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Abstract—In this paper, we extend Vukman’s generalization
of Kurepa’s theorem on sesquilinear functional to the projec-
tive tensor product of two hermitian Banach *-algebras via
sesquilinear functional. For a complex unital *-algebra A and
two additive self mappings θ and ϕ as antihomomorphism
and homomorphism respectively on A, we define a generalized
class of quadratic functional, viz., (θ,ϕ)-A-quadratic functional.
Using this, we give a characterization of sesquilinear functional
on the projective tensor product in terms of Jordan (θ,ϕ)-
derivation. The Hyers-Ulam stability of Jordan (θ,ϕ)-derivation
is also discussed.

Index Terms—Projective tensor product, quadratic func-
tional, sesquilinear functional, Jordan derivation.

I. INTRODUCTION

THE study of sesquilinear functionals has attained sig-
nificant interest from numerous researchers due to its

broad applicability across various domains. For a complex
vector space X and a complex *-algebra A with X as a
left A-module, it is well known that each A-sesquilinear
functional

B : X ×X → A

gives rise to an A-quadratic functional

Q : X → A

by the relation Q(x) = B(x,x) for all x ∈ X . Kurepa
[15] provided a positive response to the converse of this
statement when examining the case of A being the field of
complex numbers. In [28], Vroba obtained a simpler proof of
Kurepa’s result. In 1984, Vukman in [26] achieved a broader
formulation of Kupera’s theorem by replacing the complex
field C with commutative hermitian Banach *-algebra. The
generalization for noncommutative case was also done by
Vukman in another paper [27] using a simpler approach.

Building upon the influence of these studies, in this paper
we establish some results on sesquilinear functionals in
Banach *-algebras. The novelty of our work lies in the fact
that some existing works have been extended in the setting
of projective tensor product of two hermitian Banach *-
algebras. Furthermore, we have generalized the investigation
conducted by Semrl [24] concerning Jordan *-derivation on
the Banach *-algebra A to Jordan (θ,ϕ)-derivation. Jordan
derivation was introduced by Herstein [13] in 1957, and he
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proved some results of Jordan derivation on prime rings.
Subsequently, Semrl [24] demonstrated a series of findings
pertaining to Jordan *-derivations, as well as exploring
sesquilinear and quadratic functionals. In [1], Ashraf et al.
discussed about Lie ideals and generalized Jordan (θ,ϕ)-
derivations in prime rings. Different researchers (refer to [2],
[8], [16], [19]) have established several interesting results
considering different types of Jordan derivations which is
the motivation to work in this topic.

II. PRELIMINARIES

In this section, we present some basic definitions
necessary for the main results of the paper.

Definition 2.1 [5] In an algebra A, for x,x∗ ∈ A, an
involution is a self mapping on A with x→ x∗ such that

(i) (x+ y)∗ = x∗ + y∗,
(ii) (x∗)∗ = x,

(iii) (xy)∗ = y∗x∗,
(iv) (αx∗) = ᾱx∗

for all x,y ∈ A and for all scalar α, where x∗ is called the
adjoint of x.

An algebra A with an involution is called a *-algebra. A
Banach *-algebra is a Banach algebra A with an involution
‘*’ defined on it. Let A be the algebra Mn(C) of all n× n
complex matrices and let a = (aij) ∈ A. Then A is a Banach
*-algebra, where a∗ = (aji).

If each hermitian element in a Banach *-algebra A has
a real spectrum, then A is called a hermitian algebra. B*-
algebras are the most important hermitian Banach *-algebras.
In a Banach *-algebra A, for any hermitian element h ∈ A,
h > 0 (h ≥ 0), if the spectrum of h is positive (nonnegative).

Definition 2.2 [24] Let X be a complex vector space
and A be a complex *-algebra such that X is a left
A-module.
A mapping

B : X ×X → A

is an A-sesquilinear functional if
(i) B(a1x1 + a2x2,y) = a1B(x1,y) + a2B(x2,y) for all
x1,x2,y ∈ X; a1,a2 ∈ A,
(ii) B(x,a1y1 + a2y2) = B(x,y1)a

∗
1 + B(x,y2)a

∗
2 for all

x,y1,y2 ∈ X; a1,a2 ∈ A.
For example, let H be a Hilbert space and β(H) be

the algebra of all bounded linear operators on H . Let the
involution on β(H) be the adjoint operation. The mapping

ϕ : H ×H → β(H)
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defined by
(ϕ(x,y))(z) =< z,y > x,

where x,y,z ∈ H is a β(H)-sesquilinear functional.
A mapping Q : X → A is said to be an A-quadratic

functional if the following conditions are satisfied:
(i) Q(x+ y) +Q(x− y) = 2Q(x) + 2Q(y) for all x,y ∈ X ,
(ii) Q(ax) = aQ(x)a∗ for all x ∈ X and a ∈ A.

In [27], Vukman proved the following result regarding
sesquilinear functional in hermitian Banach *-algebras.

Lemma 2.3 [27] For a vector space X and a hermitian
Banach *-algebra A, let X be a unitary left A-module.
Suppose there exists an A-quadratic functional Q : X → A.
Then the mapping B : X ×X → A defined by

B(x,y) =
1

4
(Q(x+y)−Q(x−y))+ i

4
(Q(x+iy)−Q(x−iy))

is an A-sesquilinear functional. Moreover, for all x ∈ X the
relation Q(x) = B(x,x) holds.

In the theory of Banach spaces, the tensor product serves
as a tool to transform multilinear phenomena into linear
ones, simplifying their analysis. In 1953, Grothendiek [10]
developed the modern tensor product theory of Banach
spaces. Various concepts linked to the tensor product have
been explored in [7], [21], [23].

Definition 2.4 [5] Let A and B be two normed spaces over
the field F with dual spaces A∗ and B∗. For a ∈ A and
b ∈ B, let a⊗ b be the element of BL(A∗,B∗;F) defined by

a⊗ b(f,g) = f(a)g(b), (f ∈ A∗,g ∈ B∗).

The algebraic tensor product of A and B, A⊗B is defined as
the linear span of {a ⊗ b : a ∈ A,b ∈ B} in BL(A∗,B∗;F),
where BL(A∗,B∗;F) is the set of all bounded bilinear
mappings from A∗ × B∗ to F.

For example, if A is a Banach *-algebra, then Mn(C)⊗A
is isomorphic to Mn(A), which is the set of all n × n
matrices over A (refer to [5]).

Definition 2.5 [6] For any two normed spaces A and
B, the projective tensor norm γ on A⊗ B is defined by

γ(u) = inf{
n∑

i=1

||ai||.||bi|| : u =
n∑

i=1

ai ⊗ bi},

where the infimum is taken over all finite representations of
u. The completion of A ⊗ B with respect to γ is called the
projective tensor product of A and B and it is denoted by
A⊗γ B.

For example, for the sequence space l1 over R, there
exists an isometric linear isomorphism of l1 ⊗γ R to l1(R).

Lemma 2.6 [5] Let A and B be two normed algebras
over F. There exists a unique product on A⊗B with respect
to which A⊗ B is an algebra and

(a⊗ b)(c⊗ d) = ac⊗ bd, (a,c ∈ A and b,d ∈ B).

If A and B are two hermitian Banach *-algebras, then
A⊗γ B is also a hermitian Banach *-algebra.

Definition 2.7 [24] For a *-algebra A, a mapping
D : A → A is a Jordan *-derivation if for all u,v ∈ A,
(i) D(u+ v) = D(u) +D(v),
(ii) D(u2) = uD(u) +D(u)u∗.

Definition 2.8 [1] Let A be a complex unital Banach
*-algebra with unit element e. For two endomorphisms θ
and ϕ on A, a mapping ∆ : A → A is said to be a Jordan
(θ,ϕ)-derivation if for all u,v ∈ A,
(i) ∆(u+ v) = ∆(u) + ∆(v),
(ii) ∆(u2) = ∆(u)θ(u) + ϕ(u)∆(u).

Example 2.9 For the C∗-algebra A={
[
u v
0 u

]
: u,v ∈ R}

with usual matrix operations and the norm, let

∆ : A → A be defined by ∆(

[
u v
0 u

]
) =

[
0 v
0 0

]
.

Let θ : A → A and ϕ : A → A be such that

θ(

[
u v
0 u

]
) =

[
u 0
0 u

]
= ϕ(

[
u v
0 u

]
). Then ∆ is a

Jordan (θ,ϕ)-derivation.

Definition 2.10 [12] A Banach *-algebra A is called
a zero product determined Banach *-algebra if for every
vector space X and every bilinear mapping

Ψ : A× A → X,

the following condition holds:
if Ψ(u,v) = 0 whenever uv = 0, then there exists a linear
mapping

T : A2 → X

such that Ψ(u,v) = T (uv) for all u,v ∈ A. [Here A2 denotes
the complex linear span of all elements of the form xy where
x,y ∈ A].

If A has unit element e, and A is zero product determined
Banach *-algebra then Ψ(u,v) = Ψ(uv,e) for all u,v ∈ A
and also Ψ(u,e) = Ψ(e,u) for all u ∈ A.

III. MAIN RESULTS

We introduce the subsequent expansion of Vukman’s
findings to projective tensor product of two hermitian
Banach *-algebras, A and B. Starting with two quadratic
functionals, Q1 and Q2 defined on the vector spaces X and
Y , where X is a left A-module, and Y is a left B-module,
we formulate an A⊗γ B-sesquilinear functional on X ⊗ Y .
Significantly, our work also finds a relationship between the
norms of elements in X ⊗ Y via quadratic functionals and
sesquilinear functionals in case of C∗-algebras.

Theorem 3.1 Let X , Y be two vector spaces and A,
B be two hermitian Banach *-algebras with unit elements
e1 and e2 respectively. Let X be a unitary left A- module
and Y be a unitary left B-module. Let Q1 : X → A be
an A-quadratic functional on X and Q2 : Y → B be a
B-quadratic functional on Y . Then corresponding to Q1 and
Q2, there exists an A⊗γ B-sesquilinear functional

B : (X ⊗ Y )× (X ⊗ Y ) → A⊗γ B

such that

B(x⊗ y,x⊗ y) = Q1(x)⊗Q2(y)
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for each x ∈ X and y ∈ Y . Moreover, if X and Y are C∗-
algebras and Q1 and Q2 are bounded, then for u = x⊗ y ∈
X ⊗ Y ,

||B(uu∗,uu∗)|| ≤ 4||Q1||.||Q2||.||u||2.

Proof: For the unitary left A-module X , from the given
A-quadratic form Q1 : X → A, by Lemma 2.3 we construct
an A-sesquilinear functional

B1 : X ×X → A.

For fixed vectors u1,v1 ∈ X , we consider f1 : A → A and
g1 : A → A defined by

f1(w1) = B1(w1u1,v1) (1)

and

g1(w1) = B1(u1,w
∗
1v1), w1 ∈ A. (2)

Again, for the unitary left B-module Y , in a similar way
we can construct the B-sesquilinear functional

B2 : Y × Y → B.

For fixed vectors u2,v2 ∈ Y , we define f2 : B → B and
g2 : B → B by the relation

f2(w2) = B2(w2u2,v2) (3)

and

g2(w2) = B2(u2,w
∗
2v2), for w2 ∈ B. (4)

Let B : (X ⊗ Y )× (X ⊗ Y ) → A⊗γ B be defined by

B(
n∑

i=1

u1i ⊗ u2i ,
m∑
j=1

v1j ⊗ v2j )

=
n∑

i=1

m∑
j=1

B1(u1i ,v1j )⊗B2(u2i ,v2j ),

where
∑n

i=1 u1i ⊗ u2i ,
∑m

j=1 v1j ⊗ v2j ∈ X ⊗ Y .
Now,

B(iu1 ⊗ u2,v1 ⊗ v2) = B1(iu1,v1)⊗B2(u2,v2)

= iB1(u1,v1)⊗B2(u2,v2)

= iB(u1 ⊗ u2,v1 ⊗ v2). (5)

Similarly,

B(u1 ⊗ u2,iv1 ⊗ v2) = −iB(u1 ⊗ u2,v1 ⊗ v2). (6)

On the projective tensor product A ⊗γ B, we consider the
function f : A⊗γ B → A⊗γ B such that

f(
∑
k

w1k ⊗ w2k) =
1

2

∑
k

{f1(w1k)⊗ f2(w2k)

+ g1(w
∗
1k
)⊗ g2(w

∗
2k
)}, (7)

where
∑

i w1k ⊗ w2k ∈ A⊗γ B.
Now using (1), (2), (3) and (4), from (7) we have,

f(
∑
k

w1k ⊗ w2k)

=
1

2

∑
k

{B1(w1ku1,v1)⊗B2(w2ku2,v2)

+B1(u1,w1kv1)⊗B2(u2,w2kv2)}

=
1

2

∑
k

{B((w1k ⊗ w2k)(u1 ⊗ u2),v1 ⊗ v2)

+B(u1 ⊗ u2,(w1k ⊗ w2k)(v1 ⊗ v2))}

=
1

2
{B((

∑
k

w1k ⊗ w2k)(u1 ⊗ u2),v1 ⊗ v2)

+B(u1 ⊗ u2,(
∑
k

w1k ⊗ w2k)(v1 ⊗ v2))}. (8)

Since B1 is A-sesquilinear functional, so from (1) and (2)
we obtain,

f1(e1) = B1(u1,v1) = g1(e1) (9)

and

f1(w1) = B1(w1u1,v1)

= w1B1(u1,v1) = w1f1(e1) (using (9)). (10)

Similarly, we can show that

f2(e2) = B2(u2,v2) = g2(e2),

f2(w2) = w2f2(e2), (11)
g1(w

∗
1) = g1(e1)w

∗
1 (12)

and

g2(w
∗
2) = g2(e2)w

∗
2 . (13)

Now using (10), (11), (12) and (13), from (7), we get,

f(
∑
k

w1k ⊗ w2k)

=
1

2

∑
i

{f1(w1k)⊗ f2(w2k) + g1(w
∗
1k
)⊗ g2(w

∗
2k
)}

=
1

2

∑
k

{w1kf1(e1)⊗ w2kf2(e2) + g1(e1)w
∗
1k

⊗ g2(e2)w
∗
2k
}

=
1

2

∑
k

{(w1k ⊗ w2k)(B1(u1,v1)⊗B2(u2,v2))

+ (B1(u1,v2)⊗B2(u2,v2))(w
∗
1k

⊗ w∗
2k
)}

=
1

2

∑
k

{(w1k ⊗ w2k)B(u1 ⊗ u2,v1 ⊗ v2)

+B(u1 ⊗ u2,v1 ⊗ v2)(w
∗
1k

⊗ w∗
2k
)}

=
1

2
{
∑
k

(w1k ⊗ w2k)B(u1 ⊗ u2,v1 ⊗ v2)

+B(u1 ⊗ u2,v1 ⊗ v2)
∑
k

(w∗
1k

⊗ w∗
2k
)}. (14)

Now comparing (8) and (14) we obtain,

B((
∑
k

w1k ⊗ w2k)(u1 ⊗ u2),v1 ⊗ v2)

+B(u1 ⊗ u2,(
∑
k

w1k ⊗ w2k)(v1 ⊗ v2))

= (
∑
k

w1k ⊗ w2k)B(u1 ⊗ u2,v1 ⊗ v2)

+B(u1 ⊗ u2,v1 ⊗ v2)(
∑
k

w∗
1k

⊗ w∗
2k
). (15)

Replacing
∑

k w1k ⊗ w2k by
∑

k iw1k ⊗ w2k and using (5)
and (6), we get,

B((
∑
k

w1k ⊗ w2k)(u1 ⊗ u2),v1 ⊗ v2)
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−B(u1 ⊗ u2,(
∑
k

w1k ⊗ w2k)(v1 ⊗ v2))

= (
∑
k

w1k ⊗ w2k)B(u1 ⊗ u2,v1 ⊗ v2)

−B(u1 ⊗ u2,v1 ⊗ v2)(
∑
k

w∗
1k

⊗ w∗
2k
). (16)

Thus for u =
∑n

i=1 u1i ⊗u2i ,v =
∑m

j=1 v1j ⊗ v2j ∈ X ⊗Y
and w =

∑
k w1k ⊗w2k ∈ A⊗γ B, comparing (15) and (16)

we get,
B(wu,v) = wB(u,v)

and
B(u,wv) = B(u,v)w∗.

Thus B is an A⊗γ B-sesquilinear functional.
For x ∈ X , y ∈ Y ,

B(x⊗ y,x⊗ y) = B1(x,x)⊗B2(y,y) = Q1(x)⊗Q2(y).

Now, we consider X and Y as C∗-algebras and let Q1 and
Q2 be bounded. Then for u1,v1 ∈ X ,

||B1(u1,v1)|| = ||1
4
(Q1(u1 + v1)−Q1(u1 − v1))

+
i

4
(Q1(u1 + iv1)−Q1(u1 − iv1))||

≤ 1

4
(||Q1||.||u1 + v1||+ ||Q1||.||u1 − v1||)

+
1

4
(||Q1||.||u1 + iv1||+ ||Q1||.||u1 − iv1||)

≤ ||Q1||(||u1||+ ||v1||).

Similarly, ||B2(u2,v2)|| ≤ ||Q2||(||u2|| + ||v2||) for all
u2,v2 ∈ Y .
Now, for u = x⊗ y ∈ X ⊗ Y ,

||B(uu∗,uu∗)||
= ||B1(xx

∗,xx∗)||.||B2(yy
∗,yy∗)||

≤ ||Q1||(||xx∗||+ ||xx∗||).||Q2||(||yy∗||+ ||yy∗||)
= 4||Q1||.||Q2||.||xx∗||.||yy∗||
= 4||Q1||.||Q2||.||x||2.||y||2

= 4||Q1||.||Q2||.||x⊗ y||2

= 4||Q1||.||Q2||.||u||2.

Example 3.2: Let X = A = l1 and Y = B = R. Let the
mappings Q1 : l1 → l1 be defined by

Q1({x1,x2,x3,.....}) = {x21,x22,0,0,....} for {xn} ∈ l1

and Q2 : R → R by Q2(u) = u2, for u ∈ R. Clearly, Q1 and
Q2 are A-quadratic functionals. Now, by Lemma 2.3, we can
construct two A-sesquilinear functionals B1 : l1 × l1 → l1

and B2 : R× R → R defined by

B1({x1,x2,x3,...},{y1,y2,y3,...}) = {x1y1,x2y2,0,0,...}

and B2(u,v) = uv where {xn},{yn} ∈ l1 and u,v ∈ R.
Since, l1 ⊗γ R ∼= l1(R) so, by Theorem 3.1, there exists

B : (l1 ⊗ R)× (l1 ⊗ R) → l1(R)

such that

B(
n∑

i=1

ui ⊗ vi,
m∑
j=1

rj ⊗ sj)

=
n∑

i=1

m∑
j=1

{pi1qj1visj ,pi2qj2visj ,0,0,....}

where ui = {pik}k,rj = {qjk}k ∈ l1 and vi, sj ∈ R.
Now,

n∑
i=1

m∑
j=1

B1(ui,rj)⊗B2(vi,sj)

=
n∑

i=1

m∑
j=1

{pi1qj1 ,pi2qj2 ,0,0,...} ⊗ visj

=
n∑

i=1

m∑
j=1

{pi1qj1visj ,pi2qj2visj ,0,0,....}

= B(
n∑

i=1

ui ⊗ vi,
m∑
j=1

rj ⊗ sj),

which exhibits the content of the Theorem 3.1.

The following result deals with zero product determined
Banach *-algebras.

Theorem 3.3 Let X , Y be two unital zero product
determined Banach *-algebras with unit elements e′1, e′2
respectively and A, B be two hermitian Banach *-algebras
with unit elements e1, e2 respectively. Let X be a unitary
left A-module and Y be a unitary left B-module. Let
Q1 : X → A be a bounded A-quadratic functional on X
and Q2 : Y → B be a bounded B-quadratic functional on Y
satisfying xiyi = 0 implies Qi(xi + yi) = 0 (for i = 1,2),
x1,y1 ∈ X and x2,y2 ∈ Y . Then there exists a bounded
linear mapping

L : X ⊗ Y → A⊗γ B

such that

L(
n∑

i=1

xi ⊗ yi) = B(
n∑

i=1

xi ⊗ yi,e
′
1 ⊗ e′2)

and ||L|| ≤ ||B||, where B is the A ⊗γ B-sesquilinear
functional as defined in Theorem 3.1.

Proof: Let B1, B2 be the sesquilinear functionals de-
termined by Q1 and Q2 respectively. Let x1,y1 ∈ X with
x1y1 = 0. Now,

B1(x1,y1) =
1

4
(Q1(x1 + y1)−Q1(x1 − y1))

+
i

4
(Q1(x1 + iy1)−Q2(x1 − iy1))

= 0,

Thus, x1y1 = 0 implies B1(x1,y1) = 0. So, there exists a
linear mapping L1 : X2 → A such that

B1(u1,v1) = L1(u1v1),u1,v1 ∈ X.

Similarly, we have a linear mapping L2 : Y 2 → B with

B2(u2,v2) = L2(u2v2), u2,v2 ∈ Y.

Now, we define L : X ⊗ Y → A⊗γ B such that

L(
n∑

i=1

xi ⊗ yi) =
n∑

i=1

L1(xie
′
1)⊗ L2(yie

′
2)
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=
n∑

i=1

B1(xi,e
′
1)⊗B2(yi,e

′
2)

= B(
n∑

i=1

xi ⊗ yi,e
′
1 ⊗ e′2).

Also it is easy to see that ||L|| ≤ ||B||.
Now we establish a relation between the A ⊗γ B-

sesquilinear functional and Jordan (θ,ϕ)-derivation. For
this, we introduce a new class of A-quadratic functionals
with respect to the mappings θ and ϕ, denoted as (θ,ϕ)-A-
quadratic functional, and represent such quadratic functional
using a given Jordan (θ,ϕ)-derivation.

Definition 3.4: ((θ,ϕ)-A-quadratic functional) Let X
be a vector space and A be a unital *-algebra with
unit element e such that X is a left A-module. For two
additive self mappings θ and ϕ as antihomomorphism and
homomorphism respectively on A and θ(e) = ϕ(e) = e,
a mapping Q : X → A is said to be a (θ,ϕ)-A-quadratic
functional if the following conditions hold:
(i) Q(x+ y) +Q(x− y) = 2Q(x) + 2Q(y),
(ii) Q(ax) = ϕ(a)Q(x)θ(a) for all x,y ∈ X , a ∈ A.

Example 3.5: Let X = A = Mn(R) with usual matrix
operations. We define Q :Mn(R) →Mn(R) by

Q(M) =MMT

for all M ∈ Mn(R), where MT denotes the transpose of
M . Let the self mappings θ and ϕ on Mn(R) be defined by
θ(M) =MT and ϕ(M) =M for all M ∈Mn(R). Then Q
is a (θ,ϕ)-A-quadratic functional.

Example 3.6 Let X = A = l1. Let the mapping
Q : l1 → l1 be defined by

Q({x1,x2,x3,....}) = {x1x2,x1x2,0,0,....} for {xn} ∈ l1.

Let θ and ϕ be two self mappings on l1 such that

θ({x1,x2,x3,...}) = {x2,x1,0,0,...}

and ϕ({x1,x2,x3,...}) = {x1,x2,0,0,...}.

Then Q is a (θ,ϕ)-A-quadratic functional.

Remark 3.7 It becomes evident that when ϕ is the
indentity mapping on a Banach *-algebra A and θ is
an involution on A, the class of all (θ,ϕ)-A-quadratic
functionals contains the class of A-quadratic functionals.

Following the Theorem 2.1 of [24], some equivalent
characterization for Jordan (θ,ϕ)-derivation can be obtained
as follows:

Lemma 3.8 Let A be a unital Banach *-algebra with
unit element e, and ∆ : A → A be an additive mapping.
Let θ and ϕ be two additive self mappings on A with
θ(uv) = θ(v)θ(u), ϕ(uv) = ϕ(u)ϕ(v) and θ(e) = ϕ(e) = e.
Then the following conditions are equivalent:
(i) ∆ is a Jordan (θ,ϕ)-derivation,
(ii) ∆(u) = −ϕ(u)∆(u−1)θ(u) for all invertible u ∈ A,
(iii) ∆(uvu) = ϕ(uv)∆(u) + ϕ(u)∆(v)θ(u) + ∆(u)θ(uv)
for all u,v ∈ A.

Proof: (ii) =⇒ (i):
For invertible u ∈ A, ∆(u) = −ϕ(u)∆(u−1)θ(u). So
∆(e) = 0.
Let u be invertible and ||u|| < 1. Then e+u, e−u, e−u2 are
also invertible, and (u− e)−1 − (u2 − e)−1 = (u2 − e)−1u.
We have to show that ∆(u2) = ϕ(u)∆(u) + ∆(u)θ(u).
Now,

∆(u) + ϕ(u−1)∆(u)θ(u−1)

= ∆(u)−∆(u−1) = ∆(u− u−1) = ∆(u−1(u2 − e))

= −ϕ(u−1(u2 − e))∆((u2 − e)−1u)θ(u−1(u2 − e))

= −ϕ(u−1)ϕ(u2 − e)∆((u− e)−1)θ(u2 − e)θ(u−1)

+ ϕ(u−1)ϕ(u2 − e)∆((u2 − e)−1)θ(u2 − e)θ(u−1)

= −ϕ(u−1)ϕ(u+ e)ϕ(u− e)∆((u− e)−1)

θ(u− e)θ(u+ e)θ(u−1)− ϕ(u−1)∆(u2 − e)θ(u−1)

= ϕ(u−1)ϕ(u+ e)∆(u− e)θ(u+ e)θ(u−1)

− θ(u−1)∆(u2)θ(u−1)

= ϕ(e+ u−1)∆(u)θ(e+ u−1)− ϕ(u−1)∆(u2)θ(u−1)

= (ϕ(e) + ϕ(u−1))∆(u)(θ(e) + θ(u−1))

− ϕ(u−1)∆(u2)θ(u−1)

= ∆(u) + ∆(u)θ(u−1) + ϕ(u−1)∆(u) + ϕ(u−1)∆(u)θ(u−1)

− ϕ(u−1)∆(u2)θ(u−1).

We finally get,

ϕ(u−1)∆(u2)θ(u−1) = ϕ(u−1)∆(u) + ∆(u)θ(u−1),

i.e.,∆(u2) = ϕ(u)∆(u) + ∆(u)θ(u). (17)

Thus, for ||u|| < 1, ∆ is a Jordan (θ,ϕ)-derivation.
Now, let ||u|| > 1. Then t−1u is invertible for some positive
integer t with ||t−1u|| < 1. Then by (17),

∆((t−1u)2) = ϕ(t−1u)∆(t−1u) + ∆(t−1u)θ(t−1u).

Multiplying both sides of the above equation by t2 and using
the additivity of ∆ we get,

∆(u2) = ϕ(u)∆(u) + ∆(u)θ(u).

Again let u be an arbitrary element. Then for some integer
t, ||u|| < t, i.e., ||t−1u|| < 1. So, e− t−1u is invertible and
hence u− te is also invertible. Then

∆((u− te)2) = ϕ(u− te)∆(u− te)

+ ∆(u− te)θ(u− te),

i.e.,∆(u2)− 2t∆(u) = ϕ(u− te)∆(u) + ∆(u)θ(u− te)

= (ϕ(u)− ϕ(te))∆(u)

+ ∆(u)(θ(u)− θ(te))

= (ϕ(u)− t)∆(u) + ∆(u)(θ(u)− t)

= ϕ(u)∆(u) + ∆(u)θ(u)− 2t∆(u),

i.e.,∆(u2) = ϕ(u)∆(u) + ∆(u)θ(u).

(i) =⇒ (iii):
Replacing u by u+ v in (17), for all u,v ∈ A we get,

∆(uv) + ∆(vu) = ϕ(v)∆(u) + ϕ(u)∆(v) + ∆(u)θ(v)

+ ∆(v)θ(u) (18)
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Taking z = ∆(u(uv + vu) + (uv + vu)u) and using (18),
we get,

z = ∆(u(uv + vu) + (uv + vu)u)

= ϕ(u)∆(uv + vu) + ϕ(uv + vu)∆(u)

+ ∆(uv + vu)θ(u) + ∆(u)θ(uv + vu)

= ϕ(u){ϕ(u)∆(v) + ∆(u)θ(v)}+ ϕ(u){ϕ(v)∆(u)

+ ∆(v)θ(u)}+ ϕ(uv)∆(u) + ϕ(vu)∆(u) + {ϕ(u)∆(v)

+ ∆(u)θ(v)}θ(u) + {ϕ(v)∆(u) + ∆(v)θ(u)}θ(u)
+ ∆(u)θ(uv) + ∆(u)θ(vu)

= ϕ(u2)∆(v) + ϕ(u)∆(u)θ(v) + ϕ(uv)∆(u)

+ ϕ(u)∆(v)θ(u) + ϕ(uv)∆(u) + ϕ(vu)∆(u)

+ ϕ(u)∆(v)θ(u) + ∆(u)θ(uv) + ϕ(v)∆(u)θ(u)

+ ∆(v)θ(u2) + ∆(u)θ(uv) + ∆(u)θ(vu)

= 2ϕ(uv)∆(u) + ϕ(u2)∆(v) + ϕ(u)∆(u)θ(v)

+ 2ϕ(u)∆(v)θ(u) + ϕ(vu)∆(u) + ϕ(v)∆(u)θ(u)

+ 2∆(u)θ(uv) + ∆(v)θ(u2) + ∆(u)θ(vu). (19)

Again,

z = 2∆(uvu) + ∆(u2v) + ∆(vu2)

= 2∆(uvu) + ϕ(v)∆(u2) + ϕ(u2)∆(v)

+ ∆(u2)θ(v) + ∆(v)θ(u2)

= 2∆(uvu) + ϕ(vu)∆(u) + ϕ(v)∆(u)θ(u)

+ ϕ(u2)∆(v) + ϕ(u)∆(u)θ(v)

+ ∆(u)θ(vu) + ∆(v)θ(u2). (20)

Comparing (19) and (20) we get,

∆(uvu) = ϕ(uv)∆(u) + ϕ(u)∆(v)θ(u) + ∆(u)θ(uv).

(iii) =⇒ (ii) follows by putting v = u−1 in (iii).

Following a similar way as Semrl [24], we present
the following two lemmas which will help to give a
representation of (θ,ϕ)-A-quadratic functional via Jordan
(θ,ϕ)-derivation.

Lemma 3.9 Let A be a unital Banach *-algebra with
unit element e and ∆ : A → A a Jordan (θ,ϕ)-derivation.
Let θ and ϕ be two additive self mappings on A with
θ(uv) = θ(v)θ(u), ϕ(uv) = ϕ(u)ϕ(v) and θ(e) = ϕ(e) = e.
Then for all u,v,w and invertible z ∈ A,
(i) ϕ(z)∆(z−1u)θ(z) = ∆(uz)− ϕ(u)∆(z)−∆(z)θ(u),
(ii) ∆(wvwu) = ϕ(w)∆(vu)θ(w) + ϕ(wv)∆(wu) −
ϕ(wv)∆(u)θ(w) + ∆(wu)θ(wv)− ϕ(w)∆(u)θ(wv).

Proof: (i) Let uz = e. So, u = ez−1. Now using the
conditions (ii) and (iii) of the Lemma 3.8 we get,

ϕ(z)∆(z−1u)θ(z)

= ϕ(z)∆(z−1ez−1)θ(z)

= ϕ(e)∆(z−1)θ(z) + ∆(e) + ϕ(z)∆(z−1)θ(e)

= ϕ(uz)∆(z−1)θ(z) + ∆(uz) + ϕ(z)∆(z−1)θ(uz)

= ϕ(u)ϕ(z)∆(z−1)θ(z) + ∆(uz) + ϕ(z)∆(z−1)θ(z)θ(u)

= ∆(uz)− ϕ(u)∆(z)−∆(z)θ(u).

(ii) Using the Lemma 3.8 we have,

∆(wvwu)

= ∆(wu(u−1v)wu)

= ϕ(wuu−1v)∆(wu) + ϕ(wu)∆(u−1v)θ(wu)

+ ∆(wu)θ(wuu−1v)

= ϕ(wv)∆(wu) + ϕ(w)ϕ(u)∆(u−1v)θ(u)θ(w)

+ ∆(wu)θ(wv)

= ϕ(wv)∆(wu) + ϕ(w){∆(vu)− ϕ(v)∆(u)

−∆(u)θ(v)}θ(w) + ∆(wu)θ(wv)

= ϕ(wv)∆(wu) + ϕ(w)∆(vu)θ(w)− ϕ(w)ϕ(v)∆(u)θ(w)

− ϕ(w)∆(u)θ(v)θ(w) + ∆(wu)θ(wv)

= ϕ(wv)∆(wu) + ϕ(w)∆(vu)θ(w)− ϕ(wv)∆(u)θ(w)

− ϕ(w)∆(u)θ(wv) + ∆(wu)θ(wv).

Lemma 3.10 Let A be a unital Banach *-algebra with
unit element e. Let ϕ and θ be two additive self mappings
on A such that θ(uv) = θ(v)θ(u), ϕ(uv) = ϕ(u)ϕ(v) and
θ(e) = ϕ(e) = e. Suppose that the mappings ψ1,ψ2 : A → A
satisfy the conditions:
(i) 2ψ1(u)+2ψ1(v) = 4ψ1(

1
2 (u+v))+ϕ(u−v)ψ2(0)θ(u−

v),
(ii) 2ψ2(u)+2ψ2(v) = 4ψ2(

1
2 (u+v))+ϕ(u−v)ψ1(0)θ(u−

v),
and
(iii)ψ1(w) = ϕ(w)ψ2(w

−1)θ(w)
for all u,v ∈ A and all invertible w ∈ A. Then there exists an
element z ∈ A and a Jordan (θ,ϕ)-derivation ∆ on A such
that

ψ1(u) = ϕ(u)ψ2(0)θ(u) + ϕ(u)z + zθ(u) + ψ1(0) + ∆(u)

for all u ∈ A.
Proof: Suppose that

2z = ψ1(e)− ψ1(0)− ψ2(0) = ψ2(e)− ψ1(0)− ψ2(0).
(21)

Let ∆,∆̃ : A → A be such that

ψ1(u) = ϕ(u)ψ2(0)θ(u) + ϕ(u)z + zθ(u) + ψ1(0) + ∆(u),
(22)

ψ2(u) = ϕ(u)ψ1(0)θ(u) + ϕ(u)z + zθ(u) + ψ2(0) + ∆̃(u).
(23)

From condition (iii), using (22) and (23) we get, for all
invertible u ∈ A,

ψ1(u) = ϕ(u)ψ2(u
−1)θ(u)

= ϕ(u){ϕ(u−1)ψ1(0)θ(u
−1) + ϕ(u−1)z + zθ(u−1)

+ ψ2(0) + ∆̃(u−1)}θ(u)
= ψ1(0) + zθ(u) + ϕ(u)z + ϕ(u)ψ2(0)θ(u)

+ ϕ(u)∆̃(u−1)θ(u),

i.e.,∆(u) = ϕ(u)∆̃(u−1)θ(u). (24)

Now, putting v = 0 in condition (i), we get,

2ψ1(u) + 2ψ1(0) = 4ψ1(
1

2
u) + ϕ(u)ψ2(0)θ(u). (25)

IAENG International Journal of Applied Mathematics, 53:4, IJAM_53_4_51

Volume 53, Issue 4: December 2023

 
______________________________________________________________________________________ 



Using (23), from (22) we get,

ψ1(
1

2
u) =

1

4
ϕ(u)ψ2(0)θ(u) +

1

2
ϕ(u)z

+
1

2
zθ(u) + ψ1(0) + ∆(

1

2
u),

i.e., 2ψ1(u) + 2ψ1(0) = 2ϕ(u)ψ2(0)θ(u) + 2ϕ(u)z + 2zθ(u)

+ 4ψ1(0) + 4∆(
1

2
u),

i.e.,
1

2
∆(u) = ∆(

1

2
u). (26)

Now from condition (i), using (22) we get,

2ψ1(u) + 2ψ1(v) = 4{ϕ(1
2
(u+ v))ψ2(0)θ(

1

2
(u+ v))

+ ϕ(
1

2
(u+ v))z + zθ(

1

2
(u+ v)) + ψ1(0)

+ ∆(
1

2
(u+ v))}+ ϕ(u− v)ψ2(0)θ(u− v)

= ϕ(u+ v)ψ2(0)θ(u+ v) + 2ϕ(u+ v)z

+ 2zθ(u+ v) + 4ψ1(0) + 4∆(
1

2
(u+ v))

+ ϕ(u)ψ2(0)θ(u)− ϕ(u)ψ2(0)θ(v)

− ϕ(v)ψ2(0)θ(u) + ϕ(v)ψ2(0)θ(v)

= 2ψ1(u)− 2∆(u) + 2ψ1(v)− 2∆(v)

+ 4∆(
1

2
(u+ v)),

i.e.,∆(u) + ∆(v) = ∆(u+ v) (using(26)).

Hence ∆ is additive.
Now let u ∈ A be invertible with ||u|| < 1. Then e + u is
also invertible and

(e+ u)−1 = e− (e+ u)−1u. (27)

From (22),

ψ1(e) = ϕ(e)ψ2(0)θ(e) + ϕ(e)z + zθ(e) + ψ1(0) + ∆(e)

= ψ2(0) + 2z + ψ1(0) + ∆(e) (ϕ(e) = θ(e) = e),

i.e.,∆(e) = 0 (by (21)). (28)

Similarly,

∆̃(e) = 0. (29)

Now using (27), (28), (29) and the additivity of ∆, from (24)
we get,

∆(u) = ∆(e+ u) = ϕ(e+ u)∆̃((e+ u)−1)θ(e+ u)

= −ϕ(e+ u)∆̃((e+ u)−1u)θ(e+ u)

= −ϕ(e+ u)ϕ((e+ u)−1)ϕ(u)∆(u−1

+ e)θ(u)θ((e+ u)−1)θ(e+ u)

= −ϕ(u)∆(u−1)θ(u).

Using additivity of ∆, it is easy to see that ∆(u) =
−ϕ(u)∆(u−1)θ(u) holds for each invertible u ∈ A. Now
applying Lemma 3.8 we get, ∆ is a Jordan (θ,ϕ)-derivation.

Theorem 3.11 Let X be a vector space and A be a unital
Banach *-algebra with unit element e such that X is a left A-
module. Let θ and ϕ be two additive self mappings on A with
θ(uv) = θ(v)θ(u), ϕ(uv) = ϕ(u)ϕ(v) and θ(e) = ϕ(e) = e.

For a Jordan (θ,ϕ)-derivation ∆ on A, let a mapping Q :
X → A satisfy

Q(ux+ vy) = ϕ(u)Q(x)θ(u) + ϕ(u)wθ(v) + ϕ(v)wθ(u)

+ ϕ(v)Q(y)θ(v) + ∆(vu)− ϕ(v)∆(u)

−∆(u)θ(v) (30)

for all x,y ∈ X and u,v,w ∈ A with u invertible. Then Q
is a (θ,ϕ)-A-quadratic functional. Moreover, when ϕ is the
identity mapping on A and θ is an involution on A, then Q
becomes an A-quadratic functional.

Proof: Using Lemma 3.9 in (30) we get,

Q(ux+ vy) = ϕ(u)Q(x)θ(u) + ϕ(u)wθ(v) + ϕ(v)wθ(u)

+ ϕ(v)Q(y)θ(v) + ϕ(u)∆(u−1v)θ(u). (31)

Substituting u−1 for u and putting v = e, and applying
Lemma 3.8 in (31) we get,

Q(u−1x+ y)

= ϕ(u−1)Q(x)θ(u−1) + wθ(u−1) + ϕ(u−1)w +Q(y)

+ ϕ(u−1)∆(u)θ(u−1)

= ϕ(u−1)Q(x)θ(u−1) + wθ(u−1) + ϕ(u−1)w

+Q(y)−∆(u−1). (32)

Again putting u = e and substituting v = u in (31) we get,

Q(x+ uy) = Q(x) + wθ(u) + ϕ(u)w

+ ϕ(u)Q(y)θ(u) + ∆(u). (33)

Using (32) and (33) we get,

ϕ(u)Q(u−1x+ y)θ(u)

= ϕ(u){ϕ(u−1)Q(x)θ(u−1) + wθ(u−1) + ϕ(u−1)w

+Q(y)−∆(u−1)}θ(u)
= Q(x) + wθ(u) + ϕ(u)w + ϕ(u)Q(y)θ(u)

− ϕ(u)∆(u−1)θ(u)

= Q(x) + wθ(u) + ϕ(u)w + ϕ(u)Q(y)θ(u) + ∆(u)

= Q(x+ uy)

= Q(u(u−1x+ y)). (34)

Taking x = uz, z ∈ A and y = 0 in (34) we get,

ϕ(u)Q(z)θ(u) = Q(uz). (35)

Again ∆(e) = 0. So, from (31) we get,

Q(x+ y) +Q(x− y) = Q(x) + w + w +Q(y) +Q(x)

− w − w +Q(y)

= 2Q(x) + 2Q(y).

This shows that Q is a (θ,ϕ)-A-quadratic functional.
In (35), taking ϕ as the identity mapping on A and θ as an
involution on A, we get,

Q(uz) = uQ(z)u∗.

Hence Q becomes an A-quadratic functional.
The following theorem gives a characterization of A⊗γB-

sesquilinear functional in terms of Jordan (θ,ϕ)-derivations
on the individual hermitian Banach *-algebras A and B.

Theorem 3.12 Let X , Y be two vector spaces and A, B be
two unital hermitian Banach *-algebras with unit elements e1
and e2 respectively. Let X be a unitary left A- module and Y
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be a unitary left B-module. For two additive self mappings
ϕ1 and θ1 on A, let ∆1 be a Jordan (θ1,ϕ1)-derivation on
A, and for two additive self mappings ϕ2 and θ2 on B, let
∆2 be a Jordan (θ2,ϕ2)-derivation on B. If
(i) ϕ1 and ϕ2 are identity mappings on A and B respectively,
(ii) θ1 and θ2 are involutions on A and B respectively, and
(iii) Q1 : X → A and Q2 : Y → B be two mappings
satisfying

Qi(uixi + viyi)

= ϕi(ui)Qi(xi)θi(ui) + ϕi(ui)wiθi(vi) + ϕi(vi)wiθi(ui)

+ ϕi(vi)Qi(yi)θi(vi) + ∆i(viui)− ϕi(vi)∆i(ui)

−∆i(ui)θi(vi)

for (i = 1,2) and for all u1,v1,w1 ∈ A with u1 invertible,
u2,v2,w2 ∈ B with u2 invertible, x1,y1 ∈ X and x2,y2 ∈ Y ,
then there exists an A⊗γB-sesquilinear functional on X⊗Y .

The proof follows from Theorem 3.12 and then Theorem
3.1.

IV. HYERS-ULAM STABILITY OF JORDAN
(θ,ϕ)-DERIVATION

In this section, we undertake an analysis of the Hyers-
Ulam stability concerning Jordan (θ,ϕ)-derivation. In 1940,
Ulam [25] introduced the stability problem of functional
equations involving group homomorphism.
Let G1 be a group and (G2,d) be a metric group and ϵ is
a positive number. Does there exists a number δ > 0, such
that if a mapping f from G1 to G2 satisties the following
inequality

d(f(uv),f(u)f(v)) ≤ δ

for each u,v ∈ G1, then there exists a homomorphism h from
G1 to G2 such that

d(f(u),h(u)) ≤ ϵ

for every u ∈ G1?.
The homomorphism from G1 to G2 are stable if this
problem has a solution. Hyers [14] gave the same concept
of this Ulam’s problem for Banach spaces using norm
in place of metric. There are many interesting results on
stability analysis considering different systems (refer to [4],
[17], [18], [22]).

Lemma 4.1 [20] Let ∆ be an additive mapping from a vector
space X to a vector space Y such that ∆(λu) = λ∆(u) for
every u ∈ X and λ ∈ C1 where C1 = {λ ∈ C : |λ| = 1},
then ∆ is a linear mapping.

Lemma 4.2 [11] Let X be a Banach space and (G,+) be
an abelian group. Let T : G×G→ [0,∞) be such that

T (u,v) = 2−1
∞∑
j=0

2−jT (2ju,2jv) ≤ ∞

for each u,v ∈ G. If ∆ is a mapping from G into X such
that

||∆(u+ v)−∆(u)−∆(v)|| ≤ T (u,v)

for each u,v ∈ G, then there exists a unique additive mapping
h from G into X such that

||∆(u)− h(u)|| ≤ T (u,u)

for every u ∈ G.

Let A be a normed algebra and M be a Banach A-
bimodule. The mapping T : A × A → (0,∞] is said to
have property P if

T (u,v) = 2−1
∞∑
j=0

2−jT (2ju,2jv) <∞ (36)

for each u,v ∈ A (refer to [4]). For two additive self
mappings θ and ϕ on A, a mapping ∆ : A → M is said
to have the property Q-(θ,ϕ) if

(i) ||∆(λu+ v)− λ∆(u)−∆(v)|| ≤ T (u,v),
(ii) ||∆(u2 + v2)−∆(u)θ(u)− ϕ(u)∆(u)−∆(v)θ(v)−

ϕ(v)∆(v)|| ≤ T (u,v)

for each u,v ∈ A and every λ ∈ C1.
A mapping f∆ : A → M is defined by

f∆(u) = lim
j→∞

2−j∆(2ju) (37)

for every u ∈ A (refer to [4]).

Theorem 4.3 Let A be a normed algebra and M be a
Banach A-bimodule. Let θ and ϕ be two additive self
mappings on A. Suppose that T is a mapping from A × A
into (0,∞] which satisfies the property P and ∆ is a
mapping from A into M satisfying the property Q-(θ,ϕ).
Then there exists a unique Jordan (θ,ϕ)-derivation f∆ such
that

||∆(u)− f∆(u)|| ≤ T (u,u)

for every u ∈ A.
Proof: Define f∆ as in (37). Proceeding similar to

Theorem 2.3 of [4], and applying Lemma 4.1 and Lemma
4.2, it can be shown that f∆ is a linear mapping.
Now we show that f∆ is Jordan (θ,ϕ)-derivation.
Since ∆ satisfies the property Q-(θ,ϕ), replacing u,v by
2ju,2jv in (ii) we get,

||∆(22j(u2 + v2))−∆(2ju)θ(2ju)− ϕ(2ju)∆(2ju)

−∆(2jv)θ(2jv)− ϕ(2jv)∆(2jv)|| ≤ T (2ju,2jv).

Since θ and ϕ are additive mappings, so, θ(2ju) = 2jθ(u)
and ϕ(2jv) = 2jϕ(v). So the above equation becomes

||∆(22j(u2 + v2))− 2j∆(2ju)θ(u)− 2jϕ(u)∆(2ju)

− 2j∆(2jv)θ(v)− 2jϕ(v)∆(2jv)|| ≤ T (2ju,2jv).

Multiplying the above equation by 2−2j we get,

||2−2j∆(22j(u2 + v2))− 2−j∆(2ju)θ(u)− 2−jϕ(u)∆(2ju)

− 2−j∆(2jv)θ(v)− 2−jϕ(v)∆(2jv)|| ≤ 2−2jT (2ju,2jv).

Using (37) and taking limit as j → ∞, from the above
equation we get,

f∆(u
2 + v2) = f∆(u)θ(u) + ϕ(u)f∆(u)

+ f∆(v)θ(v) + ϕ(v)f∆(v).

Hence f∆ is a Jordan (θ,ϕ)-derivation.
Remark 4.4 In 2017, Dar et al. [9] explored the concept of

generalized derivations within rings equipped with an invo-
lution, showing their resemblance to mappings that strongly
preserve commutativity. In this context, investigation can be
done considering generalized (θ,ϕ)-derivation in the tensor
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product spaces. In [3], Ashraf discussed commutativity of
a 2-torsion free prime ring in terms of Jordan left (θ,θ)-
derivation with an application. Investigating the commutativ-
ity of the tensor product of prime Banach *-algebras through
sesquilinear functionals represents another scope of research
in this domain. Moreover, investigation on the characteristics
of Lie ideals of a Banach *-algebra A with the help of (θ,ϕ)-
A-quadratic functionals is also an interesting topic for further
discussion.
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