Stability of Generalized Radical Functional Equation on Non-Archimedean Normed Space

Koushika Dhevi Sankar and Sangeetha Sampath

Abstract

In this paper, we discuss the generalized Hyers-Ulam-Rassias stability of the radical functional equation $$
g\left(\sqrt[n]{a x^{n}+b y^{n}}\right)+g\left(\sqrt[n]{a x^{n}-b y^{n}}\right)=2 a g(x)
$$ in the non-Archimedean normed space. Also we proved some results for the same.

Index Terms-Hyers-Ulam-Rassias stability, radical functional equation, non-Archimedean normed space.

I. INTRODUCTION

In 1940, S.M. Ulam raised the problem on functional equation."Let $\left(G_{1},{ }^{*}\right)$ be a group and let $\left(G_{2}, \diamond, \mathrm{~d}\right)$ be a metric group with the metric $\mathrm{d}(.,$.$) . Given \epsilon>0$ does there exist a $\delta(\epsilon)>0$ such that if a mapping $h: G_{1} \rightarrow G_{2}$ satisfy the inequality

$$
d(h(x * y), h(x) \diamond h(y))<\delta
$$

for all $\mathrm{x}, \mathrm{y} \in G_{1}$ then there is a homomorphism $\mathrm{H}: G_{1} \rightarrow G_{2}$ with

$$
d(h(x), H(x))<\epsilon
$$

for all $x \in G_{1}$?" [16]. In 1941, Hyers provided responses using Banach spaces instead of group homomorphism [12].

The stability theory of functional equation arises when we substitute the functional equation with an inequality that pertubates to the equation. Thus, the stability concern for a functional equation is how the solution of the relevant inequality differs from the solution of the provided functional equation.[18], [15]

In 2012, Khodaei et al. discussed the approximation of radical functional equations related to quadratic and quartic mappings [13]. In 2016, Ghazanfari and Alizadehz addressed the stability of radical cubic functional equation in quasi β-Banach spaces [2].

In 2017, Sintunavarat and Aiemsomboon gave a new type of stability of a radical quadratic functional equation using Brzdek's fixed point theorem[1]. Further, Iz-iddine EL-Fassi studied a new kind of hyperstability for radical cubic functional equation in non-Archimedean metric spaces [6]. In 2018, Iz-iddine EL-Fassi discussed new stability results for the radical sextic functional equation related to

[^0]quadratic mappings in $(2, \beta)$ Banach spaces [7].
Youssef Aribou and Samir Kabbaj studied a new functional inequality in non-Archimedean Banach spaces related to radical cubic functional equation [3]. In 2019, Iz-iddine EL-Fassi studied solution and approximation of radical quintic mapping in quasi- β Banach spaces [9].

In 2016, Iqbal M. Batina et al. discussed the common fixed point theorem in Non-Archimedean Menger PMspaces using CLR property with applications to functional equations [5]. In 2018, Iz-iddine EL-Fassi studied a new type of approximation for the radical quintic functional equation in non-Archimedean ($2, \beta$) Banach spaces [8]. In 2020, Kandhasamy and Emanuel studied the stability of radical septic functional equation [11]. In 2021, Iz-iddine EL-Fassi et al. gave the fixed point approach to stability of kth radical functional equation in non-Archimedean (n, β) Banach spaces [10] .

In our study, we discuss the generalized Hyers-UlamRassias stability of the generalize radical functional equation

$$
\begin{equation*}
g\left(\sqrt[n]{a x^{n}+b y^{n}}\right)+g\left(\sqrt[n]{a x^{n}-b y^{n}}\right)=2 a g(x) \tag{1}
\end{equation*}
$$

where $n, a, b \in \mathbb{Z}^{+}$and $n>1$ in the non-Archimedean normed space.

Let us define the following notation,
$G(x, y)=g\left(\sqrt[n]{a x^{n}+b y^{n}}\right)+g\left(\sqrt[n]{a x^{n}-b y^{n}}\right)-2 a g(x)$.
Overall our consideration, X be an additive group and Y be a complete non-Archimedean normed space.

II. Preliminaries

Definition 2.1. [14] A functional equation is an equation in which both sides contain a finite number of functions, some are known and some are unknown.

Example 2.1. $\mathrm{f}(\mathrm{x}+\mathrm{y})=\mathrm{f}(\mathrm{x})+\mathrm{f}(\mathrm{y})$ is the Cauchy Additive Functional Equation

Definition 2.2. [14] A solution of a functional equation is a function which satisfies the equation.

Example 2.2. (i) $f(x)=k x$ is a solution of the Cauchy functional equation $f(x+y)=f(x)+f(y)$
(ii) $f(x)=c x+a$ is the solution of the Jensen functional equation $\mathrm{f}\left(\frac{x+y}{2}\right)=\frac{f(x)+f(y)}{2}$

Definition 2.3. [14] A functional equation F is stable if any
function f satisfying the equation F approximately is near to exact solution of F .

Definition 2.4. [4], [17]. If \mathbb{F} is any field then a valuation (of rank 1) is a map $||:. \mathbb{F} \rightarrow \mathbb{R}$, satisfying the following axioms:

$$
\begin{aligned}
& (i)|x| \geq 0 \\
& \text { (ii)|x|=0, when } \quad x=0 \\
& (i i i)|x y|=|x||y| \\
& \text { (iv)|x+y|} \leq|x|+|y|
\end{aligned}
$$

for all $x, y \in \mathbb{F}$.
The valuation is said to be non-Archimedean, if the following stronger form of inequality (iv) holds, namely

$$
|x+y| \leq \max \{|x|,|y|\} .
$$

Definition 2.5. [4] Let p be a positive prime number. For every non-zero rational number x there exists a unique integer α such that

$$
x=p^{\alpha} \cdot \frac{a}{b}
$$

with some integer a and b not divisible by p . we define

$$
|x|_{p}=\frac{1}{p^{\alpha}} \quad \text { when } \mathrm{x} \neq 0,|0|_{p}=0 \quad \text { when } x=0
$$

So called p -adic valuation.
Example 2.3. Take $x=\frac{162}{13}$. Suppose we want to find its 3 -adic absolute value (hence p=3). Expressed in the p-adic form, we obtain

$$
x=81 \cdot \frac{2}{13}=3^{4} \cdot \frac{2}{13}
$$

which mean $|x|_{3}=\frac{1}{3^{4}}$.
13 -adic absolute value for x. It will simply be $|x|_{13}=13$ because

$$
\begin{aligned}
x & =13^{-1} .162 \\
|x|_{13} & =\frac{1}{13^{-1}}=13
\end{aligned}
$$

Definition 2.6. [17] A sequence $\left\{x_{n}\right\}$ in \mathbb{K} is called a Cauchy sequence with respect to a non-Archimedean valuation |.|, if and only if

$$
\left|x_{n+1}-x_{n}\right| \rightarrow 0, \quad \text { as } \quad n \rightarrow \infty
$$

Definition 2.7 [4] If every Cauchy sequence of \mathbb{K} has a limit in \mathbb{K}, then \mathbb{K} is said to be Complete.

Example 2.4 The field \mathbb{Q}_{p} of p-adic number is the completion of \mathbb{Q} with respect to $|\cdot|_{p}[17]$

Definition 2.8 [17] A complete normed linear space is called a Banach Space.

Definition 2.9 [4], [17] Let X be a vector space over a field \mathbb{K} with a non-trivial non-Archimedean valuation $|$.$| . Then,$ a function $\|\|:. X \rightarrow \mathbb{R}$ is called a non-Archimedean norm
if it satisfies the following conditions:
(i) $\|x\| \geq 0$ and $\|x\|=0$ iff $\mathrm{x}=0$ for all $\mathrm{x} \in \mathrm{X}$
(ii) $\|\alpha x\|=|\alpha|\|x\|$ for all $\mathrm{x} \in \mathrm{X}$ and $\alpha \in \mathbb{K}$
(iii) $\|x+y\| \leq \max \{\|x\|,\|y\|\}$ for all $\mathbf{x}, \mathbf{y} \in \mathbf{X}$
and the space $(X,\|\cdot\|)$ is called a non-Archimedean normed space.

III. Main Results

Theorem 3.1. Let $\beta: X \times X \rightarrow[0, \infty)$ be a function so that

$$
\begin{gather*}
\lim _{t \rightarrow \infty} \frac{1}{|a|^{\left.\right|^{2}}} \beta\left(\sqrt[n]{a^{t}} x, 0\right)=0 \tag{3}\\
\lim _{t \rightarrow \infty} \frac{1}{|a|^{t}} \beta\left(\sqrt[n]{a^{t}} x, \sqrt[n]{a^{t}} y\right)=0 \tag{4}
\end{gather*}
$$

and let for each $\mathrm{x} \in \mathrm{X}$ then the limit

$$
\begin{equation*}
\max \left\{\frac{1}{|a|^{j}} \beta\left(\sqrt[n]{a^{j}} x, 0\right): 0 \leq j<t\right\} \tag{5}
\end{equation*}
$$

denoted by $\tilde{\beta}(x)$ exist. Suppose $g: X \rightarrow Y$ is a mapping satisfies

$$
\begin{equation*}
\|G(x, y)\| \leq \beta(x, y) \tag{6}
\end{equation*}
$$

then there is a map $K: X \rightarrow Y$ so that

$$
\begin{equation*}
\|g(x)-K(x)\| \leq \frac{1}{|2 a|} \tilde{\beta}(x) \tag{7}
\end{equation*}
$$

Moreover if,

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \lim _{t \rightarrow \infty} \max \left\{\frac{1}{|a|^{j}} \beta\left(\sqrt[n]{a^{j}} x, 0\right): m \leq j<t+m\right\}=0 \tag{8}
\end{equation*}
$$

then K is unique.
Proof: Put (x, y) as $(x, 0)$ in (6)

$$
\begin{equation*}
\left\|g\left(\sqrt[n]{a x^{n}}\right)-a g(x)\right\| \leq \frac{1}{|2|} \beta(x, 0) \tag{9}
\end{equation*}
$$

Giving x by $\sqrt[n]{a^{t-1} x}$,

$$
\begin{equation*}
\left\|\frac{g\left(\sqrt[n]{a^{t}} x\right)}{a^{t}}-\frac{g\left(\sqrt[n]{a^{t-1}} x\right)}{a^{t-1}}\right\| \leq \frac{1}{\left|2 a^{t}\right|} \beta\left(\sqrt[n]{a^{t-1}} x, 0\right) \tag{10}
\end{equation*}
$$

Hence $\left\{\frac{1}{a^{t}} g\left(\sqrt[n]{a^{t}} x\right)\right\}$ is Cauchy.
Define the function,

$$
\begin{equation*}
K(x)=\lim _{t \rightarrow \infty} \frac{1}{a^{t}} g\left(\sqrt[n]{a^{t}} x\right) \tag{11}
\end{equation*}
$$

By using induction,

$$
\left\|\frac{g\left(\sqrt[n]{a^{t}} x\right)}{a^{t}}-g(x)\right\|
$$

$\leq \max \left\{\| \frac{g\left(\sqrt[n]{a^{t}} x\right)}{a^{t}}-\frac{g\left(\sqrt[n]{a^{t-1}} x\right)}{a^{t-1}}+\frac{g\left(\sqrt[n]{a^{t-1}} x\right)}{a^{t-1}}\right.$
$\left.-\frac{g\left(\sqrt[n]{a^{t-2}} x\right)}{a^{t-2}}, \ldots, \frac{g(\sqrt[n]{a} x)}{a}-g(x) \|\right\}$
$\leq \max \left\{\left\|\frac{g\left(\sqrt[n]{a^{t}} x\right)}{a^{t}}-\frac{g\left(\sqrt[n]{a^{t-1}} x\right)}{a^{t-1}}\right\|\right.$,
$\left.\left\|\frac{g\left(\sqrt[n]{a^{t-1}} x\right)}{a^{t-1}}-\frac{g\left(\sqrt[n]{a^{t-2}} x\right)}{a^{t-2}}\right\|, \ldots,\left\|\frac{g(\sqrt[n]{a} x)}{a}-g(x)\right\|\right\}$
$\leq \max \left\{\frac{1}{|a|^{t-1}} \beta\left(\sqrt[n]{a^{t-1}} x, 0\right), \frac{1}{|a|^{t-2}} \beta\left(\sqrt[n]{a^{t-2}} x, 0\right), \ldots, \beta(x, 0)\right\}$
$\leq \frac{1}{|2 a|} \max \left\{\frac{1}{|a|^{j}} \beta\left(\sqrt[n]{a^{j}} x, 0\right): 0 \leq j<t\right\}$

By taking t tends to infinity in equation (12), we get (7). To show that K is additive

$$
\begin{gather*}
\|K(\sqrt[n]{a} x)-a K(x)\| \\
=|a| \lim _{t \rightarrow \infty}\left\|\frac{1}{|a|^{t+1}} g\left(\sqrt[n]{a^{t+1}} x\right) \frac{1}{|a|^{t}} g\left(\sqrt[n]{a^{t}} x\right)\right\| \\
\leq \frac{1}{\left|2 a^{t}\right|} \beta\left(\sqrt[n]{a^{t}} x, 0\right) \tag{13}\\
K(\sqrt[n]{a} x)=a K(x) \tag{14}
\end{gather*}
$$

Hence equation (14) implies K is additive. By using equation (11),

$$
\begin{equation*}
\left\|G_{K}(x, y)\right\| \leq \lim _{t \rightarrow \infty} \frac{1}{|a|^{t}} \beta\left(a^{t} x, a^{t} y\right)=0 \tag{15}
\end{equation*}
$$

which implies K satisfies $G(x, y)$.
Next we prove uniqueness, let K^{\prime} be another function satisfying (7)

$$
\begin{align*}
&\left\|K(x)-K^{\prime}(x)\right\|=\lim _{m \rightarrow \infty} \frac{1}{|a|^{m}} \| K\left(\sqrt[n]{a^{m}} x-K^{\prime}\left(\sqrt[n]{a^{m}} x \|\right.\right. \\
& \leq \frac{1}{|2 a|} \lim _{m \rightarrow \infty} \lim _{t \rightarrow \infty} \max \left\{\frac{1}{|a|^{j}} \beta\left(\sqrt[n]{a^{j}} x, 0\right): m \leq j<t+m\right\} \tag{16}
\end{align*}
$$

Therefore, $K=K^{\prime}$.
Hence the proof completes.
Corollary 3.1. Let s, γ are positive real numbers and $s>n$, if a mapping $g: X \rightarrow Y$ satisfies

$$
\begin{equation*}
\|G(x, y)\| \leq \gamma\left(\|x\|^{s}+\|y\|^{s}\right) \tag{17}
\end{equation*}
$$

then there is a unique mapping $K: X \rightarrow Y$ so that

$$
\begin{equation*}
\|g(x)-K(x)\| \leq \frac{\gamma}{|2 a|}\|x\|^{s} . \tag{18}
\end{equation*}
$$

Proof: Consider

$$
\|G(x, y)\| \leq \gamma\left(\|x\|^{s}+\|y\|^{s}\right)
$$

Given

$$
\beta(x, y)=\gamma\left(\|x\|^{s}+\|y\|^{s}\right)
$$

Substituting (x, y) as $\left(\sqrt[n]{a^{j}} x, 0\right)$ in (17), we have,

$$
\begin{aligned}
\beta\left(\sqrt[n]{a^{j}} x, 0\right) & =\gamma\left(\| \|^{\frac{a}{a}} x \|^{s}\right) \\
& =\gamma|a|^{\frac{j s}{n}}\|x\|^{s}
\end{aligned}
$$

From Theorem 3.1,

$$
\begin{aligned}
\|g(x)-K(x)\| & \leq \frac{1}{|2 a|} \tilde{\beta}(x) \\
& \leq \frac{1}{|2 a|} \max \left\{\frac{a}{|a|^{j}} \beta\left(\sqrt[n]{a}^{j} x, 0\right): 0 \leq j<t\right\} \\
& =\frac{\gamma}{|2 a|}\|x\|^{s} \max \left\{|a|^{j\left(\frac{s}{n}-1\right)}: 0 \leq j<t\right\}
\end{aligned}
$$

If $s>n$, then we get

$$
\|g(x)-K(x)\| \leq \frac{\gamma}{|2 a|}\|x\|^{s}
$$

Hence the proof completes.
Example 3.1. Let $p>2$ be a prime number $g: \mathbb{Q}_{p} \rightarrow \mathbb{Q}_{p}$ be defined by $g(x)=x^{n}+1$ let $|2|_{p}^{t}=1, \gamma>1, a=2, t \in \mathbb{Z}$, $s>n$ and if

$$
\|G(x, y)\|=1 \leq \gamma\left(\|x\|^{s}+\|y\|^{s}\right)
$$

then

$$
\|g(x)-K(x)\|=1 \leq \frac{\gamma}{|4|}\|x\|^{s}
$$

For the case $s=n$, we have following counterexample,
Example 3.2. Let $p>2$ be a prime number $g: \mathbb{Q}_{p} \rightarrow \mathbb{Q}_{p}$ be defined by $g(x)=4$ let $|2|_{p}^{t}=1, \gamma>0, a=4, t \in \mathbb{Z}$ we have

$$
\|G(x, y)\|=0 \leq \gamma\left(\|x\|^{s}+\|y\|^{s}\right)
$$

so,

$$
\lim _{t \rightarrow \infty}\left\|\frac{1}{a^{t}} g\left(\sqrt[n]{a^{t}} x\right)-\frac{1}{a^{t-1}} g\left(\sqrt[n]{a^{t-1}}\right)\right\|=|4|_{p}^{1-t}|3| \neq 0
$$

Hence $\left\{\frac{1}{a^{t}} g\left(\sqrt[n]{a^{t}} x\right)\right\}$ is not Cauchy.
Corollary 3.2. Let r, s, γ are positive real numbers and $r+$ $s>n$, if a mapping $g: X \rightarrow Y$ satisfies

$$
\begin{equation*}
\|G(x, y)\| \leq \gamma\left(\|x\|^{r+s}+\|y\|^{r+s}+\|x\|^{r}\|y\|^{s}\right) \tag{19}
\end{equation*}
$$

then there is a unique mapping $K: X \rightarrow Y$ so that

$$
\begin{equation*}
\|g(x)-K(x)\| \leq \frac{\gamma}{|2 a|}\|x\|^{r+s} \tag{20}
\end{equation*}
$$

Proof: Consider

$$
\|G(x, y)\| \leq \gamma\left(\|x\|^{r+s}+\|y\|^{r+s}+\|x\|^{r}\|y\|^{s}\right)
$$

Given

$$
\beta(x, y)=\gamma\left(\|x\|^{r+s}+\|y\|^{r+s}+\|x\|^{r}\|y\|^{s}\right)
$$

Substituting (x, y) as $\left(\sqrt[n]{a^{j}} x, 0\right)$ in (19), we have,

$$
\begin{aligned}
\beta\left(\sqrt[n]{a}{ }^{j} x, 0\right) & =\gamma\left(\|\sqrt[n]{a} j x\|^{r+s}\right) \\
& =\gamma|a|^{\frac{j(r+s)}{n}}\|x\|^{r+s}
\end{aligned}
$$

From Theorem 3.1,

$$
\begin{aligned}
\|g(x)-K(x)\| & \leq \frac{1}{|2 a|} \tilde{\beta}(x) \\
& \leq \frac{1}{|2 a|} \max \left\{\frac{a}{|a|^{j}} \beta\left(\sqrt[n]{a^{j}} x, 0\right): 0 \leq j<t\right\} \\
& =\frac{\gamma}{|2 a|}\|x\|^{r+s} \max \left\{|a|^{j\left(\frac{r+s}{n}-1\right)}: 0 \leq j<t\right\}
\end{aligned}
$$

If $s>n$, then we get

$$
\|g(x)-K(x)\| \leq \frac{\gamma}{|2 a|}\|x\|^{r+s}
$$

Hence the proof completes.
Theorem 3.2. Let $\beta: X \times X \rightarrow[0, \infty)$ be a function so that

$$
\begin{gather*}
\lim _{t \rightarrow \infty}|a|^{t} \beta\left(\frac{x}{\sqrt[n]{a^{t}}}, 0\right)=0 \tag{21}\\
\lim _{t \rightarrow \infty}|a|^{t} \beta\left(\frac{x}{\sqrt[n]{a^{t}}}, \frac{x}{\sqrt[n]{a^{t}}}\right)=0 \tag{22}
\end{gather*}
$$

and let for each $\mathrm{x} \in \mathrm{X}$ then the limit

$$
\begin{equation*}
\max \left\{|a|^{j} \beta\left(\frac{x}{\sqrt[n]{a^{j+1}}}, 0\right): 0 \leq j<t\right\} \tag{23}
\end{equation*}
$$

denoted by $\tilde{\beta}(x)$ exist. Suppose a mapping $g: X \rightarrow Y$ satisfies $g(0)=0$ and

$$
\begin{equation*}
\|G(x, y)\| \leq \beta(x, y) \tag{24}
\end{equation*}
$$

then there is a map $K: X \rightarrow Y$ so that

$$
\begin{equation*}
\|g(x)-K(x)\| \leq \frac{1}{|2 a|} \tilde{\beta}(x) \tag{25}
\end{equation*}
$$

Moreover if,

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \lim _{t \rightarrow \infty} \max \left\{|a|^{j} \beta\left(\frac{x}{\sqrt[n]{a^{j+1}}}, 0\right): m \leq j<t+m\right\}=0 \tag{26}
\end{equation*}
$$

then K is unique.
Proof: Put (x, y) as $(x, 0)$ in (24)

$$
\begin{equation*}
\left\|g\left(\sqrt[n]{a x^{n}}\right)-a g(x)\right\| \leq \frac{1}{|2|} \beta(x, 0) \tag{27}
\end{equation*}
$$

Giving x by $\frac{x}{\sqrt[n]{a^{t+1}}}$,

$$
\begin{equation*}
\left\|a^{t} g\left(\frac{x}{\sqrt[n]{a^{t}}}\right)-a^{t+1} g\left(\frac{x}{\sqrt[n]{a^{t+1}}}\right)\right\| \leq \frac{|a|^{t}}{|2|} \beta\left(\frac{y}{\sqrt[n]{a^{t+1}}}, 0\right) \tag{28}
\end{equation*}
$$

Hence $\left\{a^{t} g\left(\frac{x}{\sqrt[n]{a^{t}}}\right\}\right.$ is Cauchy.
Define the function,

$$
\begin{equation*}
K(x)=\lim _{t \rightarrow \infty} a^{t} g\left(\frac{x}{\sqrt[n]{a^{t}}}\right) \tag{29}
\end{equation*}
$$

By using induction,

$$
\left\|g\left(\frac{x}{\sqrt[n]{a^{t}}}\right)-g(x)\right\|
$$

$\leq \max \left\{\| a^{t} g\left(\frac{x}{\sqrt[n]{a^{t}}}\right)-a^{t-1} g\left(\frac{x}{\sqrt[n]{a^{t-1}}}\right)+a^{t-1} g\left(\frac{x}{\sqrt[n]{a^{t-1}}}\right)-\right.$

$$
\left.a^{t-2} g\left(\frac{x}{\sqrt[n]{a^{t-2}}}\right), \ldots, a g\left(\frac{x}{\sqrt[n]{a}}\right)-g(x) \|\right\}
$$

$$
\leq \max \left\{\left\|a^{t} g\left(\frac{x}{\sqrt[n]{a^{t}}}\right)-a^{t-1} g\left(\frac{x}{\sqrt[n]{a^{t-1}}}\right)\right\|\right.
$$

$$
\left.\left\|a^{t-1} g\left(\frac{x}{\sqrt[n]{a^{t-1}}}\right)-a^{t-2} g\left(\frac{x}{\sqrt[n]{a^{t-2}}}\right)\right\|, \ldots,\left\|a g\left(\frac{x}{\sqrt[n]{a}}\right)-g(x)\right\|\right\}
$$

$$
\leq \max \left\{\frac{|a|^{t-1}}{|2|} \beta\left(\frac{x}{\sqrt[n]{a^{t}}}, 0\right), \frac{|a|^{t-2}}{|2|} \beta\left(\frac{x}{\sqrt[n]{a}}, 0\right)\right.
$$

$$
\left.\ldots, \frac{1}{|2|} \beta\left(\frac{x}{\sqrt[n]{a}}, 0\right)\right\}
$$

$$
\begin{equation*}
\leq \frac{1}{|2|} \max \left\{|a|^{j} \beta\left(\frac{x}{\sqrt[n]{a^{j+1}}}, 0\right): 0 \leq j<t\right\} \tag{30}
\end{equation*}
$$

By taking t tends to infinity in equation (30), we get (25).
To show that K is additive.

$$
\begin{gather*}
\left\|K\left(\frac{x}{\sqrt[n]{a}}\right)-\frac{1}{a} K(x)\right\| \\
=|a| \lim _{t \rightarrow \infty}\left\|\left.| | a\right|^{t-1} g\left(\frac{x}{\sqrt[n]{a^{t-1}}}\right)-a^{t} g\left(\frac{x}{\sqrt[n]{a^{t}}}\right)\right\| \\
\leq \frac{|a|^{t-1}}{|2|} \beta\left(\frac{x}{\sqrt[n]{a^{t+1}}}, 0\right) \tag{31}\\
K(\sqrt[n]{a} x)=a K(x) . \tag{32}
\end{gather*}
$$

Hence K is additive.
By using equation (29),

$$
\begin{equation*}
\left\|G_{K}(x, y)\right\| \leq \lim _{t \rightarrow \infty}|a|^{t} \beta\left(\frac{x}{\sqrt[n]{a^{t}}}, \frac{y}{\sqrt[n]{a^{t}}}\right)=0 \tag{33}
\end{equation*}
$$

which implies K satisfies $G(x, y)$.
Next we prove uniqueness, if K^{\prime} be another function satisfying

$$
\begin{align*}
& \left\|K(x)-K^{\prime}(x)\right\|=\lim _{m \rightarrow \infty}|a|^{m}\left\|K\left(\frac{x}{\sqrt[n]{a^{m}}}\right)-K^{\prime}\left(\frac{x}{\sqrt[n]{a^{m}}}\right)\right\| \\
\leq & \frac{1}{|2|} \lim _{m \rightarrow \infty} \lim _{t \rightarrow \infty} \max \left\{|a|^{j} \beta\left(\frac{x}{\sqrt[n]{a^{j+1}}}, 0\right): m \leq j<t+m\right\} . \tag{34}
\end{align*}
$$

Therefore, $K=K^{\prime}$.
Hence the proof completes.
Corollary 3.3. Let s, γ are positive real numbers and
$s<n$, if a mapping $g: X \rightarrow Y$ satisfies

$$
\begin{equation*}
\|G(x, y)\| \leq \gamma\left(\|x\|^{s}+\|y\|^{s}\right) \tag{35}
\end{equation*}
$$

then there is a unique mapping $K: X \rightarrow Y$ so that

$$
\begin{equation*}
\|g(x)-K(x)\| \leq \frac{\gamma}{\left|2 a^{s / n}\right|}\|x\|^{s} \tag{36}
\end{equation*}
$$

Proof: Consider

$$
\|G(x, y)\| \leq \gamma\left(\|x\|^{s}+\|y\|^{s}\right)
$$

Given

$$
\beta(x, y)=\gamma\left(\|x\|^{s}+\|y\|^{s}\right)
$$

Substituting (x, y) as $\left(\frac{x}{\sqrt[n]{a^{j+1}}}, 0\right)$ in (35), we have,

$$
\begin{aligned}
\beta\left(\frac{x}{\sqrt[n]{a^{j+1}}}, 0\right) & =\gamma\left(\left\|\frac{x}{\sqrt[n]{a^{j+1}}} x\right\|^{s}\right) \\
& =\frac{\gamma}{|a| \frac{(j+1) s}{n}}\|x\|^{s}
\end{aligned}
$$

From Theorem 3.2,

$$
\begin{aligned}
\|g(x)-K(x)\| & \leq \frac{1}{|2 a|} \tilde{\beta}(x) \\
& \leq \frac{1}{|2 a|} \max \left\{|a|^{j} \beta\left(\frac{x}{\sqrt[n]{a^{j+1}}}, 0\right): 0 \leq j<t\right\} \\
& =\frac{\gamma}{\left|2 a^{\frac{s}{n}}\right|}\|x\|^{s} \max \left\{|a|^{j\left(1-\frac{s}{n}\right)}: 0 \leq j<t\right\}
\end{aligned}
$$

If $s<n$, then we get

$$
\|g(x)-K(x)\| \leq \frac{\gamma}{\left|2 a^{\frac{s}{n}}\right|}\|x\|^{s}
$$

Hence the proof completes.
Example 3.3. Let $p>2$ be a prime number $g: \mathbb{Q}_{p} \rightarrow \mathbb{Q}_{p}$ be defined by $g(x)=x^{n}+1$ let $|2|_{p}^{t}=1, \gamma>1, a=2, t \in \mathbb{Z}$, $s<n$ and if

$$
\|G(x, y)\|=1 \leq \gamma\left(\|x\|^{s}+\|y\|^{s}\right)
$$

then

$$
\|g(x)-K(x)\|=1 \leq \frac{\gamma|2|^{n / s}}{|2|}\|x\|^{s}
$$

For the case $s=n$, we have following counterexample,
Example 3.4. Let $p>2$ be a prime number $g: \mathbb{Q}_{p} \rightarrow \mathbb{Q}_{p}$ be defined by $g(x)=4$ let $|2|_{p}^{t}=1, \gamma>0, a=4, t \in \mathbb{Z}$ we have,

$$
\|G(x, y)\|=0 \leq \gamma\left(\|x\|^{s}+\|y\|^{s}\right)
$$

so,

$$
\lim _{t \rightarrow \infty}\left\|a^{t} g\left(\frac{x}{\sqrt[n]{a}}\right)-a^{t+1} g\left(\frac{x}{\sqrt[n]{a^{t+1}}}\right)\right\|=|4|_{p}^{t+1}|3| \neq 0
$$

Hence $\left\{|a|^{t} g\left(\frac{x}{\sqrt[n]{a}}\right)\right\}$ is not Cauchy.
Corollary 3.4. Let s, r, γ are positive real numbers and $r+$ $s<n$, if a mapping $g: X \rightarrow Y$ satisfies

$$
\begin{equation*}
\|G(x, y)\| \leq \gamma\left(\|x\|^{r+s}+\|y\|^{r+s}+\|x\|^{r}\|y\|^{s}\right) \tag{37}
\end{equation*}
$$

then there is a unique mapping $K: X \rightarrow Y$ so that

$$
\begin{equation*}
\|g(x)-K(x)\| \leq \frac{\gamma}{\left|2^{\frac{r+s}{n}}\right|}\|x\|^{r+s} \tag{38}
\end{equation*}
$$

Proof: Consider

$$
\|G(x, y)\| \leq \gamma\left(\|x\|^{r+s}+\|y\|^{r+s}+\|x\|^{r}\|y\|^{s}\right)
$$

Given

$$
\beta(x, y)=\gamma\left(\|x\|^{r+s}+\|y\|^{r+s}+\|x\|^{r}\|y\|^{s}\right)
$$

Substituting (x, y) as $\left(\frac{x}{\sqrt[n]{a^{j+1}}}, 0\right)$ in (37), we have,

$$
\begin{aligned}
\beta\left(\frac{x}{\sqrt[n]{a^{j+1}}}, 0\right) & =\gamma\left(\left\|\frac{x}{\sqrt[n]{a^{j+1}}} x\right\|^{r+s}\right) \\
& =\frac{\gamma}{|a|^{\frac{(j+1)(r+s)}{n}}}\|x\|^{r+s}
\end{aligned}
$$

From Theorem 3.2,

$$
\begin{aligned}
\|g(x)-K(x)\| & \leq \frac{1}{|2 a|} \tilde{\beta}(x) \\
& \leq \frac{1}{|2 a|} \max \left\{|a|^{j} \beta\left(\frac{x}{\sqrt[n]{a^{j+1}}}, 0\right): 0 \leq j<t\right\} \\
& =\frac{\gamma}{\left|2 a^{\frac{r+s}{n}}\right|}\|x\|^{r+s} \max \left\{|a|^{j\left(1-\frac{r+s}{n}\right)}: 0 \leq j<t\right\}
\end{aligned}
$$

If $r+s<n$, then we get

$$
\|g(x)-K(x)\| \leq \frac{\gamma}{\left|2 a^{\frac{r+s}{n}}\right|}\|x\|^{r+s}
$$

Hence the proof completes.

References

[1] L. Aiemsomboon and W. Sintunavarat, "On a new type of stability of a radical quadratic functional equation using Brzdek's fixed point theorem," Acta Mathematica Hungarica, vol. 151, no.1, pp. 35-46, 2017.
[2] Z. Alizadeh and Ghazanfari, "On the stability of a radical cubic functional equation in quasi- β-Banach spaces," Journal of fixed point theory and applications, vol. 18, pp. 843-853, 2016.
[3] Y. Aribou and S. Kabbaj, "New functional inequality in nonArchimedean Banach spaces related to radical cubic functional equation," Asia Mathematica, vol. 2, no. 3, pp. 24-31, 2018.
[4] G. Bachman, "Introduction to p-Adic numbers and valuation theory," Polytechnic Institute of Brooklyn, New york.
[5] I. M. Batiha, L. B. Aoua, T. E. Oussaeif, A. Ouannas, S. Alshorman, I. H. Jebril and S. Momani, Common Fixed Point Theorem in NonArchimedean Menger PM-Spaces Using CLR Property with Application to Functional Equations,IAENG International Journal of Applied Mathematics, vol. 53, no. 1, 1-9, 2023.
[6] I. EL-Fassi, "On a new type of hyperstability for radical cubic functional equation in non-Archimedean metric spaces," Results in Mathematics, vol. 72, pp. 991-1005, 2017.
[7] I. EL-Fassi, "New stability results for the radical sextic functional equation related to quadratic mappings in $(2, \beta)$ Banach spaces," Journal of Fixed point theory, vol. 20, no. 138, 2018.
[8] I. EL-Fassi, "A new type of approximation for the radical quintic functional equation in non-Archimedean $(2, \beta)$ Banach spaces," Journal of Mathematical Analysis and Applications, vol. 457, no. 1, pp. 322-335, 2018.
[9] I. EL-Fassi, "Solution and approximation of radical quintic functional equation related to quintic mapping in quasi- β-Banach spaces," Springer-verlag Italian S.r.L., vol. 113, pp. 675-687, 2019.
[10] I. EL-Fassi, E. Elqorachi and H. Khodaei, " A fixed point approach to stability of $k^{t h}$ radical functional equation in non-Archimedean (n, β)-Banach spaces," Bulletin of the Iranian Mathematical society, vol. 47, pp. 487-504, 2021.
[11] E. Guariglia and Kandhasamy Tamilvanan, "On the stability of radical septic functional equation," MDPI, vol. 8, no. 12, pp. 2229, 2020.
[12] D. H. Hyers, "On the stability of the linear functional eqaution," Proc. Natl. Acad. Sci., USA, vol. 27, pp. 222-224, 1941.
[13] H. Khodaei, M. Eshaghi Gordji, S.S. Kim and Y.J. Cho, "Approximation of radical functional equations related to quadratic and quartic mappings," Journal of Mathematical Analysis and Applications, vol. 395, no.1, pp. 284-297, 2012.
[14] J. M. Rassias, E. Thandapani , K. Ravi, S. Kumar, "Solutions and Stability Results"Series on Concrete and Applicable Mathematics, World Scientific Publishing, 21, Singapore.
[15] K. Stella Eke, O. Imaga, and O. Odetunmibi, "Convergence and Stability of Some Modified Iterative Processes for a Class of Generalized Contractive-like Operators," IAENG International Journal of Computer Science, vol. 44, no. 4, pp. 587-590, 2017.
[16] S. M. Ulam, "Problems in modern mathematical", Rend., Chapter VI, Wiley, Newyork, 1940.
[17] A. C. M. Van rooij, "Non Archimedean functional analysis," Monongraphs and textbooks in pure and applied math, 51 Marcel Dekkar, New York 1978.
[18] X. Zhao, B. Sun, and W. Ge, "Hyers-Ulam Stability of a Class Fractional Boundary Value Problems with Right and Left Fractional Derivatives," IAENG International Journal of Applied Mathematics, vol. 46, no.4, pp. 405-411, 2016.

[^0]: Manuscript received May 18, 2023; revised September 26, 2023.
 Koushika Dhevi Sankar is a Research Scholar at the Department of Mathematics, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamilnadu-603203, India (email: ks9905@srmist.edu.in).

 Sangeetha Sampath is an Assistant Professor of the Department of Mathematics, SRM Institute of Science and Technology, College of Engineering and Technology, Kattankulathur, Chengalpattu, Tamilnadu-603203, India (Corresponding author phone: 9750487406; email: sangeets@ srmist.edu.in).

