
 

  

Abstract—Machine learning (ML) is evolving rapidly and has 

made many theoretical breakthroughs while widely applied in 

various fields. ML allows systems the ability to access data and 

use it to enable computers to execute cognitive processes such as 

learning and improving from previous experiences and solving 

complicated issues. Many first-order stochastic optimization 

methods have been used to solve the optimization model of ML. 

These algorithms adopt Barzilai-Borwein (BB) step size instead 

of fixed or diminishing step size to improve performance. 

However, the BB step size format involves fractional 

calculation, which inevitably leads to a zero denominator, 

especially when the objective function is non-convex. The BB 

technique will be violated if the denominator is near 0 or even 

negative. To improve the computation of the step size, a Positive 

Defined Stabilized Barzilai-Borwein (PDSBB) approach is 

introduced in this paper. Integrating PDSBB with the stochastic 

variance reduced gradient (SVRG) approach, a new method 

SVRG-PDSBB is proposed. Numerical experiments have shown 

that the new algorithm has stabilized the performance of the 

new step size, which successfully avoiding zero denominators 

and effectively solving the common problems in machine 

learning. The convergence of SVRG-PDSBB is theoretically and 

numerically proven, and the effectiveness of the new algorithm 

is shown by comparison with other algorithms. 

 
Index Terms—BB, PDSBB, stochastic optimization, SVRG, 

machine learning 

 

I. INTRODUCTION 

ACHINE learning (ML) is evolving rapidly and has 

made many theoretical breakthroughs while widely 

applied in various fields. ML is an artificial intelligence (AI) 

application that provides systems with the ability to access 

data and use them to enable machines to perform cognitive 

functions by learning and improving from past experiences. 

ML solves complex problems and enables the analysis of 

massive quantities of data. 
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First-order stochastic optimization algorithm is widely 

used to solve machine learning models because of its high 

efficiency, reasonably fast convergence speed, practical 

objective function, and easy implementation. However, the 

traditional first-order optimization algorithm encountered 

various problems. On one hand, the explosive growth of data 

and the continuous increase of parameters in ML models such 

as deep neural networks have led the traditional deterministic 

numerical optimization algorithm to a problem of the 

excessive computation process as well as a slower 

convergence rate. In addition, the first-order algorithm 

analysis discussed in numerical optimization is often based 

on the worst-case computational complexity.  

Researchers have been working on developing a more 

efficient forecasting model than the previous ones [1]. 

Reference [2] proposed the Stochastic Gradient Descent 

(SGD) techniques. It has turned into a central part in science 

and designing, for example, in measurements, Artificial 

Intelligence (AI), signal/picture handling, opposite issues, 

and others. In SGD, a manually fixed step size (learning rate) 

or a decreasing step size is normally used. In reality, these 

two ways can be time-consuming. 

Reference [3] introduced the accelerated mini-batch 

proximal stochastic variance reduction gradient 

(AccProx-SVRG) approach, which combines Nesterov's 

acceleration with the accelerated mini-batch comparable to 

Nesterov's acceleration method in a mini-batch environment. 

The accelerated efficient mini-batch SVRG (AMSVRG) has 

been demonstrated to be capable of achieving a speedy 

combination complication for general curved and ideal 

forceful stated difficulties. In addition to this, Accelerated 

Stochastic Gradient Descent (ASGD) approaches have used 

either a best-tuned step size or a decreasing step size [3]-[5]. 

In general, numerous step-size sequence methods have been 

developed in previous research. 

Step size is a crucial issue in using ML stochastic 

optimization, particularly in the first-order stochastic 

optimization algorithm. The processing speed of a large 

amount of data will be directly affected by rapid updating of 

the step size. ML has significant theoretical and practical 

implications. Choosing an appropriate step size is still a 

significant obstacle in ML stochastic optimization and thus 

must be actively studied to support any advancements in 

overcoming this issue. 

Several past research have studied step size difficulties to 

optimize the mini-batch and produced impressive results. 

Reference [6] proposed a new mini-batch approach known as 

mS2GD-BB by inserting the Barzilai-Borwein (BB). They 
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have proven that mS2GD-BB converged linearly, as 

expected for non-smooth and highly convex functions. 

Furthermore, by generating a quickly updated step size 

sequence, mS2GD-BB beats some of the most cutting-edge 

logistic regression systems.  

Reference [7] incorporate the BB method to automatically 

compute step size for Acc-Prox-SVRG method to obtain a 

new accelerated method known as the Acc-Prox-SVRG-BB. 

The convergence of the Acc-Prox-SVRG-BB is proven in 

which its complexity achieves the same level as the best 

known stochastic gradient methods to make it comparable 

with the best-known stochastic gradient (SG) methods. 

The BB or Random Barzilai-Borwein (RBB) formulae are 

used to calculate step size, and the technique proposed by  

[7]-[8] does not avoid the denominator from being close to 

zero. In ML, the optimization problem usually considered 

1 2, , , nf f f to be a sequence of vector functions from d → . 

The goal is to minimize the objective function (1): 

 ( ) ( )
1

1
min

d

n

i
w R

i

F w f w
n

=

=   (1) 

where n  is the model size, w represents the parameter, and 

( )if w is a sequence of loss functions that evaluate the cost of 

the current parameter w . Each : d

if → is the cost 

function for the first sample of data. 

SGD, SVRG, and mS2GD are only some examples of 

first-order stochastic optimization techniques that have been 

utilized to solve ML optimization models. However, each 

approach uses a constant or decreasing step size that is 

frequently inappropriate, impractical, and time-consuming. 

The BB method was incorporated into the SGD and SVRG, 

which produced two new algorithms, SGD-BB and 

SVRG-BB [9]. The SVRG-BB algorithm's convergence was 

analyzed and these two algorithms were used to solve the 

objective function as a smooth function. The first-order 

optimization algorithms are explicitly involved in choosing 

the movement and step size in the search space using the first 

derivative (gradient).  The step size acts as a hyperparameter 

for the search space.  

Our study aims to solve the problem of choosing an 

appropriate step size that will result in faster convergence rate 

in ML stochastic optimization by introducing a newly 

proposed positive defined stabilized Barzilai-Borwein 

(PDSBB) step size. This paper discusses on PDSBB 

algorithm and the computational results which include the 

comparison of performance with existing SG algorithms. 

 

II. SVRG ALGORITHM WITH PDSBB STEP SIZE 

The BB method is also known as the two-point step 

gradient method [10]. This method is mainly used in solving 

nonlinear optimization problems. Compared to the traditional 

quasi-Newton method, BB only needs a small amount of 

calculation to satisfy the quasi-Newton property. Satisfying 

the quasi-Newton property is referred to as satisfying the 

secant equation. Suppose that problem (2) needs to be solved: 

 min (f w） (2) 

where ( )f w is differentiable. The iterative formula of the 

quasi-Newton method for problem (2) is, 

 1

1 ( )t t t tw w B f w−

+ = −   (3) 

where
tB  is an estimate of the Hessian matrix of f  at

tw . 

We use the scalar matrix 1

t
tB I


=  to approximate Hessian 

matrix ( 0t  ) and substitute it into the secant equation 

Let 1t t ts w w −= −  and 1( ) ( ), 1t t ty f w f w t−=  −   ， then the 

secant equation is 
t t tB s y= . By solving the residual of the 

secant equation,  

 
2

1
min ( )t

t t

y
n s

−
 (4) 

the BB step size can be obtained as: 

 

2

1 tBB

t T

t t

s

s y
 =  (5) 

Another form of BB step size is 

 2

2

T

BB t t

t

t

s y

y
 =  (6) 

By solving (6), the solution is 

 
2

min t t ts y−  (7) 

A small search space will take a long time and will be 

trapped at local optima. A big search space will lead to 

zig-zag or bounces throughout the search region, missing the 

optima totally. This study will create a unique dynamic 

adaptive step size based on modifying the BB technique to 

automatically compute step size, motivated by the need to 

stabilize the BB approach. The new PDSBB step size is 

intended to address the issue of the denominator of BB close 

to 0. When the estimated step size is fewer than a given 

positive parameter, the condition will be satisfied, and the 

PDSBB method will automatically select the average of the 

past n  step size as a new step size. The specific description is 

as follows: 

Firstly, calculate  1BB

t t = , which is the BB step size. 

Secondly, compare the denominator and the given positive 

parameter   (in this paper, we set 410 −= ). If T

t ts y  , set  

                        
1

0

1 t

t i

it
 

−

=

=                                          (8) 

That is  

 

1

1

0

,

1
,

BB T

t t t

t
t T

t i t t

i

s y

s y
t

 


  

−

=

 


= 
= 




 (9) 

The pseudo-code for PDSBB is given in Table I: 

 
TABLE I 

ALGORITHM OF POSITIVE DEFINED STABILIZED BARZILAI -BORWEIN 

(PDSBB) METHOD 

Evaluate
0g and

1g , given 0.001 0 =   

For 0,1,...k = do 

If  0kg = then stop. 

Set 
1 1k k ks w w− − −  and

1 1k k ky g g− − −  

Compute 
k  by formula (9) 

set 
1 1k k kx g g+ − −   and evaluate

1kg +
. 

end for 

 

The PDSBB method automatically adjusts the step size 

and stabilizes the step size to an appropriate value (best-tuned 

step size). The step size in the PDSBB algorithm is divided 
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by updating the frequency m , and then combining it with the 

SVRG algorithm proposed by [11]. Note that SVRG 

determines the best step size by comparing several runs 

where for each run a fixed step-size is set manually. The new 

algorithm called the stochastic variance reduction gradient 

with positive defined stabilized Barzilai-Borwein 

(SVRG-PDSBB) is shown in Table II. 

One may notice that if we set 
k = in SVRG-PDSBB, 

then the algorithm turns to SVRG. 

 
TABLE II 

ALGORITHM OF  SVRG WITH PDSBB STEP SIZE (SVRG-PDSBB) 

Parameters: update frequency m , step size , initial point 0w , small 

positive    

For 0,1,...k = do 

1

1
( )

n

k i k

i

g f w
n =

=   

if 0k    then 

2

1 1 12

1
/ ( ) ( )T

k k k k k k kw w w w g g
m

 − − −= − − −  

if 
k   

k k =  

else 
1

0

1 k

k i

tk
 

−

=

=   

end if 

0 kw w=  

for 0,1,..., 1t m= −  do 

Randomly pick  1,...,ti n  

1 ( ( ) ( ) )
t tt t k i k i k kw w f w f w g+ = −  −  +  

end for 

1t mw w+ =  

end for  

 

III. CONVERGENCE ANALYSIS 

In this section, the proof of the convergence of the 

SVRG-PDSBB system is presented. The following 

assumptions and lemma are provided in which most ML 

models meet these assumptions. Reference [12]-[13] 

provided further details on these assumptions and lemma. 

Assumption 1:  The objective function ( )F w is  -strongly 

convex, which is  

 
( )

( ) ( ) ( )
2

2
, ,

2

T d

F w

F w F w v w w v w v


 +  − + −  

 (10) 

Assumption 2:  The gradient of  f is L-Lipschitz continuous, 

which is  

 
2 2

( ) ( ) , , d

i if w f v L w v w v R −   −    (11) 

Lemma 1： ( ) : df w R R→   is convex and its gradient is 

L-Lipschitz continuous, then  

 
2

2
( ) ( ) ( ( ) ( )), ,

T df w f v L w v f w f v w v R −   −  −     (12) 

Theorem 1：Define 

 
24

: (1 2 (1 ))
(1 )

m k

k k k

k

L
L

L


   

 
= − − +

−
 (13) 

then for SVRG-PDSBB, the following inequality for 

the k - th epoch is held： 

 
22 *

1 2 2t k k kE w w w w+ −  −  (14) 

where *w is the optimal solution to function (1). 

Similar to [14], Theorem 1 is proven as follows: 

Proof: For the k - th epoch of SVRG-PDSBB, let 

( ) ( ) ( )
t t t

t

i i t i k kv f w f w F w=  −  +  ，then 

 
2 2

* 2 *

22
2 ( ) ( ) 8

t

t T

i t t kE v L w w F w L w w −  + −  (15) 

Next, the distance of 1tw +  to *w is calculated by 

 

2
*

1 2

2 2
* 2 2 *

2 2
(1 2 (1 )) 8

k

t

k t k

E w w

L w w L w w   

+ −

 − − − + −
 (16) 

Since 0kw w= and 1k mw w+ = ，we can get  

 

2
*

1 2

2
2

*

2

2
*

2

4
(1 2 (1 ))

(1 )

t

m k

k k k

k

k k

E w w

L
L w w

L

w w


  

 



+ −

 
 − − + − 

− 

= −

 (17) 

Theorem 2：Denote
2

(1 ) / 2Le



−

= − , then it is obvious 

that 1
2(0, )   . In SVRG-PDSBB, choosing m such that 

 
2

2

2 4
max , ,

log(1 2 ) 2 /

L L
m

L  


 + 

− + 
 (18) 

will make the SVRG-PDSBB to converge linearly as 

expected 

 
2 2

* 2 *

02 2
(1 )kE w w w w−  − −  (19) 

Proof: We choose 

2

1 k

k T

k k

s

m s y
 = or 

1

0

1 k

k i

ik
 

−

=

=  . Using 

the strong convexity of  ( )F w , it can be derived that the 

upper bound of the PDSBB step size in the SVRG-PDSBB 

method is: 

 

2

1

1 1

2

1

1 1

2

1

2

1

1

( ) ( )

1

( ) ( )

1

1

k k

k T

k k k k

k k

T

k k k k

k k

k k

w w

m w w g g

w w

m w w g g

w w

m w w

m







−

− −

−

− −

−

−

−
=

− −

−


− −

−


−

=

 (20) 

or 

 
1

0

1 1 1 1k

k i

i

k
k k m m

 
 

−

=

=  =  (21) 

Thus, the upper bound of the PDSBB step size is 
1

m
. 

Similarly, using the L − Lipschitz endurance of ( )F x , it 

is known that 
1

k
mL

  . Therefore, 

24
(1 2 (1 ))

(1 )

m k

k k k

k

L
L

L


   

 
= − − +

−
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2

2

2

2

2 4
(1 (1 ))

(1 / ( ))

2 4
exp (1 )

(1 / ( ))

2 2 4
exp

mL L

mL m m L m

L L
m

mL m m L m

L

L m m L



  


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

 

 − − +
−

 
 − −  + 

− 

 
= − + + 

− 

 (22) 

Substituting (18) into the inequality (22), 

 

2

2

4

2
exp log(1 2 ) 2 /

4
1 2 1

k

L

L
L

L

L L



  

  
 

 
 − + − + 

 

+ = − + = −
+ −

 (23) 

The conclusion is established by applying Theorem 1. 

 

IV. NUMERICAL EXPERIMENTS 

In this section, the proposed PDSBB algorithm is verified 

by numerical experiments, and the results are compared to 

the deterministic algorithm of SVRG and the stochastic 

optimization algorithm of SVRG-BB. In the numerical 

experiments, Logistic Regression (LR) model with 2l − norm 

regularization is chosen with the objective function of: 

 
2

2
1

1
min ( ) log[1 exp( )]

2

n
T

i i
w

i

F w b a w w
n



=

= + − +  (24) 

where d

ia R are the feature vector,  1ib   are the class 

label of the i th−  sample and 0  is a weighting parameter. 

Table III presents the details of computational experiments 

concerning the LR using three data sets. 

In the numerical experiments, the following statements are 

considered: 

1) whether or not these algorithms can realize the identical 

side by side of sub-optimality as in existing algorithms.  

2) whether or not the algorithms are sensitive to the choice 

of initial step sizes. 

Fig. 1, Fig. 2, and Fig. 3 depict the step size results on data 

sets ijcnn1, w8a, and rcv1, respectively where 0PDSBB  

indicates the initial step size of  SVRG-PDSBB, 0BB denotes 

the first step size of the algorithm SVRG-BB, and  presents 

the fixed step size of the algorithm SVRG. We use dashed 

lines with different markers to represent varying step sizes for 

the algorithm SVRG, dotted lines with different markers to 

stand for the step size results for the algorithm SVRG-BB 

with different initial step sizes, and solid lines with different 

markers to denote the step size results for the algorithm 

SVRG-PDSBB with different initial step sizes. For example, 

solid line with circles represents the step size performance of 

the algorithm SVRG-PDSBB when the initial step size is 0.1.        

The second dash line always denotes the best-tuned step 

size of the SVRG. The x-axis represents the number of 

epochs, k , which corresponds to the number of outer loops in 

Algorithm 2. The y-axis denotes the step size k . For 

SVRG-PDSBB and SVRG-BB methods, the choice of the 

TABLE III 

DATA AND MODEL INFORMATION OF THE EXPERIMENTS 

Data sets n  d    

rcv1.binary 20,242 47,236 510−  

w8a 49,749 300 410−  

ijcnn1 49,990 22 410−  

Note:  n  represents the number of samples and d  represents the 

data dimension 
 
 

 

 
Fig. 1. Step size results of SVRG-PDSBB, SVRG-BB and SVRG on data 

set ijcnn1 with different initial steps. 

 

 
Fig. 2. Step size results of SVRG-PDSBB, SVRG-BB and SVRG on data 

set w8a with different initial steps. 
 

 
Fig. 3. Step size results of SVRG-PDSBB, SVRG-BB and SVRG on data 

set ijcnn1 with different initial steps. 
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Fig. 4.  Sub-optimality results on ijcnn1, w8a, and rcv1 with different 

initial step size. 

  

initial step sizes are 0.1,1, and 10, respectively, as shown 

in Fig. 1, Fig. 2, and Fig. 3.  

On the other hand, different step sizes for different data 

sets are chosen for SVRG. For example, a step size of  

 =0.02, 0.2, and 0.4 are chosen for data sets ijcnn1 and w8a, 

and a step size of   =0.2, 0.4, and 1 are chosen for data set 

rcv1. 

Regardless of the initial step size, after several epochs, on 

all data sets the newly proposed SVRG-PDSBB converges to 

the best-tuned step sizes.   

In Fig. 4, the x -axis signifies the epochs, k , that denotes 

the number of outer loops in Algorithm 2. The y -axis 

represents sub-optimality ( ) ( )*

kF w F w−  on each data set 

with different initial step sizes. As compared to SVRG-BB 

algorithms, our new proposed algorithm (SVRG-PDSBB) 

has achieved similar sub-optimality performance results on 

all data sets rcv1, w8a and ijcnn1. 

From all the subplots in Figure 4, it can be seen that 

SVRG-PDSBB has achieved suboptimality of 1410− within 

approximately 15 epochs with different initial step sizes. This 

demonstrates the effectiveness of the proposed algorithm. All 

sub-figures in Fig. 4 also show that SVRG-PDSBB is 

reaching the same level of sub-optimality as SVRG for the 

best-tuned step size except with slightly larger epochs. 

However, SVRG-PDSBB outperforms SGD with all choices 

of step size. In addition, the step size for SVRG is adjusted 

manually, while the step size for SVRG-PDSBB is adjusted 

automatically. Thus, SVRG-PDSBB performs better and 

more practical than SVRG as it automatically generates the 

optimal step size when running algorithms. 

To observe the final classification accuracy of four 

algorithms (SGD, SVRG, SVRG-BB, and SVRG-PDSBB),  

we let   be the fix step size for SGD and SVRG while 0 , 

the initial step size for SVRG-BB and SVRG-PDSBB, is set 

TABLE IV 

ACCURACY RATE ON DIFFERENT DATA SETS 

Data sets ALGORITHM  Initial Step size /  Accuracy  

ijcnn1 

SGD 

0.1 

 

 0.7555 

SVRG 0.7360 

SVRG-BB 0.9680 
SVRG-PDSBB 0.9653 

SGD 

0.2 

 0.7019 

SVRG 0.7067 
SVRG-BB 0.9866 

SVRG-PDSBB 0.9865 

SGD 

0.4 

 0.6785 

SVRG 0.6743 

SVRG-BB 0.9877 
SVRG-PDSBB 0.9855 

w8a 

SGD 

0.1 
 

 0.7723 

SVRG 0.7485 
SVRG-BB 0.9647 

SVRG-PDSBB 0.9877 

SGD 

0.2 

0.7090 
SVRG 0.7025 

SVRG-BB 0.9859 

SVRG-PDSBB 0.9872 

SGD 

0.4 

 0.6613 

SVRG 0.6636 

SVRG-BB 0.9858 
SVRG-PDSBB 0.9871 

rcv1 
 

SGD 

0.1 

0.7525 
SVRG 0.7432 

SVRG-BB 0.9871 

SVRG-PDSBB 0.9665 

SGD 

0.2 

0.7245 

SVRG 0.7168 

SVRG-BB 0.9875 
SVRG-PDSBB 0.9868 

SGD 

0.4 

0.6853 

SVRG 0.7004 
SVRG-BB 0.9865 

SVRG-PDSBB 0.9868 

The accuracy rate for algorithm SGD, SVRG, SVRG-BB, 
SVRG-PDSBB on different data sets with different step size (initial step 

size).  
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as 0.1, 0.2, and 0.4, when testing the algorithms separately on 

the three data sets. In the last column of Table IV, it can be 

seen that overall, SGD and SVRG have almost similar final 

classification accuracies (between 0.66 to 0.77) for each 

dataset with a fixed step size, while SVRG-BB and 

SVRG-PDSBB have higher final classification accuracies 

(mostly above 0.98). From Table 4, we can conclude that the 

newly proposed algorithm SVRG-PDSBB is effective and 

significantly improves the final classification accuracy of the 

original SVRG algorithm when solving the optimization 

problem described in (24). Based on numerical experiments, 

the final classification accuracy of the SVRG-PDSBB is 

consistent with that of SVRG-BB across all data sets. 

 

V. CONCLUSION 

Conferring to the shortcomings of the fixed, decreasing, 

and existing BB step size, this study has proposed a new 

step-size called positive defined stabilized Barzilai-Borwein 

step size (PDSBB) that prevents the denominator from 

becoming close to zero or even negative. The new stabilized 

step size is combined with the existing algorithm SVRG to 

form the SVRG-PDSBB algorithm. By comparing with other 

algorithms like SVRG-BB and SVRG, the effectiveness of 

the new algorithm SVRG-PDSBB is proven theoretically and 

numerically. 

Data Availability Statement: The three standard actual 

data sets used in this study were obtained from the LIBSVM 

website, http://www.csie.ntu.edu.tw/~cjlin/libsvm. 
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