several properties and applications were obtained in [4] and [5]. Yang et al. [6] suggested a generalized version of bipolar fuzzy graphs. Furthermore, fuzzy line graph, fuzzy tree, fuzzy block, fuzzy planner graph, and fuzzy incidence graph were introduced by Mordeson [7], Sunitha and Vijayakumar [8, 9], Samanta and Pal [10] and Dinesh [11] respectively. Fuzzy graph models have been prevalent and widely used in various decision-making algorithms and applications in recent years (Sitara et al. [12], Jia et al. [13], Karaaslan [14], and Akram et al. [15], [16] and [17]).

The topological indices of graph structures are widely investigated (see Gao et al. [18], [19] and [20], Anuradha et al. [21], Azeem et al. [22] and Mondal et al. [23]). Notably, the topological indices of various fuzzy graphs in distinct settings are studied. Authors in [24] revised the concepts of fuzzy graphs (FGs), and they defined and researched fuzzy connectivity and distance-based indices for fuzzy graph

[^0]setting (see [25], [26] and [27]), including the bipolar fuzzy connectivity index and bipolar fuzzy Wiener index. Binu [28] applied the fuzzy Wiener index to illegal immigration networks, and Ali et al. [29] considered the fuzzy graphs with the Hamiltonian cycle.

Recently, Atef et al. [30] characterized the fuzzy topological (FT) structures of fuzzy sets (FSs) by means of FGs and applied them in smart cities. Fueled by this contribution, we aim to feature the fuzzy topological structures of bipolar fuzzy set (BFS), neutrosophic set (NS), bipolar neutrosophic set (BNS), interval-valued fuzzy set (IVFS), and bipolar interval-valued fuzzy set (BIVFS) in light of FGs called a bipolar fuzzy topological graph (BFTG), neutrosophic topology graph (NTG), bipolar neutrosophic topology graph (BNTG), interval-valued fuzzy topology graph (IVFTG) and bipolar interval-valued fuzzy topology graph (BIVFTG), respectively.

The following parts of this work are built as follows: concepts and notations are introduced first; then the parallel classes and their fuzzy graphs in various settings are determined; new algebraic operations on fuzzy topological graphs in different settings are presented subsequently. The main conclusions are manifested in Section III and Section IV, and each section is divided into several subsections corresponding to different settings. The arguments are stated in this paper along with some examples to clearly explain the connotation of contents.

Note that the bipolar fuzzy graph in this article has analogous definitions from the bipolar fuzzy graph in [14-17, 24-28], but it still involves tiny differences. The bipolar fuzzy graph in other articles are fuzzy graph structure itself, and its edge membership function (MF) and vertex set MF are determined by the fuzzy data itself. However, the bipolar fuzzy graph (BFG) in this article is determined by the relationship of bipolar sets in special settings, and a vertex in the BFG represents a BFS. This essential difference is also applied to neutrosophic graphs (NGs), bipolar neutrosophic graphs (BNGs), etc.

II. Preliminaries

The purpose here is to review the concepts and terminologies of FSs, NSs, BNSs, IVFSs and BIVFSs.

Let V be a universal set (US) with at least one element, and $K=\left\{\left(v, \mu_{K}^{P}(v), \mu_{K}^{N}(v)\right): v \in V\right\}$ be a BFS in V if two maps satisfy $\mu_{K}^{P}: V \rightarrow[0,1]$ and $\mu_{K}^{N}: V \rightarrow[-1,0]$. \varnothing_{V} or \varnothing in short is a null BFS on V such that
$\mu_{\varnothing}^{N}(v)=\mu_{\varnothing}^{P}(v)=0$ for any $v \in V . \mathbb{V}$ is absolute BFS on V if $\mu_{\mathrm{V}}^{P}(v)=1$ and $\mu_{\mathbb{V}}^{N}(v)=-1$ for all $v \in V$.

Let $\quad S_{1}=\left\{\left(v, \mu_{S_{1}}^{+}(v), \mu_{S_{1}}^{-}(v)\right)\right\} \quad$ and $\quad S_{2}=\{(v$, $\left.\left.\mu_{S_{2}}^{+}(v), \mu_{S_{2}}^{-}(v)\right)\right\}$ be two BFSs on V. If $\mu_{S_{1}}^{+}(v) \leq \mu_{S_{2}}^{+}(v)$ and $\mu_{S_{1}}^{-}(v) \geq \mu_{S_{2}}^{-}(v)$ hold for any $v \in V$, then we say S_{1} is a bipolar fuzzy subset of S_{2}, denoted by $S_{1} \subseteq S_{2}$. If S_{1} is a part of S_{2}, then we say S_{1} is a bipolar fuzzy partial subset of S_{2}.
Let G and G^{\prime} be two fuzzy graphs (bipolar fuzzy graph, interval-valued fuzzy graph or others). The two graphs are isomorphic $G \cong G^{\prime}$, if there is a bijective $f: V \rightarrow V^{\prime}$ to establish a corresponding one-to-one relationship for the vertex and edge membership functions.
Tehrim [31] introduced the bipolar fuzzy topology as follows: let V be a universal set, $B F(V)$ be the family of all bipolar fuzzy sets on $V, X=\{(v, 1,-1), v \in V\} \in B F(V)$ be an absolute bipolar fuzzy set, $\mathbb{B F}(X)$ be the class of all bipolar fuzzy subsets of X, and τ be the subclass of $\mathbb{B} \mathbb{F}(X)$. Then τ is a bipolar fuzzy topology if (i) $\varnothing, X \in \tau$, where $\varnothing=\{(v, 0,0), v \in V\}$; (ii) $S_{1}, S_{2} \in \tau \Rightarrow S_{1} \cap S_{2} \in \tau$; (iii) $S_{l} \in \tau$ where $l \in \psi \Rightarrow \bigcup_{l \in \psi} S_{l} \in \tau$. If τ is a bipolar fuzzy topological on X, then (V, τ) is a bipolar fuzzy topological space over X.

For a universal set V, a neutrosophic set is denoted by

$$
K=\left\{\left(v, T_{K}(v), I_{K}(v), F_{K}(v)\right): v \in V\right\},
$$

where $T_{K}, I_{K}, F_{K} \in[0,1]$ denotes the membership value of truthness, indeterminacy and falsity, respectively. Thus, $0 \leq T_{K}+I_{K}+F_{K} \leq 3$. The basic operation of inclusion, equality, union, intersection and complement can be referred to Tang [32].

Let $\varnothing=\{(v, 0,1,1)): v \in V\}$ and $X=\{(v, 1,0,0)): v \in V\}$ be null neutrosophic set and absolute neutrosophic set respectively. Let V be a universal set, $N(V)$ be the family of all neutrosophic sets on $V, X \in N(V)$ be an absolute neutrosophic set, $\mathbb{N}(X)$ be the class of all neutrosophic subsets of X, and τ be the subclass of $\mathbb{N}(X)$. Then τ is called neutrosophic topology if (i) $\varnothing, X \in \tau$; (ii) $S_{1}, S_{2} \in \tau \Rightarrow S_{1} \cap S_{2} \in \tau$; (iii) $\quad S_{l} \in \tau \quad$ where $\quad l \in \psi$ $\Rightarrow \bigcup_{l \in \psi} S_{l} \in \tau$. If τ is a neutrosophic topological on X, then (V, τ) is the neutrosophic topological space over X.
The bipolar neutrosophic set of the universal set V is formulated by

$$
K=\left\{\left(v, T_{K}^{+}(v), I_{K}^{+}(v), F_{K}^{+}(v), T_{K}^{-}(v), I_{K}^{-}(v), F_{K}^{-}(v)\right): v \in V\right\},
$$

where $T_{K}^{+}(v), I_{K}^{+}(v), F_{K}^{+}(v) \in[0,1]$ are positive membership of truthness, indeterminacy and falsity respectively; and $T_{K}^{-}(v), I_{K}^{-}(v), F_{K}^{-}(v) \in[-1,0]$ are negative membership of truthness, indeterminacy and falsity respectively. The basic
operations of inclusion, equality, union, intersection and complement can be referred to Zhu et al. [33] and Ali et al. [34].

Let $\varnothing=\{(v, 0,1,1,0,-1,-1)): v \in V\}$ and $X=\{(v$, $1,0,0,-1,0,0)): v \in V\}$ be a null bipolar neutrosophic set and an absolute bipolar neutrosophic set respectively. Let V be a US, $B N(V)$ be the family of all bipolar neutrosophic sets on $V, X \in B N(V)$ be an absolute bipolar neutrosophic set, $\mathbb{B} \mathbb{N}(X)$ be the class of all bipolar neutrosophic subsets of X, and τ be the subclass of $\mathbb{B} \mathbb{N}(X)$. Then τ is called bipolar neutrosophic topology if (i) $\varnothing, X \in \tau$; (ii) $S_{1}, S_{2} \in \tau \Rightarrow S_{1} \cap S_{2} \in \tau$; (iii) $S_{l} \in \tau$ where $l \in \psi \Rightarrow \bigcup_{l \in \psi} S_{l} \in \tau$ (see Tehrim [31]). If τ is a bipolar neutrosophic topological on X, then (V, τ) is the bipolar neutrosophic topological space over X.

For the universal set V, an interval-valued fuzzy set is denoted by

$$
K=\left\{\left(v,\left[\mu_{K}^{+l}(v), \mu_{K}^{+u}(v)\right]\right): v \in V\right\},
$$

where $0 \leq \mu_{K}^{+l}(v) \leq \mu_{K}^{+u}(v) \leq 1$ and $\left[\mu_{K}^{+l}(v), \mu_{K}^{+u}(v)\right]$ is an interval in $[0,1]$. Let $\varnothing=\{(v,[0,0])): v \in V\}$ and $X=\{(v,[1,1])): v \in V\}$ be a null IVFS and an absolute interval-valued fuzzy set respectively. Let V be a US, $I V F(V)$ be the family of all interval-valued fuzzy sets on V, $X \in I V F(V)$ be an absolute interval-valued fuzzy set, $\mathbb{I V} \mathbb{F}(X)$ be the class of all interval-valued fuzzy subsets of X, and τ be the subclass of $\mathbb{I V F}(X)$. Then τ is called interval-valued fuzzy topology (IVFT) if (i) $\varnothing, X \in \tau$; (ii) $S_{1}, S_{2} \in \tau \Rightarrow S_{1} \cap S_{2} \in \tau$; (iii) $S_{l} \in \tau$ where $l \in \psi \Rightarrow \bigcup_{l \in \psi} S_{l} \in \tau$. If τ is an IVFT on X, then (V, τ) is interval-valued fuzzy topological space over X.

For a universal set V, a bipolar interval-valued fuzzy set is denoted by

$$
K=\left\{\left(v,\left[\mu_{K}^{+l}(v), \mu_{K}^{+u}(v)\right],\left[\mu_{K}^{-l}(v), \mu_{K}^{-u}(v)\right]\right): v \in V\right\}
$$

where $0 \leq \mu_{K}^{+l}(v) \leq \mu_{K}^{+u}(v) \leq 1, \quad-1 \leq \mu_{K}^{-l}(v) \leq \mu_{K}^{-u}(v) \leq 0$, $\left[\mu_{K}^{+l}(v), \mu_{K}^{+u}(v)\right]$ is an interval in $[0,1]$ and $\left[\mu_{K}^{-l}(v)\right.$, $\left.\mu_{K}^{-u}(v)\right]$ is an interval in $[-1,0]$. Let $\varnothing=\{(v,[0,0]$, $[0,0])): v \in V\}$ and $X=\{(v,[1,1],[-1,-1])): v \in V\}$ be a null bipolar interval-valued fuzzy set and an absolute bipolar interval-valued fuzzy set respectively. Let V be a US, $B I V F(V)$ be the family of all BIVFSs on V, $X \in \operatorname{BIVF}(V)$ be an absolute bipolar interval-valued fuzzy set, $\mathbb{B} \mathbb{I V P}(X)$ be the class of all bipolar interval-valued fuzzy subsets of X, and τ be the subclass of $\mathbb{B} \mathbb{I V} \mathbb{F}(X)$. Then τ is called bipolar interval-valued fuzzy topology (BIVFT) if (i) $\varnothing, X \in \tau$; (ii) S_{1}, S_{2} $\in \tau \Rightarrow S_{1} \cap S_{2} \in \tau$; (iii) $S_{l} \in \tau$ where $l \in \psi \Rightarrow \bigcup_{l \in \psi} S_{l} \in \tau$.

If τ is a BIVFT on X, then (V, τ) is bipolar interval-valued fuzzy topological space over X [35].
If two graphs G_{1} and G_{2} are obtained from the neutrosophic set, bipolar neutrosophic set, interval-valued fuzzy set or interval valued bipolar fuzzy set, then we can define the isomorphism $G_{1} \cong G_{2}$ using the same fashion as in the bipolar setting.

III. Parallel classes

We raise new concepts of parallel classes of bipolar fuzzy set, NSs, BNSs, interval-valued fuzzy sets and BIVFSs.

A. Parallel classes in bipolar fuzzy setting

Definition 1. Let V be a universal set, $B F(V)$ be the class of all bipolar fuzzy sets of V, and $C_{1}, C_{2} \subseteq B F(V)$. We say C_{1} is parallel to C_{2} (denoted by $X \sim Y$, where X, Y are bipolar fuzzy sets in $B F(V)$, each element in C_{1} is a bipolar fuzzy partial subset of X, and each element in C_{2} is a bipolar fuzzy partial subset of Y), if there exists a bijective bipolar fuzzy mapping $F: X \rightarrow Y$ such that for any $c_{1} \in C_{1}$, we have $F\left(c_{1}\right)=c_{2}$ and $c_{2} \in C_{2}$. Let $X=Y$. In this case, C_{1} is parallel to C_{2} if there exists a bijective bipolar fuzzy mapping $F: X \rightarrow X$ satisfying $F\left(C_{1}\right)=C_{2}$.

Example 1. Let $V=\left\{v_{1}, v_{2}, v_{3}\right\}$ be a universal set, and $\quad X=\left\{\left(v_{1}, 0.4,-0.2\right),\left(v_{2}, 0.5,-0.3\right),\left(v_{3}, 0.1,-0.8\right)\right\}$ be a bipolar fuzzy set on V. Set $C_{1}=\left\{\left\{\left(v_{3}, 0.1,-0.8\right)\right\}\right.$, $\left.\left\{\left(v_{1}, 0.4,-0.2\right),\left(v_{2}, 0.5,-0.3\right)\right\},\left\{\left(v_{3}, 0.1,-0.8\right),\left(v_{1}, 0.4,-0.2\right)\right\}\right\}$,

$$
C_{2}=\left\{\left\{\left(v_{1}, 0.4,-0.2\right)\right\},\left\{\left(v_{2}, 0.5,-0.3\right),\left(v_{3}, 0.1,-0.8\right)\right\},\right.
$$

$$
\left.\left\{\left(v_{1}, 0.4,-0.2\right),\left(v_{2}, 0.5,-0.3\right)\right\}\right\}
$$

Clearly, all the elements in C_{1} and C_{2} are the bipolar fuzzy partial subsets of X. There is a bijective bipolar mapping $F: X \rightarrow X$ with

$$
F\left(\left\{\left(v_{3}, 0.1,-0.8\right)\right\}\right)=\left\{\left(v_{1}, 0.4,-0.2\right)\right\},
$$

$F\left(\left\{\left(v_{1}, 0.4,-0.2\right),\left(v_{2}, 0.5,-0.3\right)\right\}\right)=\left\{\left(v_{2}, 0.5,-0.3\right),\left(v_{3}, 0.1,-0.8\right)\right\}$,
$F\left(\left\{\left(v_{3}, 0.1,-0.8\right),\left(v_{1}, 0.4,-0.2\right)\right\}\right)=\left\{\left(v_{1}, 0.4,-0.2\right),\left(v_{2}, 0.5,-0.3\right)\right\}$.
Therefore, C_{1} and C_{2} are parallel.
From Example 1, we know that the essence of parallelism is the one-to-one correspondence between the elements in the bipolar fuzzy set. In this example, we can see the correspondence between the following elements in X :

$$
\begin{aligned}
& \left(v_{1}, 0.4,-0.2\right) \xrightarrow{F}\left(v_{2}, 0.5,-0.3\right), \\
& \left(v_{2}, 0.5,-0.3\right) \xrightarrow{F}\left(v_{3}, 0.1,-0.8\right), \\
& \left(v_{3}, 0.1,-0.8\right) \xrightarrow{F}\left(v_{1}, 0.4,-0.2\right) .
\end{aligned}
$$

Next, we argue that any class of BFSs is denoted by a BFG in view of operation \wedge between bipolar fuzzy set classes. Let S_{1}, \cdots, S_{n} be bipolar fuzzy sets, $C=\left\{S_{1}, \cdots, S_{n}\right\}$ be class of these bipolar fuzzy sets and G be a BFG corresponding to C. BFG G is constructed as follows: each vertex in G corresponds to a BFS among S_{1}, \cdots, S_{n}, and there are $\left|S_{i} \wedge S_{j}\right|$ edges between vertices S_{i} and S_{j}. The following example is applied to illustrate such a kind of BFG.

Example 2. The classes of BFSs

$$
\begin{aligned}
& C_{1}=\left\{S_{1}=\left\{\left(v_{1}, 0.2,-0.7\right)\right\}, S_{2}=\left\{\left(v_{2}, 0.3,-0.6\right)\right\},\right. \\
& S_{3}\left.=\left\{\left(v_{1}, 0.2,-0.7\right),\left(v_{2}, 0.3,-0.6\right)\right\}\right\}, \\
& C_{2}=\left\{S_{4}=\left\{\left(v_{1}, 0.2,-0.7\right),\left(v_{2}, 0.3,-0.6\right),\left(v_{3}, 0.8,-0.1\right)\right\},\right. \\
& S_{5}=\left\{\left(v_{4}, 0.4,-0.6\right),\left(v_{5}, 0.9,-0.3\right)\right\}, S_{6}=\left\{\left(v_{3}, 0.8,-0.1\right),\right. \\
&\left.\left.\quad\left(v_{4}, 0.4,-0.6\right)\right\}\right\}, \\
& C_{3}=\left\{S_{7}=\left\{\left(v_{3}, 0.8,-0.1\right),\left(v_{6}, 0.6,-0.6\right)\right\}, S_{8}=\right. \\
& \quad\left\{\left(v_{7}, 0.4,-0.9\right),\left(v_{8}, 0.3,-0.5\right),\left(v_{9}, 0.2,-0.7\right)\right\}, \\
& S_{9}\left.=\left\{\left(v_{3}, 0.8,-0.1\right),\left(v_{9}, 0.2,-0.7\right),\left(v_{10}, 0.4,-0.3\right)\right\}\right\} .
\end{aligned}
$$

represent the same bipolar fuzzy graphs which are depicted in Fig 1.

Fig 1. A bipolar fuzzy graph represents C_{1}, C_{2} and C_{3}.
Definition 2. Let $C=\left\{C_{i}: i \in I\right\}$ be a collection of all classes of a BFS X, and hence C_{i} can be expressed by the same BFG $G\left(\left\{\left|\vee C_{i}\right|: i \in I\right\}\right.$ which is formulated by the graph number of a BFG G).

Example 3. Consider C_{1}, C_{2} and C_{3} as defined in Example 2, we get

$$
\begin{gathered}
\vee C_{1}=\left\{\left(v_{1}, 0.2,-0.7\right),\left(v_{2}, 0.3,-0.6\right)\right\}, \\
\vee C_{2}=\left\{\left(v_{1}, 0.2,-0.7\right),\left(v_{2}, 0.3,-0.6\right),\left(v_{3}, 0.8,-0.1\right),\right. \\
\left.\quad\left(v_{4}, 0.4,-0.6\right),\left(v_{5}, 0.9,-0.3\right)\right\}, \\
\vee C_{3}=\left\{\left(v_{3}, 0.8,-0.1\right),\left(v_{6}, 0.6,-0.6\right),\left(v_{7}, 0.4,-0.9\right),\right. \\
\left.\left(v_{8}, 0.3,-0.5\right),\left(v_{9}, 0.2,-0.7\right),\left(v_{10}, 0.4,-0.3\right)\right\} .
\end{gathered}
$$

The numbers of a BFG $\left|\vee C_{1}\right|,\left|\vee C_{2}\right|$ and $\left|\vee C_{3}\right|$ are 2, 5 and 6 respectively.

Next, we argue that any BFG G can be expressed by a class of BFSs. Notation \wedge is re-formulated to an operator for vertices of BFGs.

Definition 3. Let G be a BFG and v_{i}, v_{j} be two vertices of G. Suppose that v_{i} and v_{j} correspond to bipolar fuzzy sets S_{i} and S_{j} respectively, then $N\left(v_{i}, v_{j}\right)=\left|S_{i} \wedge S_{j}\right|$. Note
that $N\left(v_{i}, X\right)=\left|S_{i}\right|$ (resp. $\left.N\left(v_{j}, X\right)=\left|S_{j}\right|\right)$ if S_{i} (resp. S_{j}) is a bipolar fuzzy subset of X.
Example 4. If $S_{i}=\left\{\left(v_{1}, 0.2,-0.7\right)\right\}$ and $S_{j}=\left\{\left(v_{1}, 0.2,-0.7\right)\right.$, $\left.\left(v_{2}, 0.3,-0.6\right)\right\}$, then $S_{i} \wedge S_{j}=\left\{\left(v_{1}, 0.2,-0.7\right)\right\}$ and thus $N\left(S_{i}, S_{j}\right)=\left|S_{i} \wedge S_{j}\right|=1$.

Theorem 1. If G_{1} and G_{2} are two BFGs corresponding to two parallel classes C_{1} and C_{2}, then $G_{1} \cong G_{2}$.

Unfortunately, the converse of Theorem 1 may not establish in general since each BFG can express many classes, and we use the following example to illustrate it.

Example 5. Consider the classes of bipolar fuzzy sets

$$
C_{1}=\left\{S_{1}=\left\{\left(v_{1}, 0.2,-0.7\right)\right\}, S_{2}=\left\{\left(v_{2}, 0.3,-0.6\right)\right\}\right.
$$

$$
\left.\left\{\left(v_{1}, 0.2,-0.7\right),\left(v_{2}, 0.3,-0.6\right)\right\}\right\}
$$

$$
C_{2}=\left\{S_{4}=\left\{\left(v_{1}, 0.2,-0.7\right),\left(v_{2}, 0.3,-0.6\right),\left(v_{3}, 0.8,-0.1\right)\right\}\right.
$$

$S_{5}=\left\{\left(v_{4}, 0.4,-0.6\right),\left(v_{5}, 0.9,-0.3\right)\right\}, S_{6}=\left\{\left(v_{3}, 0.8,-0.1\right)\right.$, $\left.\left.\left(v_{4}, 0.4,-0.6\right)\right\}\right\}$.

Hence, bipolar fuzzy graphs corresponding to C_{1} and C_{2} are isomorphic to each other as depicted in Fig 2, but C_{1} and C_{2} are not parallel.

Fig 2. A bipolar fuzzy graph represents C_{1} and C_{2}

B. Parallel classes in neutrosophic setting

Definition 4. Let V be a US, $N F(V)$ be the class of all NSs of V, and $C_{1}, C_{2} \subseteq N F(V)$. We say C_{1} is parallel to C_{2} (denoted by $X \sim Y$, where X, Y are neutrosophic sets in $N F(V)$, each element in C_{1} is a neutrosophic partial subset of X, and each element in C_{2} is a neutrosophic partial subset of Y), if there exists a bijective neutrosophic mapping $F: X \rightarrow Y$ such that for any $c_{1} \in C_{1}$, we have $F\left(c_{1}\right)=c_{2}$ and $c_{2} \in C_{2}$. Let $X=Y$. Then C_{1} is parallel to C_{2} if there exists a bijective neutrosophic mapping $F: X \rightarrow X$ satisfying $F\left(C_{1}\right)=C_{2}$.

Example 6. Let $V=\left\{v_{1}, v_{2}, v_{3}\right\}$ be a US, $X=\left\{\left(v_{1}, 0.3\right.\right.$, $\left.0.4,0.2),\left(v_{2}, 0.4,0.8,0.3\right),\left(v_{3}, 0.1,0.6,0.8\right)\right\}$ be a NS on V. Set

$$
C_{1}=\left\{\left\{\left(v_{3}, 0.1,0.6,0.8\right)\right\},\left\{\left(v_{1}, 0.3,0.4,0.2\right),\left(v_{2}, 0.4,0.8,0.3\right)\right\},\right.
$$

$\left.\left\{\left(v_{3}, 0.1,0.6,0.8\right),\left(v_{1}, 0.3,0.4,0.2\right)\right\}\right\}$,
$C_{2}=\left\{\left\{\left(v_{1}, 0.3,0.4,0.2\right)\right\},\left\{\left(v_{2}, 0.4,0.8,0.3\right),\left(v_{3}, 0.1,0.6,0.8\right)\right\}\right.$, $\left.\left\{\left(v_{1}, 0.3,0.4,0.2\right),\left(v_{2}, 0.4,0.8,0.3\right)\right\}\right\}$.

Obviously, all the elements in C_{1} and C_{2} are the neutrosophic partial subsets of X. There is a bijective neutrosophic mapping $F: X \rightarrow X$ satisfying

$$
F\left(\left\{\left(v_{3}, 0.1,0.6,0.8\right)\right\}\right)=\left\{\left(v_{1}, 0.3,0.4,0.2\right)\right\}
$$

$F\left(\left\{\left(v_{1}, 0.3,0.4,0.2\right),\left(v_{2}, 0.4,0.8,0.3\right)\right\}\right)=$ $\left\{\left(v_{2}, 0.4,0.8,0.3\right),\left(v_{3}, 0.1,0.6,0.8\right)\right\}$,

$$
F\left(\left\{\left(v_{3}, 0.1,0.6,0.8\right),\left(v_{1}, 0.3,0.4,0.2\right)\right\}\right)=\left\{\left(v_{1}, 0.3,0.4,0.2\right),\right.
$$

$\left.\left(v_{2}, 0.4,0.8,0.3\right)\right\}$.
Therefore, C_{1} and C_{2} are parallel.
In view of Example 6, it is clear that the essence of parallelism is the one-to-one correspondence between the elements in the neutrosophic set. In this instance, we can see the correspondence between the following elements in X :

$$
\begin{aligned}
& \left(v_{1}, 0.3,0.4,0.2\right) \xrightarrow{F}\left(v_{2}, 0.4,0.8,0.3\right), \\
& \left(v_{2}, 0.4,0.8,0.3\right) \xrightarrow{F}\left(v_{3}, 0.1,0.6,0.8\right), \\
& \left(v_{3}, 0.1,0.6,0.8\right) \xrightarrow{F}\left(v_{1}, 0.3,0.4,0.2\right) .
\end{aligned}
$$

Next, it is presented that any class of NSs can be denoted by a general NG in view of operation \wedge between neutrosophic set classes. Let S_{1}, \cdots, S_{n} be neutrosophic sets, $C=\left\{S_{1}, \cdots, S_{n}\right\}$ be a class of these neutrosophic sets and G be a NG corresponding to C. Neutrosophic graph G is constructed as follows: each vertex in G corresponds to a neutrosophic set among S_{1}, \cdots, S_{n}, and there are $\left|S_{i} \wedge S_{j}\right|$ edges between vertices S_{i} and S_{j}. The below insance is applied to illustrate such a kind of neutrosophic graph.

Example 7. Consider the classes of neutrosophic sets

$$
C_{1}=\left\{S_{1}=\left\{\left(v_{1}, 0.4,0.5,0.2\right)\right\}, S_{2}=\left\{\left(v_{2}, 0.5,0.2,0.9\right)\right\},\right.
$$

$$
\left.S_{3}=\left\{\left(v_{1}, 0.4,0.5,0.2\right),\left(v_{2}, 0.5,0.2,0.9\right)\right\}\right\}
$$

$$
C_{2}=\left\{S_{4}=\left\{\left(v_{1}, 0.4,0.5,0.2\right),\left(v_{2}, 0.5,0.2,0.9\right),\left(v_{3}, 0.8,0.7,0.3\right)\right\},\right.
$$

$$
S_{5}=\left\{\left(v_{4}, 0.1,0.6,0.9\right),\left(v_{5}, 0.9,0.3,0.2\right)\right\}, S_{6}=
$$

$$
\left.\left\{\left(v_{3}, 0.8,0.7,0.3\right),\left(v_{4}, 0.1,0.6,0.9\right)\right\}\right\}
$$

$$
C_{3}=\left\{S_{7}=\left\{\left(v_{3}, 0.8,0.7,0.3\right),\left(v_{6}, 0.3,0.6,0.9\right)\right\}, S_{8}=\right.
$$

$$
\left\{\left(v_{7}, 0.7,0.4,0.1\right),\left(v_{8}, 0.2,0.5,0.6\right),\left(v_{9}, 0.3,0.7,0.7\right)\right\}
$$

$$
\left.S_{9}=\left\{\left(v_{3}, 0.8,0.7,0.3\right),\left(v_{9}, 0.3,0.7,0.7\right),\left(v_{10}, 0.6,0.5,0.5\right)\right\}\right\}
$$

to represent the same NGs as determined in Fig 3.

Fig 3. A neutrosophic graph represents C_{1}, C_{2} and C_{3}.
Definition 5. Let $C=\left\{C_{i}: i \in I\right\}$ be a collection of all classes of a NS X, and thus C_{i} can be represented by the same neutrosophic graph $G\left(\left\{\left|\vee C_{i}\right|: i \in I\right\}\right.$ which is formulated as the graph number of a $\mathrm{NG} G$).

Example 8. Discuss C_{1}, C_{2} and C_{3} as given in Example 7, we yield
$\vee C_{1}=\left\{\left(v_{1}, 0.4,0.5,0.2\right),\left(v_{2}, 0.5,0.2,0.9\right)\right\}$,
$\vee C_{2}=\left\{\left(v_{1}, 0.4,0.5,0.2\right),\left(v_{2}, 0.5,0.2,0.9\right)\right.$,
$\left.\left(v_{3}, 0.8,0.7,0.3\right),\left(v_{4}, 0.1,0.6,0.9\right),\left(v_{5}, 0.9,0.3,0.2\right)\right\}$,
$\vee C_{3}=\left\{\left(v_{3}, 0.8,0.7,0.3\right),\left(v_{6}, 0.3,0.6,0.9\right),\left(v_{7}, 0.7,0.4,0.1\right)\right.$,
$\left.\left(v_{8}, 0.2,0.5,0.6\right),\left(v_{9}, 0.3,0.7,0.7\right),\left(v_{10}, 0.6,0.5,0.5\right)\right\}$.
The numbers of a neutrosophic graph $\left|\vee C_{1}\right|,\left|\vee C_{2}\right|$ and $\left|\vee C_{3}\right|$ are 2,5 and 6 respectively.

Next, we show that any NG G can be expressed by a class of NSs. Similarly, \wedge is denoted by an operator N for vertices of neutrosophic graphs.

Definition 6. Let G be a NG and v_{i}, v_{j} be two vertices of G. Suppose that v_{i} and v_{j} correspond to neutrosophic sets S_{i} and S_{j} respectively, then $N\left(v_{i}, v_{j}\right)=\left|S_{i} \wedge S_{j}\right|$. Note that $N\left(v_{i}, X\right)=\left|S_{i}\right|\left(\right.$ resp. $\left.N\left(v_{j}, X\right)=\left|S_{j}\right|\right)$ if S_{i} (resp. $\left.S_{j}\right)$ is a neutrosophic subset of X.

Example 9. If $S_{i}=\left\{\left(\nu_{1}, 0.4,0.5,0.2\right)\right\}$
and
$S_{j}=\left\{\left(v_{1}, 0.4,0.5,0.2\right)\right.$,
$\left.\left(v_{2}, 0.5,0.2,0.9\right)\right\}$, then $S_{i} \wedge S_{j}=\left\{\left(v_{1}, 0.4,0.5,0.2\right)\right\}$ and $N\left(S_{i}, S_{j}\right)=\left|S_{i} \wedge S_{j}\right|=1$.
Theorem 2. If G_{1} and G_{2} are two NGs corresponding to two parallel classes C_{1} and C_{2}, then $G_{1} \cong G_{2}$.

Similar to Theorem 1, the converse of the above theorem may not true in general since each neutrosophic graph can express many classes, and the Example 10 is used to explain it.

Example 10. Consider the classes of neutrosophic sets
$C_{1}=\left\{S_{1}=\left\{\left(v_{1}, 0.4,0.5,0.2\right)\right\}, S_{2}=\left\{\left(v_{2}, 0.5,0.2,0.9\right)\right\}\right.$,
$\left.S_{3}=\left\{\left(v_{1}, 0.4,0.5,0.2\right),\left(v_{2}, 0.5,0.2,0.9\right)\right\}\right\}$,
$C_{2}=\left\{S_{4}=\left\{\left(v_{1}, 0.4,0.5,0.2\right),\left(v_{2}, 0.5,0.2,0.9\right),\left(v_{3}, 0.8,0.7,0.3\right)\right\}\right.$,
$S_{5}=\left\{\left(v_{4}, 0.1,0.6,0.9\right),\left(v_{5}, 0.9,0.3,0.2\right)\right\}, S_{6}=$ $\left.\left\{\left(v_{3}, 0.8,0.7,0.3\right),\left(v_{4}, 0.1,0.6,0.9\right)\right\}\right\}$.

Therefore, neutrosophic graphs corresponding to C_{1} and C_{2} are isomorphic to each other as manifested in Fig 4, but C_{1} and C_{2} are not parallel.

Fig 4. A neutrosophic graph represents C_{1} and C_{2}.
C. Parallel classes in bipolar neutrosophic setting

Definition 7. Let V be a US, $B N F(V)$ be the class of all bipolar neutrosophic sets of V, and $C_{1}, C_{2} \subseteq B N F(V)$. We say C_{1} is parallel to C_{2} (denoted by $X \sim Y$, where
X, Y are bipolar neutrosophic sets in $B N F(V)$, each element in C_{1} is a bipolar neutrosophic partial subset (BNPS) of X, and each element in C_{2} is a bipolar neutrosophic partial subset of Y), if there exists a bijective bipolar neutrosophic mapping $F: X \rightarrow Y$ such that for any $c_{1} \in C_{1}$, we have $F\left(c_{1}\right)=c_{2}$ and $c_{2} \in C_{2}$. Let $X=Y$. Then C_{1} is parallel to C_{2} if there exists a bijective bipolar neutrosophic mapping $F: X \rightarrow X$ such that $F\left(C_{1}\right)=C_{2}$.

Example 11. Let $V=\left\{v_{1}, v_{2}, v_{3}\right\}$ be a universal set, $X=\left\{\left(v_{1}, 0.3,0.4,0.2,-0.8,-0,5,-0.3\right),\left(v_{2}, 0.4,0.8,0.3\right.\right.$, $\left.-0.7,-0.4,-0.9),\left(v_{3}, 0.1,0.6,0.8,-0.8,-0.4,-0.3\right)\right\}$ be a bipolar neutrosophic set on $V, C_{1}=\left\{\left\{\left(v_{3}, 0.1,0.6,0.8\right.\right.\right.$, $-0.8,-0.4,-0.3)\},\left\{\left(v_{1}, 0.3,0.4,0.2,-0.8,-0,5,-0.3\right),\left(v_{2}, 0.4,0.8,0.3\right.\right.$, $-0.7,-0.4,-0.9)\},\left\{\left(v_{3}, 0.1,0.6,0.8,-0.8,-0.4,-0.3\right),\left(v_{1}, 0.3\right.\right.$, $0.4,0.2,-0.8,-0,5,-0.3)\}\}$ and $C_{2}=\left\{\left\{\left(v_{1}, 0.3,0.4,0.2\right.\right.\right.$, $-0.8,-0,5,-0.3)\},\left\{\left(v_{2}, 0.4,0.8,0.3,-0.7,-0.4,-0.9\right),\left(v_{3}\right.\right.$, $0.1,0.6,0.8,-0.8,-0.4,-0.3)\},\left\{\left(v_{1}, 0.3,0.4,0.2,-0.8,-0,5,-0.3\right)\right.$, $\left.\left.\left(v_{2}, 0.4,0.8,0.3,-0.7,-0.4,-0.9\right)\right\}\right\}$. Obviously, all the elements in C_{1} and C_{2} are the BNPS of X. There is a bijective bipolar neutrosophic mapping $F: X \rightarrow X$ such that
$F\left(\left\{\left(v_{3}, 0.1,0.6,0.8,-0.8,-0.4,-0.3\right)\right\}\right)=\left\{\left(v_{1}, 0.3,0.4,0.2\right.\right.$, $-0.8,-0,5,-0.3)\}$,
$F\left(\left\{\left(v_{1}, 0.3,0.4,0.2,-0.8,-0,5,-0.3\right),\left(v_{2}, 0.4,0.8,0.3,-0.7\right.\right.\right.$,
$-0.4,-0.9)\})$
$=\left\{\left(v_{2}, 0.4,0.8,0.3,-0.7,-0.4,-0.9\right),\left(v_{3}, 0.1,0.6,0.8\right.\right.$, $-0.8,-0.4,-0.3)\}$,
$F\left(\left\{\left(v_{3}, 0.1,0.6,0.8,-0.8,-0.4,-0.3\right),\left(v_{1}, 0.3,0.4,0.2\right.\right.\right.$, $-0.8,-0,5,-0.3)\})$ $=\left\{\left(v_{1}, 0.3,0.4,0.2,-0.8,-0,5,-0.3\right),\left(v_{2}, 0.4,0.8,0.3\right.\right.$, $-0.7,-0.4,-0.9)\}$.

Consequently, C_{1} and C_{2} are parallel.
In view of Example 11, it is clear that the essence of parallelism is the one-to-one correspondence between the elements in the bipolar neutrosophic set. In this instance, we can see the correspondence between the following elements in X :
$\left(v_{1}, 0.3,0.4,0.2,-0.8,-0,5,-0.3\right) \xrightarrow{F}\left(v_{2}, 0.4,0.8,0.3\right.$, $-0.7,-0.4,-0.9)$,
$\left(v_{2}, 0.4,0.8,0.3,-0.7,-0.4,-0.9\right) \xrightarrow{F}\left(v_{3}, 0.1,0.6,0.8\right.$, $-0.8,-0.4,-0.3)$,
$\left(v_{3}, 0.1,0.6,0.8,-0.8,-0.4,-0.3\right) \xrightarrow{F}\left(v_{1}, 0.3,0.4,0.2\right.$, $-0.8,-0,5,-0.3$)

Next, it is presented that any class of bipolar neutrosophic sets can be denoted by a general BNG in view of operation
\wedge between bipolar neutrosophic set classes. Let S_{1}, \cdots, S_{n} be bipolar neutrosophic sets, $C=\left\{S_{1}, \cdots, S_{n}\right\}$ be the class of these BNSs and G be a BNG corresponding to C. BNG G is constructed as follows: each vertex in G corresponds to a bipolar neutrosophic set among S_{1}, \cdots, S_{n}, and there are $\left|S_{i} \wedge S_{j}\right|$ edges between vertices S_{i} and S_{j}. Example 12 is presented to illustrate such kind of bipolar neutrosophic graph.

Example 12. Consider the classes of BNSs

$$
\begin{aligned}
& C_{1}=\left\{S_{1}=\left\{\left(v_{1}, 0.4,0.5,0.2,-0.7,-0.3,-0.9\right)\right\}, S_{2}=\left\{\left(v_{2},\right.\right.\right. \\
& \\
& \quad 0.5,0.2,0.9,-0.4,-0.7,-0.2)\}, \\
& S_{3}=\left\{\left(v_{1}, 0.4,0.5,0.2,-0.7,-0.3,-0.9\right),\left(v_{2}, 0.5,0.2,0.9,\right.\right. \\
& -0.4,-0.7,-0.2)\}\}, \\
& C_{2}=\left\{S_{4}=\left\{\left(v_{1}, 0.4,0.5,0.2,-0.7,-0.3,-0.9\right),\left(v_{2}, 0.5,0.2,0.9,\right.\right.\right. \\
& \left.-0.4,-0.7,-0.2),\left(v_{3}, 0.8,0.7,0.3,-0.3,-0.5,-0.8\right)\right\}, \\
& S_{5}=\left\{\left(v_{4}, 0.1,0.6,0.9,-0.8,-0.3 .-0.2\right),\left(v_{5}, 0.9,\right.\right. \\
& 0.3,0.2,-0.1,-0.8,-0.9)\}, S_{6}=\left\{\left(v_{3}, 0.8,0.7,0.3,-0.3,\right.\right. \\
& \left.\left.-0.5,-0.8),\left(v_{4}, 0.1,0.6,0.9,-0.8,-0.3 .-0.2\right)\right\}\right\}, \\
& C_{3}=\left\{S_{7}=\left\{\left(v_{3}, 0.8,0.7,0.3,-0.3,-0.5,-0.8\right),\left(v_{6}, 0.3,0.6,0.9,\right.\right.\right. \\
& \quad-0.4,-0.3,-0.1)\}, S_{8}=\left\{\left(v_{7}, 0.7,0.4,0.1,-0.5,\right.\right. \\
& \quad-0.7,-0.9),\left(v_{8}, 0.2,0.5,0.6,-0.7,-0.5,-0.3\right), \\
& \left.\quad\left(v_{9}, 0.3,0.7,0.7,-0.5 .-0.4,-0.3\right)\right\}, S_{9}=\left\{\left(v_{3}, 0.8,0.7,\right.\right. \\
& \quad 0.3,-0.3,-0.5,-0.8),\left(v_{9}, 0.3,0.7,0.7,-0.5 .\right. \\
& \left.\left.-0.4,-0.3),\left(v_{10}, 0.6,0.5,0.5,-0.5,-0.6,-0.7\right)\right\}\right\} .
\end{aligned}
$$

to represent the several bipolar neutrosophic graphs as determined in Fig 5.

Fig 5. A bipolar neutrosophic graph represents C_{1}, C_{2} and C_{3}

Definition 8. Let $C=\left\{C_{i}: i \in I\right\}$ be a collection of all classes of a BNS X, and thus C_{i} can be represented by the BNG $G\left(\left\{\left|\vee C_{i}\right|: i \in I\right\}\right.$ which is stated as the graph number of a BNG G).

Example 13. Discuss C_{1}, C_{2} and C_{3} as given in Example 12, we yield

$$
\begin{aligned}
& \vee C_{1}=\left\{\left(v_{1}, 0.4,0.5,0.2,-0.7,-0.3,-0.9\right),\left(v_{2}, 0.5,0.2,0.9,\right.\right. \\
&-0.4,-0.7,-0.2)\} \\
& \vee \vee C_{2}= \\
& \quad\left\{\left(v_{1}, 0.4,0.5,0.2,-0.7,-0.3,-0.9\right),\left(v_{2}, 0.5,0.2,0.9\right.\right. \\
&\left(v_{4}, 0.1,0.6,0.9,-0.8,-0.3 .-0.2\right),\left(v_{5}, 0.9,0.3,0.2,\right. \\
&-0.1,-0.8,-0.9)\}, \\
& \vee C_{3}= \\
&\quad-0.4,-0.3,-0.1),\left(v_{3}, 0.8,0.7,0.3,-0.3,-0.5,-0.8\right),\left(v_{6}, 0.3,0.6,0.9,\right. \\
& \quad\left(v_{8}, 0.2,0.5,0.6,-0.7,-0.5,-0.3\right),\left(v_{9}, 0.3,0.7,0.7,\right. \\
&\left.-0.5 .-0.4,-0.3),\left(v_{10}, 0.6,0.5,0.5,-0.5,-0.6,-0.7\right)\right\} .
\end{aligned}
$$

The numbers of a bipolar neutrosophic graph $\left|\vee C_{1}\right|$, $\left|\vee C_{2}\right|$ and $\left|\vee C_{3}\right|$ are 2,5 and 6 respectively.

Next, we show that any BNG G can be expressed by a class of BNSs, and \wedge is re-formulated to an operator N for vertices of BNGs.

Definition 9. Let G be a BNG and v_{i}, v_{j} be two vertices of G. Suppose that v_{i} and v_{j} correspond to bipolar neutrosphic sets S_{i} and S_{j} respectively, then $N\left(v_{i}, v_{j}\right)=\left|S_{i} \wedge S_{j}\right| \quad$. Note that $\quad N\left(v_{i}, X\right)=\left|S_{i}\right| \quad$ (resp. $N\left(v_{j}, X\right)=\left|S_{j}\right|$) if S_{i} (resp. S_{j}) is a bipolar neutrosophic subset of X.

Example 14. If $S_{i}=\left\{\left(v_{1}, 0.4,0.5,0.2,-0.7,-0.3,-0.9\right)\right\}$
and $S_{j}=\left\{\left(v_{1}, 0.4,0.5,0.2,-0.7,-0.3,-0.9\right),\left(v_{2}, 0.5,0.2,0.9\right.\right.$,
$-0.4,-0.7,-0.2)\}$, then $S_{i} \wedge S_{j}=\left\{\left(v_{1}, 0.4,0.5,0.2\right.\right.$,
$-0.7,-0.3,-0.9)\}$ and $N\left(S_{i}, S_{j}\right)=\left|S_{i} \wedge S_{j}\right|=1$.
Theorem 3. If G_{1} and G_{2} are two bipolar neutrosophic graphs corresponding to two parallel classes C_{1} and C_{2}, then $G_{1} \cong G_{2}$.

Similar to Theorem 1 and Theorem 2, the converse of the above theorem may not hold in general since each BNG can express many classes, and the Example 15 is used to explain it.

Example 15. Consider the classes of BNSs

$$
\begin{gathered}
C_{1}=\left\{S_{1}=\left\{\left(v_{1}, 0.4,0.5,0.2,-0.7,-0.3,-0.9\right)\right\},\right. \\
S_{2}=\left\{\left(v_{2}, 0.5,0.2,0.9,-0.4,-0.7,-0.2\right)\right\}, \\
S_{3}=\left\{\left(v_{1}, 0.4,0.5,0.2,-0.7,-0.3,-0.9\right),\right. \\
\\
\left.\left.\quad\left(v_{2}, 0.5,0.2,0.9,-0.4,-0.7,-0.2\right)\right\}\right\}, \\
C_{2}=\left\{S_{4}=\left\{\left(v_{1}, 0.4,0.5,0.2,-0.7,-0.3,-0.9\right),\right.\right. \\
\\
\quad\left(v_{2}, 0.5,0.2,0.9,-0.4,-0.7,-0.2\right), \\
\\
\left.\quad\left(v_{3}, 0.8,0.7,0.3,-0.3,-0.5,-0.8\right)\right\}, \\
\\
S_{5}=\left\{\left(v_{4}, 0.1,0.6,0.9,-0.8,-0.3 .-0.2\right),\right. \\
\\
\left.\quad\left(v_{5}, 0.9,0.3,0.2,-0.1,-0.8,-0.9\right)\right\},
\end{gathered}
$$

$$
\begin{aligned}
& S_{6}=\left\{\left(v_{3}, 0.8,0.7,0.3,-0.3,-0.5,-0.8\right)\right. \\
& \left.\left.\left(v_{4}, 0.1,0.6,0.9,-0.8,-0.3 .-0.2\right)\right\}\right\}
\end{aligned}
$$

Therefore, bipolar neutrosophic graphs corresponding to C_{1} and C_{2} are isomorphic to each other as manifested in Fig 6, but C_{1} and C_{2} are not parallel.

Fig 6. A bipolar neutrosophic graph represents C_{1} and C_{2}.
D. Parallel classes in interval-valued fuzzy setting

Definition 10. Let V be a US, $I V F(V)$ be the class of all IVFSs of V, and $C_{1}, C_{2} \subseteq I V F(V)$. We say C_{1} is parallel to C_{2} (denoted by $X \sim Y$, where X, Y are IVFSs in $\operatorname{IVF}(V)$, each element in C_{1} is an interval-valued partial fuzzy subset (IVPFS) of X, and each element in C_{2} is an interval-valued partial fuzzy subset of Y), if there exists a bijective interval-valued mapping (BIVM) $F: X \rightarrow Y$ such that for any $c_{1} \in C_{1}$, we have $F\left(c_{1}\right)=c_{2}$ and $c_{2} \in C_{2}$. Let $X=Y$. Then C_{1} is parallel to C_{2} if there exists a BIVM $F: X \rightarrow X$ such that $F\left(C_{1}\right)=C_{2}$.

Example 16. Let $V=\left\{v_{1}, v_{2}, v_{3}\right\}$ be a US, $X=\left\{\left(v_{1},[0.3\right.\right.$, $\left.0.7]),\left(v_{2},[0.4,0.8]\right),\left(v_{3},[0.1,0.5]\right)\right\}$ be an IVFS on V. Set

$$
\begin{aligned}
& C_{1}=\left\{\left\{\left(v_{3},[0.1,0.5]\right)\right\},\left\{\left(v_{1},[0.3,0.7]\right),\left(v_{2},[0.4,0.8]\right)\right\},\right. \\
&\left.\left\{\left(v_{3},[0.1,0.5]\right),\left(v_{1},[0.3,0.7]\right)\right\}\right\}, \\
& C_{2}=\left\{\left\{\left(v_{1},[0.3,0.7]\right)\right\},\left\{\left(v_{2},[0.4,0.8]\right),\left(v_{3},[0.1,0.5]\right)\right\},\right. \\
&\left.\left\{\left(v_{1},[0.3,0.7]\right),\left(v_{2},[0.4,0.8]\right)\right\}\right\} .
\end{aligned}
$$

Obviously, all the elements in C_{1} and C_{2} are the IVPFS of X. There is a BIVM $F: X \rightarrow X$ such that

$$
\begin{gathered}
F\left(\left\{\left(v_{3},[0.1,0.5]\right)\right\}\right)=\left\{\left(v_{1},[0.3,0.7]\right)\right\}, \\
F\left(\left\{\left(v_{1},[0.3,0.7]\right),\left(v_{2},[0.4,0.8]\right)\right\}\right)= \\
\quad\left\{\left(v_{2},[0.4,0.8]\right),\left(v_{3},[0.1,0.5]\right)\right\}, \\
F\left(\left\{\left(v_{3},[0.1,0.5]\right),\left(v_{1},[0.3,0.7]\right)\right\}\right)= \\
\quad\left\{\left(v_{1},[0.3,0.7]\right),\left(v_{2},[0.4,0.8]\right)\right\} .
\end{gathered}
$$

Hence, C_{1} and C_{2} are parallel.
By means of Example 16, it is obvious that the essence of parallelism is the one-to-one correspondence between the elements in the IVFS. In this instance, we can see the correspondence between the following elements in X :

$$
\begin{aligned}
& \left(v_{1},[0.3,0.7]\right) \xrightarrow{F}\left(v_{2},[0.4,0.8]\right), \\
& \left(v_{2},[0.4,0.8]\right) \xrightarrow{F}\left(v_{3},[0.1,0.5]\right),
\end{aligned}
$$

$$
\left(v_{3},[0.1,0.5]\right) \xrightarrow{F}\left(v_{1},[0.3,0.7]\right)
$$

Next, it is presented that any class of IVFSs can be denoted by a general IVFG in view of operation \wedge between IVFS classes. Let S_{1}, \cdots, S_{n} be IVFSs, $C=\left\{S_{1}, \cdots, S_{n}\right\}$ be a class of these IVFSs and G be an IVFG corresponding to C. IVFG G is constructed as follows: each vertex in G corresponds to an interval-valued fuzzy set among S_{1}, \cdots, S_{n}, and there are $\left|S_{i} \wedge S_{j}\right|$ edges between vertices S_{i} and S_{j}. The following instance is applied to illustrate such a kind of IVFG.

Example 17. Consider the classes of IVFSs
$C_{1}=\left\{S_{1}=\left\{\left(v_{1},[0.6,0.8]\right)\right\}, S_{2}=\left\{\left(v_{2},[0.3,0.7]\right)\right\}\right.$,
$\left.S_{3}=\left\{\left(v_{1},[0.6,0.8]\right),\left(v_{2},[0.3,0.7]\right)\right\}\right\}$,
$C_{2}=\left\{S_{4}=\left\{\left(v_{1},[0.6,0.8]\right),\left(v_{2},[0.3,0.7]\right),\left(v_{3},[0.4,0.5]\right)\right\}\right.$,
$S_{5}=\left\{\left(v_{4},[0.2,0.6]\right),\left(v_{5},[0.6,0.8]\right)\right\}, S_{6}=\left\{\left(v_{3},[0.4,0.5]\right)\right.$, $\left.\left.\left(v_{4},[0.2,0.6]\right)\right\}\right\}$,
$C_{3}=\left\{S_{7}=\left\{\left(v_{3},[0.4,0.5]\right),\left(v_{6},[0.3,0.6]\right)\right\}, S_{8}=\right.$ $\left\{\left(v_{7},[0.1,0.7]\right),\left(v_{8},[0.2,0.9]\right),\left(v_{9},[0.6,0.7]\right)\right\}, S_{9}=$ $\left.\left\{\left(v_{3},[0.4,0.5]\right),\left(v_{9},[0.6,0.7]\right),\left(v_{10},[0.6,0.8]\right)\right\}\right\}$.
to represent the same IVFGs as determined in Fig 7.

Fig 7. An IVFG represents C_{1}, C_{2} and C_{3}.
Definition 11. Let $C=\left\{C_{i}: i \in I\right\}$ be a collection of all classes of an interval-valued fuzzy set X, and thus C_{i} can be represented by the same interval-valued fuzzy graph G $\left(\left\{\left|\vee C_{i}\right|: i \in I\right\}\right.$ which is labeled as the graph number of an interval-valued fuzzy graph G).

Example 18. Focusing on C_{1}, C_{2} and C_{3} as given in Example 17, we yield

$$
\begin{gathered}
\vee C_{1}=\left\{\left(v_{1},[0.6,0.8]\right),\left(v_{2},[0.3,0.7]\right)\right\}, \\
\vee C_{2}=\left\{\left(v_{1},[0.6,0.8]\right),\left(v_{2},[0.3,0.7]\right),\left(v_{3},[0.4,0.5]\right),\right. \\
\left.\left(v_{4},[0.2,0.6]\right),\left(v_{5},[0.6,0.8]\right)\right\}, \\
\vee C_{3}=\left\{\left(v_{3},[0.4,0.5]\right),\left(v_{6},[0.3,0.6]\right),\left(v_{7},[0.1,0.7]\right),\right. \\
\left.\left(v_{8},[0.2,0.9]\right),\left(v_{9},[0.6,0.7]\right),\left(v_{10},[0.6,0.8]\right)\right\} .
\end{gathered}
$$

The number of an interval-valued fuzzy graph $\left|\vee C_{1}\right|$, $\left|\vee C_{2}\right|$ and $\left|\vee C_{3}\right|$ are 2,5 and 6 respectively.

Next, we show that any interval-valued fuzzy graph G can be expressed by a class of interval-valued fuzzy sets, and \wedge is formualted as an operator N for vertices of interval-valued fuzzy graphs.

Definition 12. Let G be an interval-valued fuzzy graph and v_{i}, v_{j} be two vertices of G. Suppose that v_{i} and v_{j}
correspond to interval-valued fuzzy sets S_{i} and S_{j} respectively, then $N\left(v_{i}, v_{j}\right)=\left|S_{i} \wedge S_{j}\right|$. Note that $N\left(v_{i}, X\right)=\left|S_{i}\right|\left(\right.$ resp. $\left.N\left(v_{j}, X\right)=\left|S_{j}\right|\right)$ if $S_{i}\left(\right.$ resp. $\left.S_{j}\right)$ is an interval-valued fuzzy subset of X.

Example 19. If $S_{i}=\left\{\left(v_{1},[0.6,0.8]\right)\right\}$ and $S_{j}=\left\{\left(v_{1},[0.6,0.8]\right)\right.$, $\left.\left(v_{2},[0.3,0.7]\right)\right\}$, then $S_{i} \wedge S_{j}=\left\{\left(v_{1},[0.6,0.8]\right)\right\}$ and $N\left(S_{i}, S_{j}\right)=$ $\left|S_{i} \wedge S_{j}\right|=1$.

Theorem 4. If G_{1} and G_{2} are two interval-valued fuzzy graphs corresponding to two parallel classes C_{1} and C_{2}, then $G_{1} \cong G_{2}$.

The converse of Theorem 4 may not hold in general since each interval-valued fuzzy graph can express many classes, and the Example 20 is used to explain it.

Example 20. Consider the classes of interval-valued fuzzy sets

$$
C_{1}=\left\{S_{1}=\left\{\left(v_{1},[0.6,0.8]\right)\right\}, S_{2}=\left\{\left(v_{2},[0.3,0.7]\right)\right\}\right.
$$

$\left.S_{3}=\left\{\left(v_{1},[0.6,0.8]\right),\left(v_{2},[0.3,0.7]\right)\right\}\right\}$,
$C_{2}=\left\{S_{4}=\left\{\left(v_{1},[0.6,0.8]\right),\left(v_{2},[0.3,0.7]\right),\left(v_{3},[0.4,0.5]\right)\right\}\right.$, $S_{5}=\left\{\left(v_{4},[0.2,0.6]\right),\left(v_{5},[0.6,0.8]\right)\right\}$,
$\left.S_{6}=\left\{\left(v_{3},[0.4,0.5]\right),\left(v_{4},[0.2,0.6]\right)\right\}\right\}$.
Therefore, interval-valued fuzzy graphs corresponding to C_{1} and C_{2} are isomorphic to each other as manifested in Fig 8, but C_{1} and C_{2} are not parallel.

Fig 8. An IVFG represents C_{1} and C_{2}.

E. Parallel classes in bipolar interval-valued fuzzy setting

Definition 13. Let V be a US, $\operatorname{BIVF}(V)$ be the class of all BIVFSs of V, and $C_{1}, C_{2} \subseteq I V F(V)$. We say C_{1} is parallel to C_{2} (denoted by $X \sim Y$, where X, Y are bipolar interval-valued fuzzy sets in $\operatorname{IVF}(V)$, each element in C_{1} is a bipolar interval-valued partial fuzzy subset (BIVPFS) of X, and each element in C_{2} is an IVPFS of Y), if there exists a bijective bipolar interval-valued mapping (BBIVM) $F: X \rightarrow Y$ such that for any $c_{1} \in C_{1}$, we have $F\left(c_{1}\right)=c_{2}$ and $c_{2} \in C_{2}$. Let $X=Y$. Then C_{1} is parallel to C_{2} if there exists a BBIVM $F: X \rightarrow X$ such that $F\left(C_{1}\right)=C_{2}$.
Example 21. Let $V=\left\{v_{1}, v_{2}, v_{3}\right\}$ be a US, and $X=\left\{\left(v_{1},[0.3,0.7],[-0.9,-0.4]\right),\left(v_{2},[0.4,0.8],[-0.8,-0.6]\right)\right.$, $\left.\left(v_{3},[0.1,0.5],[-0.5,-0.2]\right)\right\}$ be a bipolar interval-valued fuzzy set on V. Set

$$
\begin{gathered}
C_{1}=\left\{\left\{\left(v_{3},[0.1,0.5],[-0.5,-0.2]\right)\right\},\left\{\left(v_{1},[0.3,0.7],\right.\right.\right. \\
\left.\quad[-0.9,-0.4]),\left(v_{2},[0.4,0.8],[-0.8,-0.6]\right)\right\}, \\
\left.\left\{\left(v_{3},[0.1,0.5],[-0.5,-0.2]\right),\left(v_{1},[0.3,0.7],[-0.9,-0.4]\right)\right\}\right\}, \\
C_{2}=\left\{\left\{\left(v_{1},[0.3,0.7],[-0.9,-0.4]\right)\right\},\left\{\left(v_{2},[0.4,0.8],\right.\right.\right. \\
\left.\quad[-0.8,-0.6]),\left(v_{3},[0.1,0.5],[-0.5,-0.2]\right)\right\}, \\
\left.\left\{\left(v_{1},[0.3,0.7],[-0.9,-0.4]\right),\left(v_{2},[0.4,0.8],[-0.8,-0.6]\right)\right\}\right\}, \\
\text { Obviously, all the elements in } C_{1} \text { and } C_{2} \text { are the IVPFSs } \\
\text { of } X \text {. There is a BVM } F: X \rightarrow X \text { such that } \\
\quad F\left(\left\{\left(v_{3},[0.1,0.5],[-0.5,-0.2]\right)\right\}\right)=\left\{\left(v_{1},[0.3,0.7],[-0.9,-0.4]\right)\right\}, \\
F\left(\left\{\left(v_{1},[0.3,0.7],[-0.9,-0.4]\right),\left(v_{2},[0.4,0.8],[-0.8,-0.6]\right)\right\}\right) \\
=\left\{\left(v_{2},[0.4,0.8],[-0.8,-0.6]\right),\left(v_{3},[0.1,0.5],[-0.5,-0.2]\right)\right\}, \\
F \\
F\left(\left\{\left(v_{3},[0.1,0.5],[-0.5,-0.2]\right),\left(v_{1},[0.3,0.7],[-0.9,-0.4]\right)\right\}\right) \\
\quad=\left\{\left(v_{1},[0.3,0.7],[-0.9,-0.4]\right),\left(v_{2},[0.4,0.8],[-0.8,-0.6]\right)\right\} .
\end{gathered}
$$

Thus, C_{1} and C_{2} are parallel.
In light of Example 21, it is clear that the essence of parallelism is the one-to-one correspondence between the elements in the BIVFS. In this instance, we can see the correspondence between the following elements in X :

$$
\begin{aligned}
& \left(v_{1},[0.3,0.7],[-0.9,-0.4]\right) \xrightarrow{F}\left(v_{2},[0.4,0.8],[-0.8,-0.6]\right), \\
& \left(v_{2},[0.4,0.8],[-0.8,-0.6]\right) \xrightarrow{F}\left(v_{3},[0.1,0.5],[-0.5,-0.2]\right), \\
& \left(v_{3},[0.1,0.5],[-0.5,-0.2]\right) \xrightarrow{F}\left(v_{1},[0.3,0.7],[-0.9,-0.4]\right) .
\end{aligned}
$$

Next, it is presented that any class of bipolar interval-valued fuzzy sets can be denoted by a general bipolar interval-valued fuzzy graph in view of operation \wedge between bipolar interval-valued fuzzy set classes. Let S_{1}, \cdots, S_{n} be bipolar interval-valued fuzzy sets, $C=\left\{S_{1}, \cdots, S_{n}\right\}$ be a class of these bipolar interval-valued fuzzy sets and G be a BIVFG corresponding to C. BIVFG G is constructed as follows: each vertex in G corresponds to a BIVFS among S_{1}, \cdots, S_{n}, and there are $\left|S_{i} \wedge S_{j}\right|$ edges between vertices S_{i} and S_{j}. The following instance is applied to illustrate such a kind of bipolar interval-valued fuzzy graph.

Example 22. Consider the classes of bipolar interval-valued fuzzy sets
$C_{1}=\left\{S_{1}=\left\{\left(v_{1},[0.6,0.8],[-0.6,-0.4]\right)\right\}, S_{2}=\left\{\left(v_{2},[0.3,0.7]\right.\right.\right.$,
$[-0.4,-0.1])\}$,
$\left.S_{3}=\left\{\left(v_{1},[0.6,0.8],[-0.6,-0.4]\right),\left(v_{2},[0.3,0.7],[-0.4,-0.1]\right)\right\}\right\}$,

$$
C_{2}=\left\{S_{4}=\left\{\left(v_{1},[0.6,0.8],[-0.6,-0.4]\right),\left(v_{2},[0.3,0.7],[-0.4,--0.1]\right),\right.\right.
$$

$$
\left.\left(v_{3},[0.4,0.5],[-0.5,-0.3]\right)\right\}
$$

$S_{5}=\left\{\left(v_{4},[0.2,0.6],[-0.9,-0.7]\right),\left(v_{5},[0.6,0.8],[-0.6,-0.2]\right)\right\}$,
$\left.S_{6}=\left\{\left(v_{3},[0.4,0.5],[-0.5,-0.3]\right),\left(v_{4},[0.2,0.6],[-0.9,-0.7]\right)\right\}\right\}$,
$C_{3}=\left\{S_{7}=\left\{\left(v_{3},[0.4,0.5],[-0.5,-0.3]\right),\left(v_{6},[0.3,0.6]\right.\right.\right.$,
$[-0.5,-0.4])\}, S_{8}=\left\{\left(v_{7},[0.1,0.7],[-0.9,-0.8]\right)\right.$,
$\left.\left(v_{8},[0.2,0.9],[-0.8,-0.4]\right),\left(v_{9},[0.6,0.7],[-0.6,-0.3]\right)\right\}$,
$S_{9}=\left\{\left(v_{3},[0.4,0.5],[-0.5,-0.3]\right),\left(v_{9},[0.6,0.7]\right.\right.$,
$\left.\left.[-0.6,-0.3]),\left(v_{10},[0.6,0.8],[-0.7,-0.6]\right)\right\}\right\}$.
to represent the same bipolar interval-valued fuzzy graphs as determined in Fig 9 .

Fig 9. A bipolar interval-valued fuzzy graph represents C_{1}, C_{2} and C_{3}.
Definition 14. Let $C=\left\{C_{i}: i \in I\right\}$ be a collection of all classes of a BIVFS X, and thus C_{i} can be formulated by the same BIVFG $G\left(\left\{\left|\vee C_{i}\right|: i \in I\right\}\right.$ is formulated as the graph number of a BIVFG G).

Example 23. Focusing on C_{1}, C_{2} and C_{3} as given in Example 22, we yield

$$
\vee C_{1}=\left\{\left(v_{1},[0.6,0.8],[-0.6,-0.4]\right),\left(v_{2},[0.3,0.7]\right.\right.
$$

$$
[-0.4,-0.1])\},
$$

$$
\vee C_{2}=\left\{\left(v_{1},[0.6,0.8],[-0.6,-0.4]\right),\left(v_{2},[0.3,0.7]\right.\right.
$$

$$
[-0.4,-0.1]),\left(v_{3},[0.4,0.5],[-0.5,-0.3]\right)
$$

$$
\left.\left(v_{4},[0.2,0.6],[-0.9,-0.7]\right),\left(v_{5},[0.6,0.8],[-0.6,-0.2]\right)\right\}
$$

$$
\vee C_{3}=\left\{\left(v_{3},[0.4,0.5],[-0.5,-0.3]\right),\left(v_{6},[0.3,0.6],\right.\right.
$$

$$
[-0.5,-0.4]),\left(v_{7},[0.1,0.7],[-0.9,-0.8]\right)
$$

$$
\left(v_{8},[0.2,0.9],[-0.8,-0.4]\right),\left(v_{9},[0.6,0.7],[-0.6,-0.3]\right),
$$

$$
\left.\left(v_{10},[0.6,0.8],[-0.7,-0.6]\right)\right\}
$$

The numbers of a BIVFG $\left|\vee C_{1}\right|,\left|\vee C_{2}\right|$ and $\left|\vee C_{3}\right|$ are 2, 5 and 6 respectively.

Next, we show that any BIVFG G can be expressed by a class of BIVFSs. Again, \wedge is re-formulated to an operator N for vertices of BIVFGs.

Definition 15. Let G be a BIVFG and v_{i}, v_{j} be two vertices of G. Suppose that v_{i} and v_{j} correspond to bipolar interval-valued fuzzy sets S_{i} and S_{j} respectively, then $N\left(v_{i}, v_{j}\right)=\left|S_{i} \wedge S_{j}\right|$. Note that $N\left(v_{i}, X\right)=\left|S_{i}\right|$ (resp. $\left.N\left(v_{j}, X\right)=\left|S_{j}\right|\right)$ if $S_{i}\left(\right.$ resp. $\left.S_{j}\right)$ is a BIVFS of X.

Example 24. If $S_{i}=\left\{\left(v_{1},[0.6,0.8],[-0.6,-0.4]\right)\right\}$ and $S_{j}=\left\{\left(v_{1},[0.6,0.8],[-0.6,-0.4]\right),\left(v_{2},[0.3,0.7],[-0.4,-0.1]\right)\right\}$, th $S_{i} \wedge S_{j}=\left\{\left(v_{1},[0.6,0.8],[-0.6,-0.4]\right)\right\}$ and $N\left(S_{i}, S_{j}\right)=$ $\left|S_{i} \wedge S_{j}\right|=1$.

Theorem 5. If G_{1} and G_{2} are BIVFGs corresponding to two parallel classes C_{1} and C_{2}, then $G_{1} \cong G_{2}$.

The converse of Theorem5 may not hold in general since each bipolar interval-valued fuzzy graph can express many classes, and the Example 25 is used to explain it.

Example 25. Consider the classes of bipolar interval-valued fuzzy sets

$$
\begin{aligned}
C_{1}= & \left\{S_{1}=\left\{\left(v_{1},[0.6,0.8],[-0.6,-0.4]\right)\right\},\right. \\
& S_{2}=\left\{\left(v_{2},[0.3,0.7],[-0.4,-0.1]\right)\right\}, \\
& S_{3}=\left\{\left(v_{1},[0.6,0.8],[-0.6,-0.4]\right),\right. \\
& \left.\left.\left(v_{2},[0.3,0.7],[-0.4,-0.1]\right)\right\}\right\}, \\
C_{2}= & \left\{S_{4}=\left\{\left(v_{1},[0.6,0.8],[-0.6,-0.4]\right),\left(v_{2},[0.3,0.7],\right.\right.\right. \\
& {\left.[-0.4,-0.1]),\left(v_{3},[0.4,0.5],[-0.5,-0.3]\right)\right\}, }
\end{aligned}
$$

$S_{5}=\left\{\left(v_{4},[0.2,0.6],[-0.9,-0.7]\right),\left(v_{5},[0.6,0.8],[-0.6,-0.2]\right)\right\}$, $\left.S_{6}=\left\{\left(v_{3},[0.4,0.5],[-0.5,-0.3]\right),\left(v_{4},[0.2,0.6],[-0.9,-0.7]\right)\right\}\right\}$.

Therefore, bipolar interval-valued fuzzy graphs corresponding to C_{1} and C_{2} are isomorphic to each other as manifested in Fig 10, but C_{1} and C_{2} are not parallel.

Fig 10. A bipolar interval-valued fuzzy graph represents C_{1} and C_{2}.

IV. FUZZY TOPOLOGICAL GRAPHS AND ALGEBRAIC OPERATIONS IN DISTINCT SETTINGS

We generate fuzzy topological spaces (FTSs) in view of FS graphs in three kinds of settings respectively. Several algebraic operations on BFTGs (resp. NTGs, BNTGs, IVFTGs and BIVFTGs) such as \vee, \wedge, \leq are defined on vertices by $v_{S_{1}} \vee v_{S_{2}} \vee \cdots=v_{S_{1} \vee S_{2} \cdots}, v_{S_{1}} \wedge v_{S_{2}}=v_{S_{1} \wedge S_{2}}$ and $v_{S_{1}} \leq v_{S_{2}}$ if $S_{1} \leq S_{2}$. The following results and examples are divided into five settings respectively.

A. Algebraic operations in bipolar fuzzy setting

Definition 16. A bipolar fuzzy topology on a bipolar fuzzy set $B S=\left\{\left(v_{1}, a_{1}, b_{1}\right), \cdots,\left(v_{n}, a_{n}, b_{n}\right)\right\} \quad\left(0 \leq a_{1}, \cdots, a_{n} \leq 1 \quad\right.$ and $\left.-1 \leq b_{1}, \cdots, b_{n} \leq 0\right)$ can be established in terms of a bipolar fuzzy graph G such that each vertex in G is a class in $B S$ and the edge number between two vertices is the cardinality of the intersection of corresponding two classes of $B S$ and the positive degree (resp. negative degree) of edges is the positive degree (negative degree) of each vertex in its
intersection. The subscripts of bipolar fuzzy pseudograph (with loops), discrete bipolar topological graph (no loop) and simple bipolar fuzzy graph (one edge between two adjacent vertices) are marked by p, d and s respectively.
Theorem 4. Let $\left|E_{p}(G)\right|,\left|E_{d}(G)\right|$ and $\left|E_{s}(G)\right|$ be the edge number of a bipolar fuzzy pseudograph, discrete bipolar topological graph and simple BFG on the bipolar fuzzy set $B S=\left\{\left(v_{1}, a_{1}, b_{1}\right), \cdots,\left(v_{n}, a_{n}, b_{n}\right)\right\}$, respectively. Then, $\left|E_{p}(G)\right|=n 2^{n-2}\left(2^{n-1}-1\right)+n 2^{n-1}, \quad\left|E_{d}(G)\right|=n 2^{n-2}\left(2^{n-1}-1\right)$ and $\left|E_{s}(G)\right|=\frac{2^{2 n}-2^{n}-3^{n}+1}{2}$.

Example 26. Let $B S=\left\{\left(v_{1}, 0.6,-0.5\right),\left(v_{2}, 0.3,-0.6\right),\left(v_{3}\right.\right.$, $0.1,-0.2)\}$, then $\left|E_{p}(G)\right|=30,\left|E_{d}(G)\right|=18$ and $\left|E_{s}(G)\right|=15$.
A BFTG deduced in terms of a bipolar fuzzy graph can be stated by the following result.

Theorem 6. Let G be a BFG that meets the conditions:

- G has a unique isolated vertex which is represented by \varnothing;
- There is a vertex v adjacent to other vertices in $G-\{\varnothing\}$, and $\mu_{R}^{+}\left(v_{i}, v\right) \leq \mu_{R}^{+}\left(v_{i}, B S\right) \leq \mu_{R}^{+}(v, B S)$ and $\mu_{R}^{-}\left(v_{i}, v\right) \geq \mu_{R}^{-}\left(v_{i}, B S\right) \geq \mu_{R}^{-}(v, B S) \quad$ for any $v_{i} \in V(G)-\{\varnothing\} ;$
- Let v_{1} and v_{2} be any two distinct vertices. We have
$v_{1} \wedge v_{2}, v_{1} \vee v_{2} \in V(G)$.
Then, the class τ of vertices is a BFTG.
The next theorem is used to compute the size of G by means of fuzzy topological graph τ.

Theorem 7. The edge number of a BFTG is expressed by a bipolar fuzzy topology $\tau=\left\{\varnothing,\left\{\left(v_{1}, a_{1}, b_{1}\right)\right\},\left\{\left(v_{1}, a_{1}, b_{1}\right)\right.\right.$, $\left.\left.\left(v_{2}, a_{2}, b_{2}\right)\right\}, \cdots, X=\left\{\left(v_{1}, a_{1}, b_{1}\right), \cdots,\left(v_{n}, a_{n}, b_{n}\right)\right\}\right\}$.
The tricks of proof Theorem 6 and Theorem 7 are similar to what's described in Atef et al. [30] and we skip it here.
Example 27. Let $B S=\left\{\left(v_{1}, 0.6,-0.5\right),\left(v_{2}, 0.3,-0.6\right)\right.$, $\left.\left(v_{3}, 0.1,-0.2\right)\right\}$ with a bipolar fuzzy topological space $\tau=\left\{\varnothing, S_{1}=\left\{\left(v_{1}, 0.6,-0.5\right)\right\}, S_{2}=\left\{\left(v_{1}, 0.6,-0.5\right),\left(v_{2}, 0.3,-0.6\right)\right\}\right.$, $\left.X=\left\{\left(v_{1}, 0.6,-0.5\right),\left(v_{2}, 0.3,-0.6\right),\left(v_{3}, 0.1,-0.2\right)\right\}\right\}$. See Fig 11 for the BFTG, and the positive and negative degrees of edges are 2.1 and -2.1 respectively.

Fig 11. A bipolar topological graph in Example 27.
Each BFTG can be expressed by a BFG, but the reverse may not be true. We present the following two examples to explain it in detail.

Example 28. Let G be a BFG drawn in Fig 12, and a BFTG be constructed in terms of the following schemes: the only isolated vertex is formulated by \varnothing; the vertex has maximum
degree four represented by $X=\left\{\left(v_{1}, 0.6,-0.5\right),\left(v_{2}, 0.3,-0.6\right),\left(v_{3}, 0.1,-0.2\right)\right\}$. Since $\left|S_{2} \wedge X\right|=2$, the vertex represents S_{2} is $\left\{\left(v_{1}, 0.6,-0.5\right)\right.$, ($v_{2}, 0.3,-0.6$) \}. Similarly, $\left|S_{3} \wedge X\right|=2$ and the corresponding vertex is denoted by $S_{3}=\left\{\left(v_{1}, 0.6,-0.5\right),\left(v_{3}, 0.1,-0.2\right)\right\}$. $\left|S_{2} \wedge S_{3}\right|=1$, and the MF value of edge connect S_{2} and S_{3} is $(0.6,-0.5) \cdot\left|S_{1} \wedge X\right|=\left|S_{1} \wedge S_{2}\right|=\left|S_{1} \wedge S_{3}\right|=1$ and hence S_{1} is denoted by $\left\{\left(v_{1}, 0.6,-0.5\right)\right\}$. Therefore, $\tau=\left\{\emptyset, S_{1}=\right.$ $\left\{\left(v_{1}, 0.6,-0.5\right)\right\}, S_{2}=\left\{\left(v_{1}, 0.6,-0.5\right),\left(v_{2}, 0.3,-0.6\right)\right\}, S_{3}=\left\{\left(v_{1}, 0.6,-0.5\right)\right.$, $\left.\left(v_{3}, 0.1,-0.2\right)\right\}, \quad X=\left\{\left(v_{1}, 0.6,-0.5\right),\left(v_{2}, 0.3,-0.6\right),\left(v_{3}, 0.1,-0.2\right)\right\}$ is a bipolar fuzzy topology and this graph is called a BFTG.
ϕ.

Fig 12. A bipolar fuzzy graph which is a bipolar fuzzy topological graph.
Example 29. The graph G in Fig 13 is not a BFTG, where $X=\left\{\left(v_{1}, 0.6,-0.5\right),\left(v_{2}, 0.3,-0.6\right),\left(v_{3}, 0.1,-0.2\right),\left(v_{4}, 0.5,-0.5\right)\right\}$,

$$
\begin{gathered}
S_{1}=\left\{\left(v_{1}, 0.6,-0.5\right),\left(v_{2}, 0.3,-0.6\right)\right\}, \\
S_{2}=\left\{\left(v_{1}, 0.6,-0.5\right),\left(v_{3}, 0.1,-0.2\right)\right\}, \\
\left|S_{1} \wedge X\right|=\left|S_{2} \wedge X\right|=2,\left|S_{1} \wedge S_{2}\right|=1, \\
S_{1} \wedge X=\left\{\left(v_{1}, 0.6,-0.5\right),\left(v_{2}, 0.3,-0.6\right)\right\}, \\
S_{2} \wedge X=\left\{\left(v_{1}, 0.6,-0.5\right),\left(v_{3}, 0.1,-0.2\right)\right\}, \\
S_{1} \wedge S_{2}=\left\{\left(v_{1}, 0.6,-0.5\right)\right\} .
\end{gathered}
$$

However,
$\tau=\left\{\varnothing, S_{1}=\left\{\left(v_{1}, 0.6,-0.5\right),\left(v_{2}, 0.3,-0.6\right)\right\}\right.$,
$S_{2}=\left\{\left(v_{1}, 0.6,-0.5\right),\left(v_{3}, 0.1,-0.2\right)\right\}, X=\left\{\left(v_{1}, 0.6,-0.5\right)\right.$, $\left.\left.\left(v_{2}, 0.3,-0.6\right),\left(v_{3}, 0.1,-0.2\right),\left(v_{4}, 0.5,-0.5\right)\right\}\right\}$ is not a bipolar fuzzy topology because
$S_{1} \cup S_{2}=\left\{\left(v_{1}, 0.6,-0.5\right),\left(v_{2}, 0.3,-0.6\right),\left(v_{3}, 0.1,-0.2\right)\right\} \notin \tau$.
ϕ 。

Fig 13. A BFG which is not a BFTG.

B. Algebraic operations in neutrosophic setting

Definition 17. A neutrosophic topology on a neutrosophic set $N S=\left\{\left(v_{1}, a_{1}, b_{1}, c_{1}\right), \cdots,\left(v_{n}, a_{n}, b_{n}, c_{n}\right)\right\} \quad$ (here $0 \leq a_{1}, \cdots, a_{n} \leq 1$ are membership values of truthness, $0 \leq b_{1}, \cdots, b_{n} \leq 1$ are membership values of indeterminacy, and $0 \leq c_{1}, \cdots, c_{n} \leq 1$ are membership values of falsity) can be established in terms of a NG G such that each vertex in G is a class in $N S$ and edge number between two vertices is the cardinality of intersection
of corresponding to two classes of $N S$ and the truthness degree (resp. indeterminacy degree and falsity degree) of edges is the truthness degree (resp. indeterminacy degree and falsity degree) of each vertex in its intersection. The neutrosophic pseudograph (with loops), discrete neutrosophic topological graph (no loop) and simple neutrosophic graph (one edge between two adjacent vertices) mark their subscripts by $N P, N D$ and $N S$ respectively.

Theorem 8. Let $\left|E_{N P}(G)\right|,\left|E_{N D}(G)\right|$ and $\left|E_{N S}(G)\right|$ be the edge number of a neutrosophic pseudograph, discrete neutrosophic topological graph and simple neutrosophic graph on the bipolar fuzzy set $N S=\left\{\left(v_{1}, a_{1}, b_{1}\right.\right.$, $\left.\left.c_{1}\right), \cdots,\left(v_{n}, a_{n}, b_{n}, c_{n}\right)\right\}$, respectively. Then, $\left|E_{N P}(G)\right|=n 2^{n-2}\left(2^{n-1}-1\right)$ $+n 2^{n-1},\left|E_{N D}(G)\right|=n 2^{n-2}\left(2^{n-1}-1\right)$ and $\left|E_{N S}(G)\right|=\frac{2^{2 n}-2^{n}-3^{n}+1}{2}$.
Example 30. Let $N S=\left\{\left(v_{1}, 0.6,0.5,0.4\right),\left(v_{2}, 0.3\right.\right.$, $\left.0.6,0.5),\left(v_{3}, 0.1,0.2,0.8\right)\right\} . \operatorname{Then}\left|E_{N P}(G)\right|=30,\left|E_{N D}(G)\right|=18$ and $\left|E_{N S}(G)\right|=15$.

A NTG deduced in terms of a neutrosophic graph can be stated by the following result.

Theorem 9. Let G be a NG that meets the conditions:

- G has a unique isolated vertex which is represented by \varnothing;
- There is a vertex v adjacent to other vertices in
$G-\{\varnothing\}$, and $\mu_{\mathrm{T}}\left(v_{i}, v\right) \leq \mu_{\mathrm{T}}\left(v_{i}, N S\right) \leq \mu_{\mathrm{T}}(v, N S)$,
$\mu_{\mathrm{N}}\left(v_{i}, v\right) \geq \mu_{\mathrm{N}}\left(v_{i}, N S\right) \geq \mu_{\mathrm{N}}(v, N S)$ and $\mu_{\mathrm{F}}\left(v_{i}, v\right) \geq$
$\mu_{\mathrm{F}}\left(v_{i}, N S\right) \geq \mu_{\mathrm{F}}(v, N S)$ for any $v_{i} \in V(G)-\{\varnothing\} ;$
- Let v_{1} and v_{2} be any two distinct vertices. We have
$v_{1} \wedge v_{2}, v_{1} \vee v_{2} \in V(G)$.
Then, the class τ of vertices is a NTG.
The next theorem is used to compute the size of G by means of neutrosophic topological graph τ.
Theorem 9. The edge number of a NTG is expressed by a neutrosophic topology $\tau=\left\{\varnothing,\left\{\left(v_{1}, a_{1}, b_{1}, c_{1}\right)\right\},\left\{\left(v_{1}, a_{1}, b_{1}\right.\right.\right.$, $\left.\left.\left.c_{1}\right),\left(v_{2}, a_{2}, b_{2}, c_{2}\right)\right\}, \cdots, X=\left\{\left(v_{1}, a_{1}, b_{1}, c_{1}\right), \cdots,\left(v_{n}, a_{n}, b_{n}, c_{n}\right)\right\}\right\}$.
Example 31. Let $N S=\left\{\left(v_{1}, 0.6,0.5,0.4\right),\left(v_{2}, 0.3,0.6,0.5\right)\right.$, $\left.\left(v_{3}, 0.1,0.2,0.8\right)\right\}$ with a neutrosophic topological space $\tau=\left\{\varnothing, S_{1}=\left\{\left(v_{1}, 0.6,0.5,0.4\right)\right\} \quad, S_{2}=\left\{\left(v_{1}, 0.6,0.5,0.4\right),\left(v_{2}, 0.3\right.\right.\right.$, $0.6,0.5)\}, X=\left\{\left(v_{1}, 0.6,0.5,0.4\right),\left(v_{2}, 0.3,0.6,0.5\right),\left(v_{3}, 0.1\right.\right.$, $0.2,0.8)\}\}$. See Fig 14 for the neutrosophic topological graph, and the truthness degree, indeterminacy degree and falsity degree of edges are 2.1, 2.1 and 1.7 respectively.

(0.3, 0.6, 0.5)

Fig 14. A neutrosophic topological graph in Example 31.

Each neutrosophic topological graph can be expressed by a neutrosophic graph, but the reverse may not be true. We present the following two examples to explain it in detail.

Example 32. Let G be a neutrosophic graph drawn in Fig 15, and a neutrosophic topological graph be constructed in terms of the following schemes: the only isolated vertex is formulated by \varnothing; the vertex has the maximum degree four represented by $X=\left\{\left(v_{1}, 0.6,0.5,0.4\right),\left(v_{2}, 0.3,0.6,0.5\right),\left(v_{3}, 0.1,0.2,0.8\right)\right\}$. Since $\left|S_{2} \wedge X\right|=2$, the vertex represents S_{2} is $\left\{\left(v_{1}, 0.6,0.5,0.4\right),\left(v_{2}, 0.3,0.6,0.5\right)\right\}$. Similarly, $\left|S_{3} \wedge X\right|=2$ and the corresponding vertex is denoted by $S_{3}=\left\{\left(v_{1}, 0.6,0.5,0.4\right)\right.$, $\left|S_{2} \wedge S_{3}\right|=1$, and the MF value of the edge connecting S_{2} and S_{3} is (0.6, 0.5, 0.4). $\left|S_{1} \wedge X\right|=\left|S_{1} \wedge S_{2}\right|=\left|S_{1} \wedge S_{3}\right|=1$ and hence S_{1} is denoted by $\left\{\left(v_{1}, 0.6,0.5,0.4\right)\right\}$. Therefore, $\tau=\left\{\varnothing, S_{1}=\left\{\left(v_{1}, 0.6,0.5,0.4\right)\right\}, S_{2}=\left\{\left(v_{1}, 0.6,0.5,0.4\right)\right.\right.$, $\left.\left(v_{2}, 0.3,0.6,0.5\right)\right\}, S_{3}=\left\{\left(v_{1}, 0.6,0.5,0.4\right),\left(v_{3}, 0.1,0.2,0.8\right)\right\}$, $\left.X=\left\{\left(v_{1}, 0.6,0.5,0.4\right),\left(v_{2}, 0.3,0.6,0.5\right),\left(v_{3}, 0.1,0.2,0.8\right)\right\}\right\}$ is a neutrosophic topology and this graph is called a neutrosophic topological graph.

Fig 15. A NG which is a NTG.
Example 33. The graph G in Fig 16 is not a neutrosophic topological graph, where

$$
X=\left\{\left(v_{1}, 0.6,0.5,0.4\right),\left(v_{2}, 0.3,0.6,0.5\right),\left(v_{3}, 0.1,0.2,0.8\right),\right.
$$ $\left.\left(v_{4}, 0.5,0.5,0.5\right)\right\}$,

$$
\begin{gathered}
S_{1}=\left\{\left(v_{1}, 0.6,0.5,0.4\right),\left(v_{2}, 0.3,0.6,0.5\right)\right\}, \\
S_{2}=\left\{\left(v_{1}, 0.6,0.5,0.4\right),\left(v_{3}, 0.1,0.2,0.8\right)\right\}, \\
\left|S_{1} \wedge X\right|=\left|S_{2} \wedge X\right|=2,\left|S_{1} \wedge S_{2}\right|=1, \\
S_{1} \wedge X=\left\{\left(v_{1}, 0.6,0.5,0.4\right),\left(v_{2}, 0.3,0.6,0.5\right)\right\}, \\
S_{2} \wedge X=\left\{\left(v_{1}, 0.6,0.5,0.4\right),\left(v_{3}, 0.1,0.2,0.8\right)\right\}, \\
S_{1} \wedge S_{2}=\left\{\left(v_{1}, 0.6,0.5,0.4\right)\right\}
\end{gathered}
$$

However,
$\tau=\left\{\varnothing, S_{1}=\left\{\left(v_{1}, 0.6,0.5,0.4\right),\left(v_{2}, 0.3,0.6,0.5\right)\right\}\right.$,
$S_{2}=\left\{\left(v_{1}, 0.6,0.5,0.4\right),\left(v_{3}, 0.1,0.2,0.8\right)\right\}$,
$X=\left\{\left(v_{1}, 0.6,0.5,0.4\right),\left(v_{2}, 0.3,0.6,0.5\right),\left(v_{3}, 0.1,0.2\right.\right.$,
$\left.\left.0.8),\left(v_{4}, 0.5,0.5,0.5\right)\right\}\right\}$ is not a neutrosophic topology because $S_{1} \cup S_{2}=\left\{\left(v_{1}, 0.6,0.5,0.4\right),\left(v_{2}, 0.3,0.6,0.5\right)\right.$, $\left.\left(v_{3}, 0.1,0.2,0.8\right)\right\} \notin \tau$.

Fig 16. A neutrosophic graph which is not a neutrosophic topological graph.

C. Algebraic operations in bipolar neutrosophic setting

Definition 18. A bipolar neutrosophic topology on a bipolar neutrosophic set $B N S=\left\{\left(v_{1}, a_{1}, b_{1}, c_{1}, a_{1}, b_{1}, c_{1}\right), \cdots\right.$, $\left.\left(v_{n}, a_{n}, b_{n}, c_{n}, a_{n}^{\prime}, b_{n}^{\prime}, c_{n}^{\prime}\right)\right\} \quad$ (here $\quad 0 \leq a_{1}, \cdots, a_{n} \leq 1 \quad$ are positive membership values of truthness, $0 \leq b_{1}, \cdots, b_{n} \leq 1$ are positive membership values of indeterminacy, $0 \leq c_{1}, \cdots, c_{n} \leq 1$ are positive membership values of falsity, $-1 \leq a_{1}^{\prime}, \cdots, a_{n}^{\prime} \leq 0$ are negative membership values of truthness, $-1 \leq b_{1}^{\prime}, \cdots, b_{n}^{\prime} \leq 0$ are negative membership values of indeterminacy, $-1 \leq c_{1}, \cdots, c_{n} \leq 0$ are negative membership values of falsity) can be established in terms of a BNG G such that each vertex in G is a class in $B N S$ and edge number between two vertices is the cardinality of intersection of corresponding two classes of $B N S$, the positive truthness degree (resp. positive indeterminacy degree and positive falsity degree) of edges is the positive truthness degree (resp. positive indeterminacy degree and positive falsity degree) of each vertex in its intersection, and the negative truthness degree (resp. negative indeterminacy degree and negative falsity degree) of edges is the negative truthness degree (resp. negative indeterminacy degree and negative falsity degree) of each vertex in its intersection. The bipolar neutrosophic pseudograph (with loops), bipolar discrete neutrosophic topological graph (no loops) and bipolar simple neutrosophic graph (one edge between two adjacent vertices) mark their subscripts by $B N P, B N D$ and $B N S$ respectively

Theorem 10. Let $\left|E_{B N P}(G)\right|,\left|E_{B N D}(G)\right|$ and $\left|E_{B N S}(G)\right|$ be the edge number of a bipolar neutrosophic pseudograph, bipolar discrete neutrosophic topological graph and bipolar simple neutrosophic graph on the bipolar fuzzy set $B N S=\left\{\left(v_{1}, a_{1}, b_{1}, c_{1}, a_{1}^{\prime}, b_{1}^{\prime}, c_{1}^{\prime}\right), \cdots,\left(v_{n}, a_{n}, b_{n}, c_{n}, a_{n}^{\prime}, b_{n}^{\prime}, c_{n}^{\prime}\right)\right\}$, respectively. Then, $\left|E_{B N P}(G)\right|=n 2^{n-2}\left(2^{n-1}-1\right)+n 2^{n-1}$,
$\left|E_{B N D}(G)\right|=n 2^{n-2}\left(2^{n-1}-1\right)$ and $\left|E_{B N S}(G)\right|=\frac{2^{2 n}-2^{n}-3^{n}+1}{2}$.
Example 34. Let $B N S=\left\{\left(v_{1}, 0.6,0.5,0.4,-0.5,-0.6\right.\right.$,
$-0.8),\left(v_{2}, 0.3,0.6,0.5,-0.6,-0.2,-0.4\right),\left(v_{3}, 0.1,0.2,0.8\right.$,
$-0.9,-0.7,-0.2)\}$. Then $\left|E_{B N P}(G)\right|=30,\left|E_{B N D}(G)\right|=18$ and $\left|E_{B N S}(G)\right|=15$.

A bipolar neutrosophic topological graph deduced in terms of a bipolar neutrosophic graph can be stated by the following result.

Theorem 11. Let G be a BNG that meets the conditions:

- G has a unique isolated vertex which is represented by \varnothing;
- There is a vertex v adjacent to other vertices in $G-\{\varnothing\}$, and $\mu_{\mathrm{T}}^{P}\left(v_{i}, v\right) \leq \mu_{\mathrm{T}}^{P}\left(v_{i}, B N S\right) \leq \mu_{\mathrm{T}}^{P}(v, B N S)$,

$$
\begin{gathered}
\mu_{\mathrm{N}}^{P}\left(v_{i}, v\right) \geq \mu_{\mathrm{N}}^{P}\left(v_{i}, B N S\right) \geq \mu_{\mathrm{N}}^{P}(v, B N S), \\
\mu_{\mathrm{F}}^{P}\left(v_{i}, v\right) \geq \mu_{\mathrm{F}}^{P}\left(v_{i}, B N S\right) \geq \mu_{\mathrm{F}}^{P}(v, B N S), \\
\mu_{\mathrm{T}}^{N}\left(v_{i}, v\right) \geq \mu_{\mathrm{T}}^{N}\left(v_{i}, B N S\right) \geq \mu_{\mathrm{T}}^{N}(v, B N S), \\
\mu_{\mathrm{N}}^{N}\left(v_{i}, v\right) \leq \mu_{\mathrm{N}}^{N}\left(v_{i}, B N S\right) \leq \mu_{\mathrm{N}}^{N}(v, B N S), \\
\mu_{\mathrm{F}}^{N}\left(v_{i}, v\right) \leq \mu_{\mathrm{F}}^{N}\left(v_{i}, B N S\right) \leq \mu_{\mathrm{F}}^{N}(v, B N S)
\end{gathered}
$$

for any $v_{i} \in V(G)-\{\varnothing\}$;

- Let v_{1} and v_{2} be any two distinct vertices. We have $v_{1} \wedge v_{2}, v_{1} \vee v_{2} \in V(G)$.

Then, the class τ of vertices is a BNTG.
The next theorem is used to compute the size of G by means of bipolar neutrosophic topological graph τ.

Theorem 12. The edge number of a BNTG is expressed by a bipolar neutrosophic topology $\tau=\left\{\varnothing,\left\{\left(v_{1}, a_{1}, b_{1}, c_{1}, a_{1}^{\prime}\right.\right.\right.$, $\left.\left.b_{1}^{\prime}, c_{1}^{\prime}\right)\right\},\left\{\left(v_{1}, a_{1}, b_{1}, c_{1}, a_{1}^{\prime}, b_{1}^{\prime}, c_{1}^{\prime}\right),\left(v_{2}, a_{2}, b_{2}, c_{2}, a_{2}^{\prime}, b_{2}^{\prime}, c_{2}^{\prime}\right)\right\}$, $\left.\cdots, X=\left\{\left(v_{1}, a_{1}, b_{1}, c_{1}, a_{1}, b_{1}, c_{1}\right), \cdots,\left(v_{n}, a_{n}, b_{n}, c_{n}, a_{n}, b_{n}, c_{n}\right)\right\}\right\}$.

Example 35. Let $B N S=\left\{\left(v_{1}, 0.6,0.5,0.4,-0.5,-0.6\right.\right.$,
$-0.8),\left(v_{2}, 0.3,0.6,0.5,-0.6,-0.2,-0.4\right),\left(v_{3}, 0.1,0.2\right.$, $0.8,-0.9,-0.7,-0.2)\} \quad$ with \quad a bipolar neutrosophic topological space $\tau=\left\{\varnothing, \quad S_{1}=\left\{\left(v_{1}, 0.6,0.5,0.4\right.\right.\right.$, $-0.5,-0.6,-0.8)\}, S_{2}=\left\{\left(v_{1}, 0.6,0.5,-0.6,-0.8\right),\left(v_{2}, 0.3\right.\right.$, $0.6,0.5,-0.6,-0.2,-0.4)\}, X=\left\{\left(v_{1}, 0.6,0.5,0.4,-0.5\right.\right.$, $-0.6,-0.8),\left(v_{2}, 0.3,0.6,0.5,-0.6,-0.2,-0.4\right),\left(v_{3}, 0.1\right.$, $0.2,0.8,-0.9,-0.7,-0.2)\}\}$. See Fig 17 for the bipolar neutrosophic topological graph, and the positive truthness degree, positive indeterminacy degree, positive falsity degree, negative truthness degree, negative indeterminacy degree, and negative falsity degree of edges are 2.1, 2.1, 1.7, $-2.1,-2$, -2.8 respectively.

Fig 17. A bipolar neutrosophic topological graph in Example 35.
Each BNTG can be expressed by a BFG, but the reverse may not be true. We present the following two examples to explain it in detail.

Example 36. Let G be a BNG drawn in Fig 15, and a bipolar neutrosophic topological graph be constructed in terms of the following schemes: the only isolated vertex is formulated by \varnothing; the vertex has the maximum degree four represented by $X=\left\{\left(v_{1}, 0.6,0.5,0.4,-0.5,-0.6,-0.8\right)\right.$,
$\left(v_{2}, 0.3,0.6,0.5,-0.6,-0.2,-0.4\right), \quad\left(v_{3}, 0.1,0.2,0.8,-0.9\right.$, $-0.7,-0.2)\}$. Since $\left|S_{2} \wedge X\right|=2$, the vertex representing S_{2} is $\left\{\left(v_{1}, 0.6,0.5,0.4,-0.5,-0.6,-0.8\right),\left(v_{2}, 0.3,0.6,0.5,-0.6\right.\right.$, $-0.2,-0.4)\}$. Similarly, $\left|S_{3} \wedge X\right|=2$ and the corresponding vertex are denoted by $S_{3}=\left\{\left(\nu_{1}, 0.6,0.5,0.4,-0.5,-0.6,-0.8\right)\right.$, $\left.\left(v_{3}, 0.1,0.2,0.8,-0.9,-0.7,-0.2\right)\right\} \cdot\left|S_{2} \wedge S_{3}\right|=1$, and the MF value of edge connect S_{2} and S_{3} is ($0.6,0.5,0.4,-0.5,-0.6,-0.8$). $\left|S_{1} \wedge X\right|=\left|S_{1} \wedge S_{2}\right|=\left|S_{1} \wedge S_{3}\right|=1$ and hence S_{1} is denoted by $\left\{\left(v_{1}, 0.6,0.5,0.4,-0.5,-0.6,-0.8\right)\right\}$. Therefore, $\tau=\left\{\varnothing, S_{1}=\right.$ $\left\{\left(v_{1}, 0.6,0.5,0.4,-0.5,-0.6,-0.8\right)\right\}, S_{2}=\left\{\left(v_{1}, 0.6,0.5,0.4,-0.5,-0.6\right.\right.$, $\left.-0.8),\left(v_{2}, 0.3,0.6,0.5,-0.6,-0.2,-0.4\right)\right\}, S_{3}=\left\{\left(v_{1}, 0.6,0.5,0.4\right.\right.$, $\left.-0.5,-0.6,-0.8),\left(v_{3}, 0.1,0.2,0.8,-0.9,-0.7,-0.2\right)\right\}, X=$ $\left\{\left(v_{1}, 0.6,0.5,0.4,-0.5,-0.6,-0.8\right),\left(v_{2}, 0.3,0.6,0.5,-0.6,-0.2,-0.4\right)\right.$, $\left.\left.\left(v_{3}, 0.1,0.2,0.8,-0.9,-0.7,-0.2\right)\right\}\right\} \quad$ is a bipolar neutrosophic topology and this graph is called a BNGT.
ϕ.

Fig 18. A BNG which is a BNTG.
Example 37. The graph G in Fig 19 is not a bipolar neutrosophic topological graph where $X=\left\{\left(v_{1}, 0.6,0.5,0.4\right.\right.$,
$-0.5,-0.6,-0.8),\left(v_{2}, 0.3,0.6,0.5,-0.6,-0.2,-0.4\right),\left(v_{3}, 0.1\right.$, $\left.0.2,0.8,-0.9,-0.7,-0.2),\left(v_{4}, 0.5,0.5,0.5,-0.5,-0.5,-0.5\right)\right\}$,

$$
S_{1}=\left\{\left(v_{1}, 0.6,0.5,0.4,-0.5,-0.6,-0.8\right),\left(v_{2}, 0.3,0.6,\right.\right.
$$

$$
0.5,-0.6,-0.2,-0.4)\}
$$

$$
S_{2}=\left\{\left(v_{1}, 0.6,0.5,0.4,-0.5,-0.6,-0.8\right),\left(v_{3}, 0.1,0.2,\right.\right.
$$

$$
0.8,-0.9,-0.7,-0.2)\}
$$

$$
\left|S_{1} \wedge X\right|=\left|S_{2} \wedge X\right|=2,\left|S_{1} \wedge S_{2}\right|=1
$$

$$
S_{1} \wedge X=\left\{\left(v_{1}, 0.6,0.5,0.4,-0.5,-0.6,-0.8\right),\left(v_{2}, 0.3,\right.\right.
$$

$$
0.6,0.5,-0.6,-0.2,-0.4)\}
$$

$$
S_{2} \wedge X=\left\{\left(v_{1}, 0.6,0.5,0.4,-0.5,-0.6,-0.8\right),\left(v_{3}, 0.1\right.\right.
$$

$$
0.2,0.8,-0.9,-0.7,-0.2)\}
$$

$$
S_{1} \wedge S_{2}=\left\{\left(v_{1}, 0.6,0.5,0.4,-0.5,-0.6,-0.8\right)\right\}
$$

However,
$\tau=\left\{\varnothing, S_{1}=\left\{\left(v_{1}, 0.6,0.5,0.4,-0.5,-0.6,-0.8\right),\left(v_{2}, 0.3\right.\right.\right.$,
$0.6,0.5,-0.6,-0.2,-0.4)\}, S_{2}=\left\{\left(v_{1}, 0.6,0.5,0.4\right.\right.$, $\left.-0.5,-0.6,-0.8),\left(v_{3}, 0.1,0.2,0.8,-0.9,-0.7,-0.2\right)\right\}, X=\left\{\left(v_{1}, 0.6\right.\right.$, $0.5,0.4,-0.5,-0.6,-0.8),\left(v_{2}, 0.3,0.6,0.5,-0.6,-0.2,-0.4\right)$, $\left(v_{3}, 0.1,0.2,0.8,-0.9,-0.7,-0.2\right),\left(v_{4}, 0.5,0.5,0.5,-0.5\right.$, $-0.5,-0.5)\}\}$ is not a bipolar neutrosophic topology because
$S_{1} \cup S_{2}=\left\{\left(v_{1}, 0.6,0.5,0.4,-0.5,-0.6,-0.8\right)\right.$,
$\left(v_{2}, 0.3,0.6,0.5,-0.6,-0.2,-0.4\right),\left(v_{3}, 0.1,0.2\right.$, $0.8,-0.9,-0.7,-0.2)\} \notin \tau$.
ϕ.

Fig 19.. ABNG which is not a BNTG
D. Algebraic operations in interval-valued fuzzy setting

Definition 19. An IVFT on an IVFS $\operatorname{IVFS}=\left\{\left(v_{1},\left[a_{1}, b_{1}\right]\right), \quad \cdots,\left(v_{n},\left[a_{n}, b_{n}\right]\right)\right\} \quad$ (here $0 \leq a_{i} \leq b_{i} \leq 1$ for $\left.i \in\{1, \cdots, n\}\right)$ can be established in terms of an IVFG G such that each vertex in G is a class in IVFS and edge number between two vertices is the cardinality of intersection of corresponding two classes of IVFS. The interval-valued fuzzy pseudograph (with loops), discrete IVFTG (no loops) and simple IVFG (one edge between two adjacent vertices) mark their subscripts by $I V F P, I V F D$ and IVFS respectively.

Theorem 13. Let $\left|E_{\text {IVFP }}(G)\right|,\left|E_{\text {IVFD }}(G)\right|$ and $\left|E_{\text {IVFS }}(G)\right|$ be the edge number of an interval-valued fuzzy pseudograph, discrete IVFTG and simple IVFG on the BFS $\operatorname{IVFS}=\left\{\left(v_{1},\left[a_{1}, b_{1}\right]\right), \cdots,\left(v_{n},\left[a_{n}, b_{n}\right]\right)\right\}$, respectively. Then, $\left|E_{I V F P}(G)\right|=n 2^{n-2}\left(2^{n-1}-1\right)+n 2^{n-1},\left|E_{\text {IVFD }}(G)\right|=$

$$
n 2^{n-2}\left(2^{n-1}-1\right) \text { and }\left|E_{I V F S}(G)\right|=\frac{2^{2 n}-2^{n}-3^{n}+1}{2}
$$

Example 38. Let $I V F S=\left\{\left(v_{1},[0.3,0.6]\right),\left(v_{2},[0.5,0.7]\right)\right.$, $\left.\left(v_{3},[0.1,0.4]\right)\right\}$. Then $\left|E_{I V F P}(G)\right|=30,\left|E_{I V F D}(G)\right|=18$ and $\left|E_{I V F S}(G)\right|=15$.

An IVFTG deduced in terms of an interval-valued fuzzy graph can be stated by the following result.

Theorem 15. Let G be an interval-valued fuzzy graph that meets the conditions:

- G has a unique isolated vertex which is represented by \varnothing;
- There is a vertex v adjacent to other vertices in $G-\{\varnothing\}$, and $\mu^{+l}\left(v_{i}, v\right) \leq \mu^{+l}\left(v_{i}, I V F S\right) \leq \mu^{+l}(v, I V F S) \quad$, and
$\mu^{+u}\left(v_{i}, v\right) \leq \mu^{+u}\left(v_{i}, I V S\right) \leq \mu^{+u}(v, I V S)$ for any $v_{i} \in V(G)-\{\varnothing\} ;$
- Let v_{1} and v_{2} be any two distinct vertices. We have $v_{1} \wedge v_{2}, v_{1} \vee v_{2} \in V(G)$.

Then, the class τ of vertices is an IVFTG.
The next theorem is used to compute the edge number of G by means of IVFTG τ.

Theorem 16. The edge number of an IVFTG is expressed by an interval-valued fuzzy topology $\tau=\left\{\varnothing,\left\{\left(v_{1},\left[a_{1}, b_{1}\right]\right)\right\}\right.$, $\left.\left\{\left(v_{1},\left[a_{1}, b_{1}\right]\right),\left(v_{2},\left[a_{2}, b_{2}\right]\right)\right\}, \cdots, X=\left\{\left(v_{1},\left[a_{1}, b_{1}\right]\right), \cdots,\left(v_{n},\left[a_{n}, b_{n}\right]\right)\right\}\right\}$.
Example 39. Let $\operatorname{IVFS}=\left\{\left(v_{1},[0.3,0.6]\right),\left(v_{2},[0.5,0.7]\right)\right.$, $\left.\left(v_{3},[0.1,0.4]\right)\right\}$ with an interval-valued fuzzy topological space $\tau=\left\{\varnothing, S_{1}=\left\{\left(v_{1},[0.3,0.6]\right)\right\}, S_{2}=\left\{\left(v_{1},[0.3,0.6]\right)\right.\right.$, $\left.\left(v_{2},[0.5,0.7]\right)\right\}, X=\left\{\left(v_{1},[0.3,0.6]\right),\left(v_{2},[0.5,0.7]\right)\right.$, $\left.\left.\left(v_{3},[0.1,0.4]\right)\right\}\right\}$. See Fig 20 for the interval-valued fuzzy topological graph.

Fig 20. An IVFTG in Example 39.
Each IVFTG can be expressed by an IVFG, but the reverse may not be true. We present the following two examples to explain it in detail.

Example 40. Let G be an IVFG drawn in Fig 21, and an IVFTG be constructed in terms of the following schemes: the only isolated vertex is formulated by \varnothing; the vertex has maximum degree four represented by $X=\left\{\left(v_{1},[0.3,0.6]\right)\right.$, $\left.\left(v_{2},[0.5,0.7]\right),\left(v_{3},[0.1,0.4]\right)\right\}$.Since $\left|S_{2} \wedge X\right|=2$, the vertex representing S_{2} is $\left\{\left(v_{1},[0.3,0.6]\right),\left(v_{2},[0.5,0.7]\right)\right\}$. Similarly, $\left|S_{3} \wedge X\right|=2$ and the correspond vertex is denoted by $S_{3}=\left\{\left(v_{1},[0.3,0.6]\right),\left(v_{3},[0.1,0.4]\right)\right\}$. $\left|S_{2} \wedge S_{3}\right|=1$, and the MF value of the edge connecting S_{2} and S_{3} is $([0.3,0.6]) .\left|S_{1} \wedge X\right|=\left|S_{1} \wedge S_{2}\right|=\left|S_{1} \wedge S_{3}\right|=1$ and hence S_{1} is denoted by $\left\{\left(v_{1},[0.3,0.6]\right)\right\}$. Therefore, $\tau=\left\{\varnothing, S_{1}=\left\{\left(v_{1},[0.3,0.6]\right)\right\}, S_{2}=\left\{\left(v_{1},\left[0.3,\left\{\left(v_{1},[0.3,0.6]\right)\right.\right.\right.\right.\right.$,$\left.\left(v_{2},[0.5,0.7]\right)\right\}, S_{3}=\left\{\left(v_{1},[0.3,0.6]\right),\left(v_{3},[0.1,0.4]\right)\right\}$, $\left.X=\left\{\left(v_{1},[0.3,0.6]\right),\left(v_{2},[0.5,0.7]\right),\left(v_{3},[0.1,0.4]\right)\right\}\right\}$ is an IVFT and this graph is called an IVFTG.

Fig 21. An IVFG which is an IVFTG.
Example 41. The graph G in Fig 22 is not an IVFTG, where

$$
X=\left\{\left(v_{1},[0.3,0.6]\right),\left(v_{2},[0.5,0.7]\right),\left(v_{3},[0.1,0.4]\right)\right.
$$ $\left.\left(v_{4},[0.6,0.8]\right)\right\}$,

$$
\begin{gathered}
S_{1}=\left\{\left(v_{1},[0.3,0.6]\right),\left(v_{2},[0.5,0.7]\right)\right\}, \\
S_{2}=\left\{\left(v_{1},[0.3,0.6]\right),\left(v_{3},[0.1,0.4]\right)\right\}, \\
\left|S_{1} \wedge X\right|=\left|S_{2} \wedge X\right|=2,\left|S_{1} \wedge S_{2}\right|=1, \\
S_{1} \wedge X=\left\{\left(v_{1},[0.3,0.6]\right),\left(v_{2},[0.5,0.7]\right)\right\}, \\
S_{2} \wedge X=\left\{\left(v_{1},[0.3,0.6]\right),\left(v_{3},[0.1,0.4]\right)\right\}, \\
S_{1} \wedge S_{2}=\left\{\left(v_{1},[0.3,0.6]\right)\right\} .
\end{gathered}
$$

However,
$\tau=\left\{\varnothing, S_{1}=\left\{\left(v_{1},[0.3,0.6]\right),\left(v_{2},[0.5,0.7]\right)\right\}\right.$,
$S_{2}=\left\{\left(v_{1},[0.3,0.6]\right),\left(v_{3},[0.1,0.4]\right)\right\}$,
$\left.X=\left\{\left(v_{1},[0.3,0.6]\right),\left(v_{2},[0.5,0.7]\right),\left(v_{3},[0.1,0.4]\right),\left(v_{4},[0.6,0.8]\right)\right\}\right\}$
is not an IVFT because $S_{1} \cup S_{2}=\left\{\left(v_{1},[0.3,0.6]\right),\left(v_{2},[0.5,0.7]\right)\right.$, $\left.\left(v_{3},[0.1,0.4]\right)\right\} \notin \tau$

Fig 22. An IVFG which is not an IVFTG.

E. Algebraic operations in bipolar interval-valued fuzzy setting

Definition 20. A bipolar interval-valued fuzzy topology on a bipolar interval-valued fuzzy set $B I V F S=\left\{\left(v_{1},\left[a_{1}, b_{1}\right]\right.\right.$, $\left.\left.\left[c_{1}, d_{1}\right]\right), \cdots,\left(v_{n},\left[a_{n}, b_{n}\right],\left[c_{n}, d_{n}\right]\right)\right\}$ (here $0 \leq a_{i} \leq b_{i} \leq 1$ and $-1 \leq c_{i} \leq d_{i} \leq 0$ for $\left.i \in\{1, \cdots, n\}\right)$ can be established in terms of a BIVFG G such that each vertex in G is a class in BIVFS and edge number between two vertices is the cardinality of intersection of corresponding to two classes of BIVFS. The bipolar interval-valued fuzzy pseudograph (BIVFP) (with loops), bipolar discrete interval-valued fuzzy topology graph (BDIVFTG) (no loops) and bipolar simple interval-valued fuzzy graph (BSIVFG) (one edge between two adjacent vertices) mark their subscripts by BIVFP, BIVFD and BIVFS respectively.

Theorem 17. Let $\left|E_{B I V F P}(G)\right|,\left|E_{B V F D}(G)\right|$ and $\left|E_{B I V F S}(G)\right|$ be the edge number of a BIVFP, BDIVFTG and BSIVFG on the

BFS BIVFS $=\left\{\left(v_{1},\left[a_{1}, b_{1}\right],\left[c_{1}, d_{1}\right]\right), \cdots,\left(v_{n},\left[a_{n}, b_{n}\right],\left[c_{n}, d_{n}\right]\right)\right\}$, respectively. Then, $\left|E_{B I V F P}(G)\right|=n 2^{n-2}\left(2^{n-1}-1\right)+n 2^{n-1}$ $\left|E_{\text {BIVFD }}(G)\right|=n 2^{n-2}\left(2^{n-1}-1\right)$ and $\left|E_{B I V F S}(G)\right|=\frac{2^{2 n}-2^{n}-3^{n}+1}{2}$

Example 42. Let $\operatorname{BIVFS}=\left\{\left(v_{1},[0.3,0.6],[-0.9,-0.3]\right)\right.$, $\left.\left(v_{2},[0.5,0.7],[-0.6,-0.5]\right),\left(v_{3},[0.1,0.4],[-0.4,-0.2]\right)\right\}$.Then $\left|E_{B I V F P}(G)\right|=30 \quad,\left|E_{B I V F D}(G)\right|=18$ and $\left|E_{B I V F S}(G)\right|=15$.

A BIVFTG deduced in terms of a bipolar interval-valued fuzzy graph can be stated by the following result.

Theorem 18. Let G be a BIVFG that meets the conditions:

- G has a unique isolated vertex which is represented by \varnothing;
- There is a vertex v adjacent to other vertices in $G-\{\varnothing\}$, and $\mu^{+l}\left(v_{i}, v\right) \leq \mu^{+l}\left(v_{i}\right.$, BIVFS $) \leq \mu^{+l}(v$, BIVFS $), \mu^{+u}\left(v_{i}, v\right) \leq$ $\mu^{+u}\left(v_{i}, B I V S\right) \leq \mu^{+u}(v, B I V S), \mu^{-l}\left(v_{i}, v\right) \geq \mu^{-l}\left(v_{i}\right.$, BIVFS $) \geq \mu^{-l}(v$, BIVFS $), \mu^{-u}\left(v_{i}, v\right) \geq \mu^{-u}\left(v_{i}\right.$, BIVS $) \geq \mu^{-u}(v$, BIVS $)$ for any $v_{i} \in V(G)-\{\varnothing\}$;
- Let v_{1} and v_{2} be any two distinct vertices. We have $v_{1} \wedge v_{2}, v_{1} \vee v_{2} \in V(G)$.

Then, the class τ of vertices is a bipolar interval-valued fuzzy topological graph.
The next theorem is used to compute the edge number of G by means of a bipolar interval-valued fuzzy topological graph τ.

Theorem 19. The edge number of a bipolar interval-valued fuzzy topological graph is expressed by a bipolar interval-valued fuzzy topology $\tau=\left\{\varnothing,\left\{\left(v_{1},\left[a_{1}, b_{1}\right],\left[c_{1}, d_{1}\right]\right)\right\},\left\{\left(v_{1},\left[a_{1}, b_{1}\right],\left[c_{1}, d_{1}\right]\right)\right.\right.$, $\left.\left(v_{2},\left[a_{2}, b_{2}\right],\left[c_{2}, d_{2}\right]\right)\right\}, \cdots, X=\left\{\left(v_{1},\left[a_{1}, b_{1}\right],\left[c_{1}, d_{1}\right]\right), \cdots\right.$, $\left.\left.\left(v_{n},\left[a_{n}, b_{n}\right],\left[c_{n}, d_{n}\right]\right)\right\}\right\}$.
Example 43. Let $N S=\left\{\left(v_{1},[0.3,0.6],[-0.9,-0.3]\right)\right.$, $\left.\left(v_{2},[0.5,0.7],[-0.6,-0.5]\right),\left(v_{3},[0.1,0.4],[-0.4,-0.2]\right)\right\}$ wit h a bipolar interval-valued fuzzy topological space $\tau=\left\{\varnothing, S_{1}=\left\{\left(v_{1},[0.3,0.6],[-0.9,-0.3]\right)\right\}, S_{2}=\left\{\left(v_{1},[0.3,0.6]\right.\right.\right.$, $\left.[-0.9,-0.3]),\left(v_{2},[0.5,0.7],[-0.6,-0.5]\right)\right\}, \quad X=\left\{\left(v_{1},[0.3,0.6]\right.\right.$, $[-0.9,-0.3]),\left(v_{2},[0.5,0.7],[-0.6,-0.5]\right),\left(v_{3},[0.1,0.4]\right.$, $[-0.4,-0.2])\}\}$ See Fig 23 for the IVFTG.

Fig 23. A bipolar interval-valued fuzzy topological graph in Example 43.
Each bipolar interval-valued fuzzy topological graph can be expressed by a bipolar interval-valued fuzzy graph, but the
reverse may not be true. We present the following two examples to explain it in detail.

Example 40. Let G be a BIVFG drawn in Fig 24, and a BIVFTG be constructed in terms of the following schemes: the only isolated vertex is formulated by \varnothing; the vertex has maximum degree four represented by $X=\left\{\left(v_{1},[0.3,0.6]\right.\right.$, $\left.[-0.9,-0.3]),\left(v_{2},[0.5,0.7],[-0.6,-0.5]\right),\left(v_{3},[0.1,0.4],[-0.4,-0.2]\right)\right\}$. Since $\left|S_{2} \wedge X\right|=2$, the vertex representing S_{2} is $\left\{\left(v_{1},[0.3,0.6],[-0.9,-0.3]\right),\left(v_{2},[0.5,0.7],[-0.6,-0.5]\right)\right\}$. Similarly, $\left|S_{3} \wedge X\right|=2$ and the corresponding vertex is denoted by $S_{3}=\left\{\left(v_{1},[0.3,0.6],[-0.9,-0.3]\right),\left(v_{3},[0.1,0.4]\right.\right.$, $[-0.4,-0.2])\} .\left|S_{2} \wedge S_{3}\right|=1$, and the membership value of edge connect $\quad S_{2} \quad$ and $\quad S_{3} \quad$ is $\quad([0.3,0.6],[-0.9,-0.3])$ $\left|S_{1} \wedge X\right|=\left|S_{1} \wedge S_{2}\right|=\left|S_{1} \wedge S_{3}\right|=1$ and hence S_{1} denoted by $\left\{\left(v_{1},[0.3,0.6],[-0.9,-0.3]\right)\right\}$. Therefore, $\tau=\left\{\varnothing, S_{1}=\left\{\left(v_{1}\right.\right.\right.$, $[0.3,0.6],[-0.9,-0.3])\}, S_{2}=\left\{\left(v_{1},[0.3,0.6],[-0.9,-0.3]\right)\right.$ $\left.\left(v_{2},[0.5,0.7],[-0.6,-0.5]\right)\right\}, S_{3}=\left\{\left(v_{1},[0.3,0.6],[-0.9,-0.3]\right)\right.$, $\left.\left(v_{3},[0.1,0.4],[-0.4,-0.2]\right)\right\}, X=\left\{\left(v_{1},[0.3,0.6],[-0.9,-0.3]\right)\right.$, $\left.\left.\left(v_{2},[0.5,0.7],[-0.6,-0.5]\right),\left(v_{3},[0.1,0.4],[-0.4,-0.2]\right)\right\}\right\}$ is a bipolar interval-valued fuzzy topology and this graph is called a bipolar interval-valued fuzzy topological graph.

Fig 24. A BIVFG which is a BIVFTG.
Example 41. The graph G in Fig 25 is not a BIVFTG where
$X=\left\{\left(v_{1},[0.3,0.6],[-0.9,-0.3]\right),\left(v_{2},[0.5,0.7],[-0.6\right.\right.$,
$-0.5]),\left(v_{3},[0.1,0.4],[-0.4,-0.2]\right),\left(v_{4},[0.6,0.8]\right.$,
$[-0.7,-0.1])\}$
$S_{1}=\left\{\left(v_{1},[0.3,0.6],[-0.9,-0.3]\right),\left(v_{2},[0.5,0.7],[-0.6\right.\right.$, $-0.5])\}$,
$S_{2}=\left\{\left(v_{1},[0.3,0.6],[-0.9,-0.3]\right),\left(v_{3},[0.1,0.4],[-0.4\right.\right.$,
-0.2]) \}, $\left|S_{1} \wedge X\right|=\left|S_{2} \wedge X\right|=2,\left|S_{1} \wedge S_{2}\right|=1$,
$S_{1} \wedge X=\left\{\left(v_{1},[0.3,0.6],[-0.9,-0.3]\right),\left(v_{2},[0.5,0.7]\right.\right.$, $[-0.6,-0.5])\}$,
$S_{2} \wedge X=\left\{\left(v_{1},[0.3,0.6],[-0.9,-0.3]\right),\left(v_{3},[0.1,0.4]\right.\right.$, $[-0.4,-0.2])\}$,

$$
S_{1} \wedge S_{2}=\left\{\left(v_{1},[0.3,0.6],[-0.9,-0.3]\right)\right\}
$$

However,

$$
\begin{aligned}
& \tau=\left\{\varnothing, S_{1}=\left\{\left(v_{1},[0.3,0.6],[-0.9,-0.3]\right),\right.\right. \\
& \left.\left(v_{2},[0.5,0.7],[-0.6,-0.5]\right)\right\}, S_{2}=\left\{\left(v_{1},[0.3,0.6],\right.\right. \\
& \left.[-0.9,-0.3]),\left(v_{3},[0.1,0.4],[-0.4,-0.2]\right)\right\}, X=\left\{\left(v_{1},[0.3,\right.\right. \\
& 0.6],[-0.9,-0.3]),\left(v_{2},[0.5,0.7],[-0.6,-0.5]\right),\left(v_{3},\right.
\end{aligned}
$$

$$
\left.\left.[0.1,0.4],[-0.4,-0.2]), \quad\left(v_{4},[0.6,0.8],[-0.7,-0.1]\right)\right\}\right\} \text { is }
$$ not a bipolar interval-valued fuzzy topology because $S_{1} \cup S_{2}=\left\{\left(v_{1},[0.3,0.6],[-0.9,-0.3]\right),\left(v_{2},[0.5,0.7]\right.\right.$,

$$
\left.[-0.6,-0.5]),\left(v_{3},[0.1,0.4],[-0.4,-0.2]\right)\right\} \notin \tau
$$

Fig 25. A BIVFG which is not a BIVFTG.

V. Conclusion

Graphs are a common model functioned to reveal the relationship between things, and the relationship between fuzzy sets can also be presented by graph structures. In this article, we characterize the fuzzy topology from the perspective of the fuzzy graph. Five settings are discussed respectively: BIF setting, NS setting, BNS setting, IVFS setting and BIVFS setting. Parallel classes and topological spaces in these settings are presented, and several examples are depicted to show the expression of theorems and concepts. Due to the wide applications of BFS, NS and IVFS, the results derived in this paper have potential application prospects, especially in the circumstances that there are two different angles, positive and negative, to describe the uncertain features of issues.

REFERENCES

[1] A. Kauffman, "Introduction a la theorie des sous-ensembles flous," Masson et Cie Editeurs, Paris, 1973.
[2] A. Rosenfield, "Fuzzy graphs, Fuzzy sets and their application," Academic press, New York, pp.77-95, 1975.
[3] M. Akram, "Bipolar fuzzy graphs," Information Science, vol.181, no. 24 , pp.: 5548-5564, 2011.
[4] M. Akram, "Bipolar fuzzy graphs with applications," Knowledge-Bas ed Systems, vol.39, no.1-8, 2013.
[5] A. Sivadas, S. J. John, and Jayaprasad P N, "Fermatean fuzzy interactive aggregation operators and their application to decision-making," Engineering Letters, vol. 31, no.3, pp1025-1029, 2023.
[6] H. Yang, S. Li, W. Yang and Y. Lu, "Notes on bipolar fuzzy graphs," Information Sciences, vol. 242, pp.113-121, 2013.
[7] J. N. Mordeson, "Fuzzy line graphs," Pattern Recognition Letters, vol.14, no.5, pp.381-384, 1993.
[8] M. S. Sunitha, and A. Vijayakumar, "A characterization of fuzzy trees," Information Sciences, vol. 113, no. 3-4, pp. 293-300, 1999.
[9] M. S. Sunitha, and A. Vijayakumar, Blocks in fuzzy graphs, De Journal of Fuzzy Mathematics, vol.13, no.1, pp.13-23, 2005.
[10] S. Samanta, and M. Pal, "Fuzzy planar graphs," IEEE Transactions on Fuzzy Systems, vol.23, no.6, pp.1936-1942, 2015
[11] T. Dinesh, "Fuzzy incidence graph-an introduction," Advances in Fuzzy Sets and Systems, vol. 21, no. 1, pp. 33-48. 2016
[12] M. Sitara, M. Akram and M. Riaz, "Decision-making analysis based on q-rung picture fuzzy graph structures," Journal of Applied Mathematics and Computing, vol. 67, pp. 541-577, 2021.
[13] J. Jia, A. U. Rehman, M. Hussain, D. Mu, M. K. Siddiqui, and I. Z. Cheema, "Consensus-based multi-person decision making using consistency fuzzy preference graphs," IEEE Access, vol.7, pp. 178870-178878, 2019.
[14] Karaaslan, "Hesitant fuzzy graphs and their applications in decision making," Journal of intelligent \& Fuzzy Systems, vol. 36, no. 3, pp. 2729-2741, 2019
[15] M. Akram, A. Habib, and B. Davvaz, "Direct sum of n Pythagorean fuzzy graphs with application to group decision-making," Journal of Multiple-Valued Logic and Soft Computing, vol. 33, no. 1-2, pp. 75-115, 2019
[16] M. Akram, F. Feng, A. B. Saeid, and V. Leoreanu-Fotea, "A new multiple criteria decision-making method based on bipolar fuzzy soft graphs," Iranian Journal of Fuzzy Systems, vol. 15, no. 4, pp. 73-92, 2018.
[17] M. Akram, and N. Waseem, "Novel applications of bipolar fuzzy graphs to decision making problems," Journal of Applied Mathematics and Computing, vol. 56, no. 1-2, pp. 73-91, 2018.
[18] W. Gao, W. Wang, and Y. Chen, "Tight bounds for the existence of path factors in network vulnerability parameter settings," International Journal of Intelligent Systems, vol. 36, no. 3, pp. 1133-1158, 2021.
[19] W. Gao, J. L. G. Guirao, and H. Wu, "Nordhaus-Gaddum type inequalities for some distance-based indices of bipartite molecular graphs," Journal of Mathematical Chemistry, vol. 58, no. 7, pp. 1345-1352, 2020.
[20] W. Gao, Z. Iqbal, A. Jaleel, A. Aslam, M. Ishaq, and M. Aamir, "Computing entire Zagreb indices of some dendrimer structures," Main Group Metal Chemistry, vol.43, no. 1, pp. 229-236, 2020.
[21] M. N. L. Anuradha, C. H. Vasavi, T. Srinivasa Rao, and G. Suresh Kumar, "Fuzzy Integra dynamic equations on time scales using fuzzy Laplace transform method," Engineering Letters, vol. 31, no.3, pp1114-1121, 2023.
[22] M. Azeem, A. Aslam, Z. Iqbal, M. A. Binyamin, and W. Gao, "Topological aspects of 2D structures of trans-Pd(NH2)S lattice and a metal-organic superlattice," Arabian Journal of Chemistry, vol.14, no. 3, 2021.
[23] S. Mondal, N. De, A. Pal, and W. Gao., "Molecular descriptors of some chemicals that prevent COVID-19," Current Organic Synthesis, vol. 18, no. 8, pp.729-741, 2021.
[24] S. Poulik, and G. Ghorai, "Note on "Bipolar fuzzy graphs with applications"," Knowledge-Based Systems, vol. 192, no. 105315, 2020.
[25] S. Poulik, and G. Ghorai, "Certain indices of graphs under bipolar fuzzy environment with applications," Soft Computing, vol. 24, pp. 5119-5131, 2020.
[26] S. Poulik, and G. Ghorai, "Detour g-interior nodes and detour g-boundary nodes in bipolar fuzzy graph with applications," Hacettepe Journal of Mathematics \& Statistics, vol. 49, no. 1, pp. 106-119, 2020.
[27] S. Poulik, and G. Ghorai, "Determination of journeys order based on graph's Wiener absolute index with bipolar fuzzy information," Information Sciences, vol. 545, pp. 608-619, 2021.
[28] Binu M, S. Mathew, and J. N. Mordeson, "Wiener index of a fuzzy graph and application to illegal immigration networks," Fuzzy Sets and Systems, vol. 384, pp. 132-147, 2020.
[29] S. Ali, S. Mathew, and J. N. Mordeson, "Hamiltonian fuzzy graphs with application to human trafficking," Information Sciences, vol. 550, pp. 268-284, 2021.
[30] M. Atef, A. E. F. E. Atik, and A. Nawar, "Fuzzy topological structures via fuzzy graphs and their applications," Soft Computing, vol. 25: pp. 6013-6027, 2021.
[31] S. T. Tehrim, "Bipolar fuzzy soft topology with applications in decision making," P.h.D. Thesis, University of The Punjab, 2020.
[32] X. Tong, "High-gain Output Feedback Control for Linear Stepping Motor Based on Fuzzy Approximation," IAENG International Journal of Computer Science, vol. 50, no.3, pp. 910-914, 2023.
[33] H. Zhu, H. Xing, J. Zhu, and P. Zhang, "Design of Fuzzy Gait Control Algorithm for Multi-legged Hydraulic Robot," IAENG International Journal of Computer Science, vol. 50, no.3, pp. 1042-1049, 2023.
[34] M. Ali, L.H. Son, I. Deli, and N. D. Tien, "Bipolar neutrosophic soft sets and applications in decision making," Journal of Intelligent \& Fuzzy Systems, vol.33, no. 6, pp. 4077-4087, 2017.
[35] P. Kongeswaran, K. Arjunan, and K. L. M. Prasad, "Bipolar interval valued fuzzy generalized semipreopen sets," Journal of Information and Computational Science, vol. 9, no. 8, pp. 232-239, 2019.
Shu Gong is an associate professor of AIoT Edge Computing Engineering Technology Research Center of Dongguan City, Guangdong University of Science and Technology, Dongguan 523000, China. She got bachelor degree
on computer science from Nanchang University in 2006. Then, she enrolled in Department of Computer Science and Information Technology, Yunnan Normal University, and got Master degree there in 2009. She got PhD degree in School of Information and Control Engineering, China University of Mining and Technology, City of Xuzhou, China. During the years, as a researcher in computer science, her interests are covered two areas: Information Retrieval and Artificial Intelligence.

Wei Gao was born in the city of Shaoxing, Zhejiang Province, China on Feb. 13, 1981. He got two bachelor degrees on computer science from Zhejiang industrial university in 2004 and mathematics education from College of Zhejiang education in 2006. Then, he was enrolled in department of computer science and information technology, Yunnan normal university, and got Master degree there in 2009. In 2012, he got PhD degree in department of Mathematics, Soochow University, China. Now, he acts as professor in the School of Information Science and Technology, Yunnan Normal University. As a researcher in computer science and mathematics, his interests are covering two disciplines: Graph theory, Statistical learning theory, Information retrieval, and Artificial Intelligence.

[^0]: Manuscript received June 2, 2023; revised September 21, 2023. This work was supported by Guangdong Basic and Applied Basic Research Foundation of China (No.2021A1515110834), 2023 Guangdong Provincial University Innovation Team Project (Natural Science), Guangdong University of Science and Technology Scientific Research Project (GKY-2022KYZDK-8), Guangdong Province Key Construction Discipline Research Capacity Enhancement Project (2021ZDJS116), and Guangdong Province Ordinary Colleges and Universities Young Innovative Talents Category Project, No. 2022KQNCX115.
 S. Gong is an associate professor of AIoT Edge Computing Engineering Technology Research Center of Dongguan City, Guangdong University of Science and Technology, Dongguan 523000, China (email: gongshu gk@126.com).
 W. Gao is a professor of School of Information and Technology, Yunnan Normal University, Kunming 650500 China (e-mail: gaowei @ynnu.edu.cn).

