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Abstract—In this paper, we discuss the generalized Hyers-
Ulam-Rassias stability of the radical functional equation

g(n
√

axn + byn) + g(n
√

axn − byn) = 2ag(x)

in the non-Archimedean normed space. Also we proved some
results for the same.

Index Terms—Hyers-Ulam-Rassias stability, radical func-
tional equation, non-Archimedean normed space.

I. INTRODUCTION

In 1940, S.M. Ulam raised the problem on functional
equation.“Let (G1, *) be a group and let (G2,⋄,d) be a metric
group with the metric d(.,.). Given ϵ > 0 does there exist a
δ(ϵ) > 0 such that if a mapping h : G1 → G2 satisfy the
inequality

d(h(x ∗ y), h(x) ⋄ h(y)) < δ

for all x, y ∈ G1 then there is a homomorphism H:G1 → G2

with
d(h(x), H(x)) < ϵ

for all x ∈ G1 ?” [16]. In 1941, Hyers provided responses
using Banach spaces instead of group homomorphism [12].

The stability theory of functional equation arises when
we substitute the functional equation with an inequality
that pertubates to the equation. Thus, the stability concern
for a functional equation is how the solution of the
relevant inequality differs from the solution of the provided
functional equation.[18], [15]

In 2012, Khodaei et al. discussed the approximation
of radical functional equations related to quadratic and
quartic mappings [13]. In 2016, Ghazanfari and Alizadehz
addressed the stability of radical cubic functional equation
in quasi β-Banach spaces [2].

In 2017, Sintunavarat and Aiemsomboon gave a new
type of stability of a radical quadratic functional equation
using Brzdek’s fixed point theorem[1]. Further, Iz-iddine
EL-Fassi studied a new kind of hyperstability for radical
cubic functional equation in non-Archimedean metric spaces
[6]. In 2018, Iz-iddine EL-Fassi discussed new stability
results for the radical sextic functional equation related to
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quadratic mappings in (2, β) Banach spaces [7].

Youssef Aribou and Samir Kabbaj studied a new
functional inequality in non-Archimedean Banach spaces
related to radical cubic functional equation [3]. In 2019,
Iz-iddine EL-Fassi studied solution and approximation of
radical quintic mapping in quasi-β Banach spaces [9].

In 2016, Iqbal M. Batina et al. discussed the common
fixed point theorem in Non-Archimedean Menger PM-
spaces using CLR property with applications to functional
equations [5]. In 2018, Iz-iddine EL-Fassi studied a new
type of approximation for the radical quintic functional
equation in non-Archimedean (2,β) Banach spaces [8]. In
2020, Kandhasamy and Emanuel studied the stability of
radical septic functional equation [11]. In 2021, Iz-iddine
EL-Fassi et al. gave the fixed point approach to stability of
kth radical functional equation in non-Archimedean (n, β)
Banach spaces [10] .

In our study, we discuss the generalized Hyers-Ulam-
Rassias stability of the generalize radical functional equation

g(n
√
axn + byn) + g(n

√
axn − byn) = 2ag(x) (1)

where n, a, b ∈ Z+ and n > 1 in the non-Archimedean
normed space.

Let us define the following notation,

G(x, y) = g(n
√
axn + byn)+g(n

√
axn − byn)−2ag(x). (2)

Overall our consideration, X be an additive group and Y be
a complete non-Archimedean normed space.

II. PRELIMINARIES

Definition 2.1. [14] A functional equation is an equation in
which both sides contain a finite number of functions, some
are known and some are unknown.

Example 2.1. f(x+y)=f(x)+f(y) is the Cauchy Additive
Functional Equation

Definition 2.2. [14] A solution of a functional equation is a
function which satisfies the equation.

Example 2.2. (i) f(x)=kx is a solution of the Cauchy
functional equation f(x+y)=f(x)+f(y)
(ii) f(x)=cx +a is the solution of the Jensen functional
equation f(x+y

2 )= f(x)+f(y)
2

Definition 2.3. [14] A functional equation F is stable if any
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function f satisfying the equation F approximately is near
to exact solution of F.

Definition 2.4. [4], [17]. If F is any field then a valuation (of
rank 1) is a map |.| : F → R, satisfying the following axioms:

(i)|x| ≥ 0

(ii)|x| = 0, when x = 0

(iii)|xy| = |x||y|
(iv)|x+ y| ≤ |x|+ |y|

for all x,y ∈ F.
The valuation is said to be non-Archimedean, if the
following stronger form of inequality (iv) holds, namely

|x+ y| ≤ max{|x|, |y|}.

Definition 2.5. [4] Let p be a positive prime number. For
every non-zero rational number x there exists a unique
integer α such that

x = pα.
a

b

with some integer a and b not divisible by p. we define

|x|p= 1
pα when x ̸= 0, |0|p = 0 when x = 0.

So called p-adic valuation.

Example 2.3. Take x = 162
13 . Suppose we want to find its

3-adic absolute value (hence p=3). Expressed in the p-adic
form, we obtain

x = 81.
2

13
= 34.

2

13

which mean |x|3 = 1
34 .

13-adic absolute value for x. It will simply be |x|13 = 13
because

x = 13−1.162

|x|13 =
1

13−1
= 13

Definition 2.6. [17] A sequence {xn} in K is called
a Cauchy sequence with respect to a non-Archimedean
valuation |.|, if and only if

|xn+1 − xn| → 0, as n → ∞.

Definition 2.7 [4] If every Cauchy sequence of K has a
limit in K, then K is said to be Complete.

Example 2.4 The field Qp of p-adic number is the
completion of Q with respect to |.|p[17]

Definition 2.8 [17] A complete normed linear space is
called a Banach Space.

Definition 2.9 [4], [17] Let X be a vector space over a field
K with a non-trivial non-Archimedean valuation |. |. Then,
a function ∥.∥ : X → R is called a non-Archimedean norm

if it satisfies the following conditions:

(i) ∥x∥ ≥ 0 and ∥x∥ = 0 iff x=0 for all x∈X
(ii) ∥αx∥ = |α |∥x∥ for all x ∈ X and α ∈ K
(iii) ∥x+ y∥ ≤ max{∥x∥, ∥y∥} for all x,y ∈ X

and the space (X,∥.∥) is called a non-Archimedean normed
space.

III. MAIN RESULTS

Theorem 3.1. Let β : X×X → [0,∞) be a function so that

lim
t→∞

1

|a|t
β(

n
√
atx, 0) = 0 (3)

lim
t→∞

1

|a|t
β(

n
√
atx,

n
√
aty) = 0 (4)

and let for each x∈ X then the limit

max{ 1

|a|j
β(

n
√
ajx, 0) : 0 ≤ j < t} (5)

denoted by β̃(x) exist. Suppose g : X → Y is a mapping
satisfies

∥G(x, y)∥ ≤ β(x, y) (6)

then there is a map K : X → Y so that

∥g(x)−K(x)∥ ≤ 1

|2a|
β̃(x) (7)

Moreover if,

lim
m→∞

lim
t→∞

max{ 1

|a|j
β(

n
√
ajx, 0) : m ≤ j < t+m} = 0

(8)
then K is unique.

Proof: Put (x, y) as (x, 0) in (6)

∥g(n
√
axn)− ag(x)∥ ≤ 1

|2|
β(x, 0) (9)

Giving x by n
√
at−1x,

∥g(
n
√
atx)

at
− g(

n
√
at−1x)

at−1
∥ ≤ 1

|2at|
β(

n
√
at−1x, 0) (10)

Hence { 1
at g(

n
√
atx)} is Cauchy.

Define the function,

K(x) = lim
t→∞

1

at
g(

n
√
atx). (11)

By using induction,

∥g(
n
√
atx)

at
− g(x)∥

≤ max{∥g(
n
√
atx)

at
− g(

n
√
at−1x)

at−1
+

g(
n
√
at−1x)

at−1

− g(
n
√
at−2x)

at−2
, ...,

g(n
√
ax)

a
− g(x)∥}

≤ max{∥g(
n
√
atx)

at
− g(

n
√
at−1x)

at−1
∥,

∥g(
n
√
at−1x)

at−1
− g(

n
√
at−2x)

at−2
∥, ..., ∥g(

n
√
ax)

a
− g(x)∥}

≤ max{ 1

|a|t−1
β(n
√
at−1x, 0),

1

|a|t−2
β(n
√
at−2x, 0), ..., β(x, 0)}

≤ 1

|2a|
max{ 1

|a|j
β(

n
√
ajx, 0) : 0 ≤ j < t} (12)
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By taking t tends to infinity in equation (12), we get (7).
To show that K is additive

∥K(n
√
ax)− aK(x)∥

= |a| lim
t→∞

∥ 1

|a|t+1
g(

n
√
at+1x)

1

|a|t
g(

n
√
atx)∥

≤ 1

|2at|
β(

n
√
atx, 0)

(13)

K(n
√
ax) = aK(x) (14)

Hence equation (14) implies K is additive.
By using equation (11),

∥GK(x, y)∥ ≤ lim
t→∞

1

|a|t
β(atx, aty) = 0 (15)

which implies K satisfies G(x, y).
Next we prove uniqueness, let K ′ be another function
satisfying (7)

∥K(x)−K ′(x)∥ = lim
m→∞

1

|a|m
∥K(n

√
amx−K ′(n

√
amx∥

≤ 1

|2a|
lim

m→∞
lim
t→∞

max{ 1

|a|j
β(

n
√
ajx, 0) : m ≤ j < t+m}

(16)
Therefore, K = K ′.
Hence the proof completes.
Corollary 3.1. Let s, γ are positive real numbers and
s > n, if a mapping g : X → Y satisfies

∥G(x, y)∥ ≤ γ(∥x∥s + ∥y∥s) (17)

then there is a unique mapping K : X → Y so that

∥g(x)−K(x)∥ ≤ γ

|2a|
∥x∥s. (18)

Proof: Consider

∥G(x, y)∥ ≤ γ(∥x∥s + ∥y∥s).

Given
β(x, y) = γ(∥x∥s + ∥y∥s).

Substituting (x, y) as (
n
√
ajx, 0) in (17), we have,

β(n
√
ajx, 0) = γ(∥n

√
ajx∥s)

= γ|a|
js
n ∥x∥s

From Theorem 3.1,

∥g(x)−K(x)∥ ≤ 1

|2a|
β̃(x)

≤ 1

|2a|
max{ a

|a|j
β(n
√
ajx, 0) : 0 ≤ j < t}

=
γ

|2a|
∥x∥smax{|a|j( s

n−1) : 0 ≤ j < t}

If s > n, then we get

∥g(x)−K(x)∥ ≤ γ

|2a|
∥x∥s.

Hence the proof completes.
Example 3.1. Let p > 2 be a prime number g : Qp → Qp be
defined by g(x) = xn + 1 let |2|tp = 1, γ > 1, a = 2, t ∈ Z,
s > n and if

∥G(x, y)∥ = 1 ≤ γ(∥x∥s + ∥y∥s)

then
∥g(x)−K(x)∥ = 1 ≤ γ

|4|
∥x∥s

For the case s = n, we have following counterexample,
Example 3.2. Let p > 2 be a prime number g : Qp → Qp

be defined by g(x) = 4 let |2|tp = 1, γ > 0, a = 4, t ∈ Z we
have

∥G(x, y)∥ = 0 ≤ γ(∥x∥s + ∥y∥s)

so,

lim
t→∞

∥ 1

at
g(

n
√
atx)− 1

at−1
g(

n
√
at−1)∥ = |4|1−t

p |3| ̸= 0.

Hence { 1
at g(n

√
atx)} is not Cauchy.

Corollary 3.2. Let r, s, γ are positive real numbers and r+
s > n, if a mapping g : X → Y satisfies

∥G(x, y)∥ ≤ γ(∥x∥r+s + ∥y∥r+s + ∥x∥r∥y∥s) (19)

then there is a unique mapping K : X → Y so that

∥g(x)−K(x)∥ ≤ γ

|2a|
∥x∥r+s. (20)

Proof: Consider

∥G(x, y)∥ ≤ γ(∥x∥r+s + ∥y∥r+s + ∥x∥r∥y∥s).

Given

β(x, y) = γ(∥x∥r+s + ∥y∥r+s + ∥x∥r∥y∥s).

Substituting (x, y) as (
n
√
ajx, 0) in (19), we have,

β(n
√
ajx, 0) = γ(∥n

√
ajx∥r+s)

= γ|a|
j(r+s)

n ∥x∥r+s

From Theorem 3.1,

∥g(x)−K(x)∥ ≤ 1

|2a|
β̃(x)

≤ 1

|2a|
max{ a

|a|j
β(n
√
ajx, 0) : 0 ≤ j < t}

=
γ

|2a|
∥x∥r+smax{|a|j(

r+s
n −1) : 0 ≤ j < t}

If s > n, then we get

∥g(x)−K(x)∥ ≤ γ

|2a|
∥x∥r+s.

Hence the proof completes.
Theorem 3.2. Let β : X×X → [0,∞) be a function so that

lim
t→∞

|a|tβ( x
n
√
at

, 0) = 0 (21)

lim
t→∞

|a|tβ( x
n
√
at

,
x

n
√
at

) = 0 (22)

and let for each x∈ X then the limit

max{|a|jβ( x
n
√
aj+1

, 0) : 0 ≤ j < t} (23)

denoted by β̃(x) exist. Suppose a mapping g : X → Y
satisfies g(0)=0 and

∥G(x, y)∥ ≤ β(x, y) (24)

then there is a map K : X → Y so that

∥g(x)−K(x)∥ ≤ 1

|2a|
β̃(x) (25)
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Moreover if,

lim
m→∞

lim
t→∞

max{|a|jβ( x
n
√
aj+1

, 0) : m ≤ j < t+m} = 0

(26)
then K is unique.

Proof: Put (x, y) as (x, 0) in (24)

∥g(n
√
axn)− ag(x)∥ ≤ 1

|2|
β(x, 0) (27)

Giving x by x
n√
at+1

,

∥atg( x
n
√
at

)− at+1g(
x

n
√
at+1

)∥ ≤ |a|t

|2|
β(

y
n
√
at+1

, 0) (28)

Hence {atg( x
n√
at
} is Cauchy.

Define the function,

K(x) = lim
t→∞

atg(
x

n
√
at

). (29)

By using induction,

∥g( x
n
√
at

)− g(x)∥

≤ max{∥atg( x
n
√
at

)− at−1g(
x

n
√
at−1

) + at−1g(
x

n
√
at−1

)−

at−2g(
x

n
√
at−2

), ..., ag(
x

n
√
a
)− g(x)∥}

≤ max{∥atg( x
n
√
at

)− at−1g(
x

n
√
at−1

)∥,

∥at−1g(
x

n
√
at−1

)− at−2g(
x

n
√
at−2

)∥, ..., ∥ag( x
n
√
a
)− g(x)∥}

≤ max{ |a|
t−1

|2|
β(

x
n
√
at

, 0),
|a|t−2

|2|
β(

x
n
√
at−1

, 0),

...,
1

|2|
β(

x
n
√
a
, 0)}

≤ 1

|2|
max{|a|jβ( x

n
√
aj+1

, 0) : 0 ≤ j < t} (30)

By taking t tends to infinity in equation (30), we get (25).
To show that K is additive.

∥K(
x

n
√
a
)− 1

a
K(x)∥

= |a| lim
t→∞

∥|a|t−1g(
x

n
√
at−1

)− atg(
x

n
√
at

)∥

≤ |a|t−1

|2|
β(

x
n
√
at+1

, 0)
(31)

K(n
√
ax) = aK(x). (32)

Hence K is additive.
By using equation (29),

∥GK(x, y)∥ ≤ lim
t→∞

|a|tβ( x
n
√
at

,
y

n
√
at

) = 0 (33)

which implies K satisfies G(x, y).
Next we prove uniqueness, if K ′ be another function satis-
fying

∥K(x)−K ′(x)∥ = lim
m→∞

|a|m∥K(
x

n
√
am

)−K ′(
x

n
√
am

)∥

≤ 1

|2|
lim

m→∞
lim
t→∞

max{|a|jβ( x
n
√
aj+1

, 0) : m ≤ j < t+m}.
(34)

Therefore, K = K ′.
Hence the proof completes.
Corollary 3.3. Let s, γ are positive real numbers and
s < n, if a mapping g : X → Y satisfies

∥G(x, y)∥ ≤ γ(∥x∥s + ∥y∥s) (35)

then there is a unique mapping K : X → Y so that

∥g(x)−K(x)∥ ≤ γ

|2as/n|
∥x∥s. (36)

Proof: Consider

∥G(x, y)∥ ≤ γ(∥x∥s + ∥y∥s).

Given
β(x, y) = γ(∥x∥s + ∥y∥s).

Substituting (x, y) as ( x
n√
aj+1

, 0) in (35), we have,

β(
x

n
√
aj+1

, 0) = γ(∥ x
n
√
aj+1

x∥s)

=
γ

|a|
(j+1)s

n

∥x∥s

From Theorem 3.2,

∥g(x)−K(x)∥ ≤ 1

|2a|
β̃(x)

≤ 1

|2a|
max{|a|jβ( x

n
√
aj+1

, 0) : 0 ≤ j < t}

=
γ

|2a s
n |

∥x∥smax{|a|j(1− s
n ) : 0 ≤ j < t}

If s < n, then we get

∥g(x)−K(x)∥ ≤ γ

|2a s
n |

∥x∥s.

Hence the proof completes.
Example 3.3. Let p > 2 be a prime number g : Qp → Qp be
defined by g(x) = xn + 1 let |2|tp = 1, γ > 1, a = 2, t ∈ Z,
s < n and if

∥G(x, y)∥ = 1 ≤ γ(∥x∥s + ∥y∥s)

then

∥g(x)−K(x)∥ = 1 ≤ γ|2|n/s

|2|
∥x∥s.

For the case s = n, we have following counterexample,
Example 3.4. Let p > 2 be a prime number g : Qp → Qp

be defined by g(x) = 4 let |2|tp = 1, γ > 0, a = 4, t ∈ Z we
have,

∥G(x, y)∥ = 0 ≤ γ(∥x∥s + ∥y∥s)

so,

lim
t→∞

∥atg( x
n
√
a
)− at+1g(

x
n
√
at+1

)∥ = |4|t+1
p |3| ̸= 0

Hence {|a|tg( x
n
√
a
)} is not Cauchy.

Corollary 3.4. Let s, r, γ are positive real numbers and r+
s < n, if a mapping g : X → Y satisfies

∥G(x, y)∥ ≤ γ(∥x∥r+s + ∥y∥r+s + ∥x∥r∥y∥s) (37)

then there is a unique mapping K : X → Y so that

∥g(x)−K(x)∥ ≤ γ

|2a r+s
n |

∥x∥r+s. (38)
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Proof: Consider

∥G(x, y)∥ ≤ γ(∥x∥r+s + ∥y∥r+s + ∥x∥r∥y∥s).

Given

β(x, y) = γ(∥x∥r+s + ∥y∥r+s + ∥x∥r∥y∥s).

Substituting (x, y) as ( x
n√
aj+1

, 0) in (37), we have,

β(
x

n
√
aj+1

, 0) = γ(∥ x
n
√
aj+1

x∥r+s)

=
γ

|a|
(j+1)(r+s)

n

∥x∥r+s

From Theorem 3.2,

∥g(x)−K(x)∥ ≤ 1

|2a|
β̃(x)

≤ 1

|2a|
max{|a|jβ( x

n
√
aj+1

, 0) : 0 ≤ j < t}

=
γ

|2a r+s
n |

∥x∥r+smax{|a|j(1−
r+s
n ) : 0 ≤ j < t}

If r + s < n, then we get

∥g(x)−K(x)∥ ≤ γ

|2a r+s
n |

∥x∥r+s.

Hence the proof completes.
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