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Abstract—The most common type of central nervous system
tumor in adults is glioma, accounting for about 70% of all
brain tumors. Prediction of glioma growth became interesting
to be analyzed to measure how severe the glioma is, plan
the proper treatment, and estimate how long the patient can
survive. This paper uses the Reaction-diffusion equation to
interpret the glioma concentration in the grey and white matter
of the brain based on three different growth functions. These
are exponential, logistic, and Gompertzian growth functions.
The Crank-Nicolson scheme is applied here to solve this model
as an initial step to carry out the simulation. It is used since
this scheme is unconditionally stable and has a higher order of
accuracy. This scheme produces a linear system equation for
exponential growth function while a nonlinear system for logis-
tic and Gompertzian growth function. The simulation results
include concentration, maximum concentration, cell number,
and average speed of glioma cells for each growth function given
here. As a result, the maximum glioma concentration grows
infinitely for exponential growth but converges to specific values
for logistic and Gompertzian growth functions. Furthermore,
this paper gives the sensitivity analysis for the model to see the
behavior of glioma concentration based on parameter changes.
These are initial glioma position, net proliferation rate, and
diffusivity coefficient in grey and white matter. It shows that
net proliferation affects glioma concentration growth more than
others.

Index Terms—glioma, logistic, Gompertzian, reaction-
diffusion, crank nicholson.

I. INTRODUCTION

Brain tumors are abnormal cell growths around the brain.
Like other tumors, brain tumors can be malignant (cancerous)
or not. Brain tumors are rare because they accounted for
1.6% of cancer incidence, [1] and [2]. However, it has some
risk factors if they grow to press on the nerves, blood vessels,
and surrounding tissue [3]. The estimated survival rate for a
person with a brain tumor is five years to 35% for malignant
tumors and about 90% for benign tumors [4], [5].

Glioma is a type of brain tumor that develops from cells
that would otherwise be solid glial cells, which support the
central nervous system (CNS), in the brain [6], [7]. Many
studies report that glioma is the most common type of
CNS tumor in adults, accounting for about 70% of all brain
tumors, [8], [9], [10], [11]. Therefore, many researchers study
glioma with various approaches to get more information to

Manuscript received May 16, 2023; revised September 28, 2023.
Viska Noviantri is a lecturer in the Mathematics Department, School

of Computer Science, Bina Nusantara University, Jakarta, Indonesia 11480
(Corresponding author to provide phone: +62 21 534 5830; e-mail: viskano-
viantri@binus.ac.id).

Tomy Tjandra is a postgraduate student in Computer Science and In-
formation Engineering (CSIE), National Taiwan University of Science and
Technology, Taipei, Taiwan 106 (e-mail: tomytjandra@gmail.com).

Rinda Nariswari is a lecturer in the Statistics Department, School of
Computer Science, Bina Nusantara University, Jakarta, Indonesia 11480 (e-
mail: rinda.nariswari@binus.ac.id).

find appropriate solutions to minimize glioma growth or treat
it.

Several studies were conducted to provide information
about factors that can increase the risk of glioma so that
people can avoid it. Bielecka [12] and Ebrahimpour-Koujan
[13] study about the nutritional and lifestyle effects on glioma
incidence. Moreover, Zhang [14] and Bansal [15] not only
analyze the impact of lifestyle but also dietary on glioma.
They found that people with stress and a lack of exercise have
a higher risk of developing a brain tumor. Regarding dietary
intake of tea, it can reduce the glioma risk significantly.
Green and orange vegetables may help to reduce the risk
of glioma. While the intake of grains, processed meats, and
fish may increase the risk of glioma.

The study of how to detect glioma continues not only by
medical science but also by computer science approach [16],
[17], [18]. Peddinti [19] reviews some developments in MRI
processing as the first diagnosis and detection of brain tumors
for segmentation and representation so that we can apply new
machine learning methods (ML) in decision-making. Khan
[20] use two deep learning model by a convolutional neural
network (CNN) to detect brain tumor. These are “Proposed
23-layer CNN” and “Fine-tuned CNN with VGG16”. The
results show that the model has 97.8% and 100% prediction
accuracy, respectively.

Research on gliomas not only how to detect but also
how to predict glioma growth. Prediction of glioma growth
is needed to measure how severe the glioma is, plan the
proper treatment, and estimate how long the patient can
survive. In the statistical approach, Silva [21] uses time series
forecasting while Liang [22] uses the Bayesian Inference
for glioma growth prediction. Alfonso [23] reviewed that
mathematical models are very useful in representing the
dynamics of glioma growth. Reaction-diffusion model is a
common mathematical model that represents glioma growth
which can solve numerically by several numerical methods
[24], [25], [26], [27], [28].

In this paper, the Reaction-diffusion model is used to
interpret the glioma concentration on the brain as a func-
tion of position and time. The piecewise function for the
diffusivity coefficient is used here since the diffusivity in
grey and white matter is different. Moreover, analyze the
glioma concentration based on three different glioma growth
functions applied here. These are exponential, logistic, and
Gompertzian growth functions. The Crank-Nicolson scheme
is used here to solve this model numerically since this
scheme is unconditionally stable and has a higher order
of accuracy [29],[30]. The scheme which produces a linear
equation system for exponential growth while a nonlinear
system for logistic and Gompertzian growth function. The
simulation results include concentration, maximum concen-
tration, cell number, and average speed of glioma cells given
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here. These results have been validated with the previous
research and completed by any analysis to see the differ-
ences between each growth function. Furthermore, this paper
gives the sensitivity analysis to see the effect of parameter
changes, including initial glioma position, net proliferation
rate, and diffusivity coefficient in white and grey matter. The
simulation and analysis results of the model can be used as
consideration to plan the optimal treatment.

II. GOVERNING EQUATION

Under the assumption that glioma grows in one spatial
direction only in plane geometry, this phenomenon can be
interpreted by reaction-diffusion equation as follows:

∂c

∂t
=

∂

∂x

(
D(x)

∂c

∂x

)
+ r(c) (1)

where c(x, t) is a glioma concentration in position x and
time t. Here D(x) is a diffusivity coefficient, and r(c) is a
glioma growth as a function of glioma concentration.

In general, the brain divides into white and grey matter
zones. Let the brain length is L (0 ≤ x ≤ L), then the human
brain divides into three domains which are white (L1 ≤ x ≤
L1 + L2) and grey matter zone (0 ≤ x ≤ L1, L1 + L2 ≤
x ≤ L). Glioma cells grow faster in the white zone than
in the grey zone [31], [32], [33]. Therefore, the diffusivity
coefficient is represented by

D(x) =

 Dg, xϵ[0, L1]
Dw, xϵ[L1, L1 + L2]
Dg, xϵ[L1 + L2, L]

(2)

where Dg and Dw are the diffusivity coefficients in grey and
white matter zones, respectively.

There are many different types of population growth in
the deterministic biological approach, which can represent
glioma growth, [34], [35], [36]. This study adapts three kinds
of glioma growth (r(c)), named exponential, logistic, and
Gompertzian, which was written by

r(c) = ρc (3)

r(c) = ρc
(
1− c

K

)
(4)

r(c) = −ρc ln

(
c

e
k
d

)
(5)

where ρ is net proliferation rate, K is the glioma carrying
capacity for logistic growth function, ek/d is the glioma
carrying capacity for Gompertzian growth function with k
is growth rate and d is density coefficient of the glioma.

Furthermore, a zero flux condition is applied here. It means
that there is no diffusion process at the boundary, such that
the boundary condition becomes

∂c(0, t)

∂x
= 0 (6)

∂c(L, t)

∂x
= 0 (7)

Consider to [37] and [38], the initial condition for glioma
concentration represented by the Gaussian function:

c(x, 0) = g(x) =
1

ε
√
2π

e−
1
2 (

x−x0
ε )

2

, xϵ[0, L] (8)

where x0 is an initial glioma position and ε is a standard
deviation to represent the initial glioma spreading.

By using the first derivative for function (8), it can be
shown that the extreme point happens when x = x0. Next,
the second derivative of this function is

g′′(x) =
1

ε3
√
2π

e−
1
2 (

x−x0
ε )

2
(
1−

(
x− x0

ε

))
(9)

By (9), the gaussian function (8) has a maximum c0 when
x = x0, that is

c0 = g(x0) =
1

ε
√
2π

(10)

so that
ε =

1

c0
√
2π

(11)

Substitute (11) into (8) then the initial condition for the
governing equation is

c(x, 0) = c0e
− 1

2 ((x−x0)
√
2πc0)

2

, xϵ[0, L] (12)

III. CRANK NICOLSON METHOD

The glioma growth observation domain is uniformly dis-
cretized so that the lengths of the x and t-axis are

∆x = xj+1 − xj (13)

∆t = tn+1 − tn (14)

with j, n = 0, 1, 2, ... Obviously, the glioma concentration
after discretization at point (j, n) represent as cnj .

The governing equation (1) will be solved by the Crank-
Nicolson method so that the discrete scheme for this equation
at the point (j, n+ 1

2 ) is

∂c

∂t

∣∣∣∣n+ 1
2

j

=
∂

∂x

(
D(x)

∂c

∂x

)∣∣∣∣n+ 1
2

j

+ r
(
c
n+ 1

2
j

)
(15)

Apply the forward difference scheme to approximate the
first derivative over time t at point (j, n+ 1

2 ),

ct|
n+ 1

2
j =

∂c

∂t

∣∣∣∣n+ 1
2

j

=
cn+1
j − cnj

∆t
(16)

and the average formula for glioma concentration at point
(j, n+ 1

2 ) is

c|n+
1
2

j =
cn+1
j + cnj

2
(17)

Use (17) to rewrite the first term on the right-hand side
equation (15), that is

∂
∂x

(
D(x) ∂c∂x

)∣∣n+ 1
2

j

= 1
2

[
∂
∂x (D(x)cx)

∣∣n+1

j
+ ∂

∂x (D(x)cx)
∣∣n
j

] (18)

where the first derivative over spatial domain x at point (j, n)
approximate by the center difference:

cx|nj =
∂c

∂x

∣∣∣∣n
j

=
cn
j+ 1

2

− cn
j− 1

2

∆x
(19)

Replace c in equation (19) by D(x)cx to get

∂

∂x

(
D(x)

∂c

∂x

)∣∣∣∣n
j

=
Dn

j+ 1
2

(cx)
n
j+ 1

2

−Dn
j+ 1

2

(cx)
n
j− 1

2

∆x
(20)
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Next, do some algebraic manipulation for equation (18)-
(20) to get the simplest form of the first term on the right-
hand side equation (15). Substitute this form, together with
(16) and (19), into equation (15) so that the Crank Nicolson
scheme for the problem becomes

cn+1
j

−cnj
∆t =

1
2(∆x)2

[
Dn+1

j+ 1
2

cn+1
j+1 −

(
Dn+1

j+ 1
2

+Dn+1
j− 1

2

)
cn+1
j +Dn+1

j− 1
2

cn+1
j−1

+Dn
j+ 1

2

cnj+1 −
(
Dn

j+ 1
2

+Dn
j− 1

2

)
cnj +Dn

j− 1
2

cnj−1

]
+ r

2

[
cn+1
j + cnj

]
(21)

with
Dn

j+ 1
2
= D

((
j +

1

2

)
∆x

)
Dn

j− 1
2
= D

((
j − 1

2

)
∆x

)
The Neumann boundary condition (6) and (7) approxi-

mated by center difference as follows

cn+1
2 − cn+1

0

2∆x
= 0 (22)

cn+1
p − cn+1

p−2

2∆x
= 0 (23)

where p is a spatial grid number and the initial condition
(12) become

c0j = c0e
− 1

2 ((j∆x−x0)
√
2πc0)

2

(24)

Furthermore, the numerical method (21) for each growth
function (3)-(5) is explained in the following subsection.

A. Exponential Growth

The numerical scheme (21) with growth function (3) give
the following scheme

Wcn+1
j−1 + (1 + V )cn+1

j + Ucn+1
j+1

= −Wcnj−1 + (1− V )cnj + Ucnj+1

(25)

where
U = −RDj+ 1

2
(26)

V = −S +R
(
Dj+ 1

2
+Dj− 1

2

)
(27)

W = −RDj− 1
2

(28)

R =
∆t

2(∆x)2
(29)

S =
ρ∆t

2
(30)

Iterate equation (25) from j = 1 to j = P − 1, to produce
the following linear equation system

A−→c n+1 = B−→c n (31)

where
−→c n =

(
cn1 c

n
2 ...c

n
p−1

)T
(32)

−→c n+1 =
(
cn+1
1 cn+1

2 ...cn+1
p−1

)T
(33)

Furthermore, A = α + γ and B = β − γ are a matrix with
size (P − 1× P − 1) with entry:

αb,i =


W, i = b− 1
1 + V, i = b
U, i = b+ 1
0, otherwise

(34)

βb,i =


−W, i = b− 1
1− V, i = b
−U, i = b+ 1
0, otherwise

(35)

γb,k =

 U, b = P − 1andi = P − 2
W, b = 1andi = 2
0, otherwise

(36)

B. Logistic Growth

The numerical scheme (21) with growth function (4) give
the following scheme

T (cn+1
j + cnj )

2 + Ucn+1
j+1 + (V + 1)cn+1

j

+Wcn+1
j−1 + Ucnj+1 + (V − 1)cnj +Wcnj−1 = 0

(37)

where U, V, and W as in (26)-(28) and

T =
ρ∆t

4K

This nonlinear equation system (37) solved for cn+1 by
Newton Rapshon Method with stopping criteria as follows

∥−→∆c∥ ≤ εr∥−→c0n+1∥+ εa (38)

where ∥ · ∥ is Euclidean norm, εr and εa are relative and
absolute error, respectivelly.

C. Gompertzian Growth

The numerical scheme (21) with growth function (5) give
the following scheme

S(cn+1
j + cnj ) ln

(
cn+1
j

+cnj
2

)
+Wcn+1

j−1 + Ucn+1
j+1 + (Z + 1)cn+1

j

+Wcnj−1 + Ucnj+1 + (Z − 1)cnj = 0

(39)

where U,W, and S as in (26), (28) and (30), then

Z =
kρ∆t

2d
+R

(
Dj+ 1

2
+Dj− 1

2

)
As in Logistic Growth, the nonlinear system (39) is solved
by Newton Raphson method with the same stopping criteria.

IV. GLIOMA CELL ATRIBUTE

The glioma concentration c(x, t) can be used to calcu-
late some glioma cell attributes: Maximum concentration
(cmax(t)), total cell number (N(t)), total mean radial dis-
tance (L(t)) and average speed of glioma cells (S(t)) over
time t which represented by

cmax(t) = max(c(x, t)), 0 ≤ x ≤ L, (40)

N(t) =

∫ L

Z

c(x, t)dx, (41)
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TABLE I
PARAMETER INPUT

Parameter Value Unit Refference

L1 7.5 mm [24]

L2 35 mm [24]

L 50 mm [24]

Dg 0.13 mm2/day [24]

Dw 0.65 mm2/day [24]

x0 25 mm [24]

ρ 0.012 /day [24]

ε 0.01 cell/mm [24]

K 62.5 cell/mm [24]

k/d 4.135 cell/mm [26]

∆x 0.5 mm [26]

∆t 1 day [26]

εa 10−5 [26]

εr 10−5 [26]

L(t) =
1

N(t)

∫ L

0

xc(x, t)dx, (42)

S(t) =
dL(t)

dt
. (43)

The maximum concentration (40) is approximated directly
by using the following discretization,

cnmax = max{cnj }, (44)

whereas the total cell number (41) and total mean radial (42)
distance solved by Simpson 1/3 rules as follows

Nn =
∆x

3

cna +
∑
j∈odd

4cnj +
∑

j∈even

2cnj + cnb

 , (45)

Ln =
(∆x)2

3Nn

acna +
∑
j∈odd

4jcnj +
∑

j∈even

2jcnj + bcnb

 ,

(46)
where a and b are the first and the last index in spatial domain
discretization.

The center finite difference is applied to approximate the
average speed of glioma cells (43) numerically as

Sn =
Ln+1 − Ln−1

2∆t
. (47)

V. SIMULATION RESULTS

This section shows simulation results to analyze the glioma
concentration and some of their attributes based on different
growths. For this purpose, the simulation is conducted by
parameter input, as shown in Table I. Note that the initial
condition of glioma concentration is represented by (8) with
x0 and ε as in Table I.

Figure 1 represents the glioma concentration over time
and spatial domain with logistic growth function. It shows
that the concentration at time t = 0 means the Gaussian
function (8) with the maximum concentration c0max = 39.89
cells/mm as the analytical solution (10). When t = 0.076, the
maximum glioma concentration becomes 4.344 cells/mm. It
means that the glioma concentration drops about 35 cells/mm
in 0.076 days only. In addition, Figure 2 shows that glioma
concentration decreases quickly from day 0 until day 25.

Fig. 1. The Glioma Concentration for Logistic Growth in Three-
Dimensional Axis

Fig. 2. The Glioma Concentration for Logistic Growth at time t ≤ 50
days

However, the concentration at time t == 25 days (green
curve) is less than at time t = 50 days (red curve). This
result suggests that the situation reverses at a specific time.
It occurs at time t = 42 days.

For further analysis, the simulation was carried out more
than 42 days. Figure 3 - 5 shows the glioma concentration
as a function of spatial direction for exponential, logistic,
and Gompertzian growth functions at three different times,
respectively. In each figure, blue, green, and red lines show
the concentration in time t = 100, 150, and 200 days. It
shows that the glioma concentration increases as a function
of time when t ≥ 100. It is contradictive with t < 42 days
as in Figure 1. These figures also represented the diffusivity
coefficient’s effect on glioma concentration. Since Dw ≥ Dg

as in Table I, the glioma spread faster in white matter (7.5 ≤
x ≤ 42.5) than in the grey matter (x ≤ 7.5 or x ≥ 42.5). At
these three times, the biggest glioma concentration occurs in
the Gompertzian growth function, followed by logistic and
exponential growth functions. In Gompertzian, the maximum
glioma concentration at time t = 200 days up to 38 cells/mm,
whereas the concentration in logistic and exponential is only
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Fig. 3. The Glioma Concentration for Exponential Growth Function

Fig. 4. The Glioma Concentration for Logistic Growth Function

Fig. 5. The Glioma Concentration for Gompertzian Growth Function

about 6 and 5 cells/mm, respectively.
The maximum value of glioma concentration from all spa-

tial axes can be derived for more analysis through (44) and
shown in Figure 6 and 7. In Figure 6, the maximum glioma
concentration for exponential growth increases slightly for
time t ≤ 1000 days, then increases significantly afterward. It
never goes to some constant since the exponential function is
not bounded by carrying capacity. Meanwhile, as in Figure

Fig. 6. Maximum Glioma Concentration by Exponential Growth Function

Fig. 7. Maximum Glioma Concentration by Logistic (red) and Gompertzian
(blue) Growth Function

7, the maximum glioma concentration for Logistic growth
(a red curve) and Gompertzian growth (a blue curve) will
drop quickly for time t ≤ 42 days. After that, the maximum
value increases significantly in the domain 42 ≤ t ≤ 700
days for logistic growth and 42 ≤ t ≤ 500 days for
Gompertzian growth, then goes to constant. It means that
the maximum glioma concentration for Gompertzian growth
reaches the equilibrium point faster than logistic growth. The
equilibrium point is 62.5 cells/mm, satisfying the glioma
carrying capacity as in Table I. Furthermore, it can be seen
that the maximum concentration in the domain 42 ≤ t ≤ 500
begins from the greatest to the smallest in Gompertzian,
logistic, and exponential growth functions, which are in line
with the previous simulations. Overall, the simulation results
for logistic growth related to Viska [26] and Ozugurlu [24].

After approximating the cell number (45) numerically, the
glioma attribute over time for each zone can be obtained. Let
zone 1 for x ∈ [0, L1], zone 2 for x ∈ [L1, L1 + L2], and
zone 3 for x ∈ [L1 + L2, L]. The cell number over time for
each zone is described in Figure 8 - 10. The cell number in
the grey zone, zone 1 and zone 3 is always smaller than in
the white zone (zone 2), following the diffusivity coefficient
in their zones. It can be seen that the cell numbers follow the
glioma concentration pattern, where the exponential function
leads to infinite growth. In contrast, the cell number for
logistic and Gompertzian growth convergent to N = 2000
cells in the white zone and N = 600 cells in the grey
zone. However, Gompertzian is faster than the logistic growth
function to reach the equilibrium point.

Next, substitute (46) into (47) to get the average speed of
glioma cells over time for each zone, as shown in Figure
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Fig. 8. The Glioma Cell Number for Exponential Growth Function

Fig. 9. The Glioma Cell Number for Logistic Growth Function

Fig. 10. The Glioma Cell Number for Gompertzian Growth Function

11-13. The glioma growth speed changes drastically only in
the initial phase, from t = 0 to t ≈ 250 for exponential and
logistic function, from t = 0 to t ≈ 20 for Gompertzian

Fig. 11. The Average Speed of Glioma Growth for Exponential Growth

Fig. 12. The Average Speed of Glioma Growth for Logistic Growth

Fig. 13. The Average Speed of Glioma Growth for Gompertzian Growth
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Fig. 14. The Glioma Concentration in Different Initial Positions (x0)

Fig. 15. The Glioma Concentration in Different Proliferation Rate (ρ)

function. After that, the growth speed remains relatively
constant for all zones. These figures also show that the
average speed in Zone 1 is negative since the initial glioma
is in Zone 2 so the radial distance grows to the left domain
(x < L1). In contrast, the average speed in Zone 3 is
positive because the radial distance grows to the right domain
(x > L1 + L2). The Gompertzian growth has the highest
speed since the speed is up to |1| mm/day. Meanwhile, the
exponential and logistic growth is only up to 0.025 mm/day.
Nevertheless, these figures show that the average speed in
Gompertzian is up and down quickly at times less than
20 days and goes to 0 afterward. In contrast, logistic and
exponential need 500 and 750 days to converge to 0. Based
on these simulation results, the Gompertzian growth will
describe the glioma growth much better than the others.

VI. SENSITIVITY ANALYSIS FOR GOMPERTZIAN
GROWTH FUNCTION

Vaghi [35] and Akin [39] stated that the Gompertzian
growth function describes tumor growth better than the other
by an experimental approach. Here, the Gompertzian growth
function gives the same results since it has become the
fastest growth of glioma concentration. Sensitivity analysis
is conducted here to see the effect of changes in one of the
parameters on the output results. In this section, sensitivity
analysis for the glioma concentration by the Gompertzian
growth function is carried out by four parameters. These are
initial glioma position (x0), net proliferation rate (ρ), and
diffusivity coefficient in grey and white matter (Dg and Dw).

Figure 14 - 17 describes the parameter sensitivity for
the glioma concentration at time t = 365 days and range

Fig. 16. The Glioma Concentration in Different Diffusivity Coefficients in
Grey Matter Zones Dg

Fig. 17. The Glioma Concentration in Different Diffusivity Coefficients in
White Matter Zones Dw

1 ≤ x ≤ 50. In addition, Figure 18 - 21 illustrates the
parameter sensitivity for the maximum glioma concentration
over time. Each figure consists of three different values of
one parameter. In contrast, the other parameters are fixed as
in Table I.

In Figure 14, the maximum glioma concentration occurs
at the initial glioma position, related to the basic medical
concept. At the time t = 365 days, When the initial position
x0 = 10 mm and 40 mm, then the maximum concentration is
22.4896 cells/mm, but the maximum concentration becomes
22.2438 cells/mm when the initial position x0 = 25. By
Figure 18, the maximum concentration is bigger when the
initial position of the glioma is in the grey matter zone (x0

= 10 and 40 mm) for t ≤ 381 days, then switches after that
time.

The effect of net proliferation rate (ρ) is shown in Figure
15 and 19, where a blue, an orange, and a grey line for ρ =
0.010; 0.012; and 0.014, respectively. The greater prolifera-
tion rate leads to greater glioma concentration. Furthermore,
the maximum glioma concentration at time t = 365 days
when ρ = 0.010; 0.012; and 0.014 are 14, 22 and 34 cell/mm,
which means that the glioma concentration increases up to
50% even though the proliferation rate increases only about
20%. Figure 19 also shows that the bigger net proliferation
rate makes the glioma concentration reach the equilibrium
point faster.

The diffusivity coefficient in grey and white matter gives
different results as in Figure 16, 17, 20, and 21. As in
Figure 16, a bigger diffusivity coefficient in grey matter (Dg)
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Fig. 18. The Maximum Glioma Concentration in Different Initial Positions
(x0)

Fig. 19. The Glioma Concentration in Different Proliferation Rate (ρ)

leads to a smaller glioma concentration at any position. This
condition does not occur in the changes of the diffusivity
coefficient in white matter (Dw). Figure 17 shows that the
glioma concentration graph split at some position. Around
the white matter area (in the middle of the axis), a big-
ger diffusivity coefficient in white matter (Dw) leads to a
smaller glioma concentration at any position. The opposite
condition occurs around the grey matter area. The glioma
concentration changes slightly (less than 10%) even though
the diffusivity coefficient varies twice in grey and white
matter. The diffusivity coefficient does not significantly affect
the maximum glioma concentration, as shown in Figure 20
and 21. Based on these sensitivity analyses, we conclude
that the net proliferation rate significantly affects the glioma
concentration more than the other parameters.

VII. CONCLUSION

The reaction-diffusion model, solved by the Crank-
Nicolson scheme, has successfully represented the glioma
concentration growth with different diffusivity coefficients
for each matter zone. The simulation results show that
the exponential growth function produces glioma growth
patterns very different from the logistic and Gompertzian
growth functions. By the exponential growth function, glioma
concentration increased unlimited, which is related to the
analytical analysis. The logistics and Gompertzian show
that the glioma decreases quickly at the starting period and
then increases, converging to their carrying capacity value.
The glioma cell number shows the same pattern as their
concentration since the cell number is proportional to its
concentration.

Fig. 20. The Maximum Glioma Concentration in Different Diffusivity
Coefficients in Grey Matter Zones Dg

Fig. 21. The Maximum Glioma Concentration in Different Diffusivity
Coefficients in White Matter Zones Dw

Furthermore, the Gompertzian growth function describes
the glioma growth better since it has the highest average
speed growth and significantly differs from the others. This
result is related to [35] and Akin [39]. The sensitivity analysis
indicates that different diffusivity coefficients for each matter
zone influence the glioma concentration growth in each zone
since this parameter describes the ability of the cell to diffuse
across the unit area. Moreover, the net proliferation rate
significantly affects the concentration and the total number
of glioma cells more than the other parameters. It means
that the ability of glioma cells to copy their DNA plays an
essential role in the glioma growth model.
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