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Abstract—This paper considers the equilibrium behavior of
M/M/1 unreliable queue which has two-phase vacations and
vacation interruption. It enters buffer period, when the system
becomes empty. If customers arrive within this time, the server
transitions into the working state; otherwise, the server enters
the working vacation, their service rates become slower. In
addition, the working vacation can be end because of the
vacation interruption. We discuss two information cases: the
fully visible queue and the fully invisible queue. The strategy
of equilibrium threshold and social benefit are considered in
the first case. In the other case, we get the probability of the
servers by using generating function. Then we calculate some
performance measures and research the individual equilibrium
strategy of customers and equilibrium social benefit. Moreover,
we use numerical examples to demonstrate how information
levels and system parameters impact equilibrium strategy and
social benefit.

Index Terms—Queueing system; Equilibrium behavior; Un-
reliable queue; Vacation interruption; Two-phase vacations

I. INTRODUCTION

UNRELIABLE queues have been studied in various
fields, such as network data, communication sys-

tems, and regionalized production systems. Meanwhile many
scholars have done related research, theoretical derivation
and analysis of this model. The M/G/1 retrial queue’s policy
for server failures was described by Falin [1]. They used the
Bessel function to derive the system performance measures.
Lv [2] considered a repairable system which has two main-
tenance men and limited repairable machines. He derived
the steady-state and transientstate indexes of the system.
Then he studied the system performances. Tsai et al. [3]
studied an opening queueing network with operating service
stations that experience breakdowns while in operation. The
usual assumption is that the server stops its operation during
breakdowns, but in some special queueing systems, the server
cannot be stopped completely without causing significant
production losses, such as computer network systems. This
phenomenon is called a working breakdown. Kim and Lee
[4] got the length distribution and average sojourn time of
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an M/G/1 model, which has disasters and working break-
downs. This system also has standby servers, they obtained
the length distribution and average sojourn time. Yang and
Wu [5] examined working breakdowns and reneging in a
Markovian queue.

The vacation is an extension of classical queueing theory
and has wide applications in computer, communication, man-
agement engineering and manufacturing systems. This mech-
anism can reduce resource loss and system costs by making
full use of idle periods. Working vacation policies were
incorporated into queueing models by Servi and Finn [6],
where customers arriving during vacations are still served.
The introduction about working vacations, orbit search in
the M/M/1 retrial queue was proposed by Li and Li [7]. Gao
and Wang [8] introduced vacation policy into queue model
to analyze the behavior of customers when only knew the
status of the servers. Ye and Liu [9] studied the GI/M/1
queue with two vacation policies. Ye [10] considered the
queueing systems with two-stage vacation policy and got the
probabilities of steady-state. Anshul and Madhu [11] studied
system which has bi-level vacations and two-phase service.
Then they performed cost analysis and derived performance
measures. However, in many practical applications, the sys-
tem is shut down immediately after all customers are served,
the server doesn’t go on vacation immediately. They do some
vacation preparations before the vacation, which is called
“delayed vacation time”. Leung [12] was the first to propose
the delayed vacation strategy. Zhang [13] added the delayed
vacation strategy to the multiple vacation queueing model
and derived a stochastic decomposition. Yang et al. [14]
studied working breakdowns in Markovian queues which
also had delayed vacations. Then they obtained the steady-
state probabilities using spectral expansion.

In real life, there may be unexpected events in some
service systems, and at this time, the servers on vacation
should resume work instead of continuing their vacation.
This phenomenon is known as vacation interruption policy in
queueing theory. If there are any customers left in the system,
the vacation stops immediately to start normal work. Li et al.
[15] discussed working vacations and interruption of vacation
in the queueing model with four information levels. The
random arrival strategy in queueing systems with vacation
strategy was considered by Shekhar et al. [16]. Laxmi and
Jyothsna [17] examined Bernoulli vacation interruption in the
M/M/1 queues. They derived the steady-state probabilities
and performance measures using the generating function.

In recent years, economic analysis in queues among cus-
tomers has been studied by many scholars. Wang and Zhang
[18] calculated the strategic analysis of the system with
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delayed repairs under observable conditions and breakdowns.
The queue which has two types of breakdowns was studied
in an economic perspective by Zhang and Xu [19]. Recently,
an analysis of customer behavior in M/M/1 queues with
double adaptable working vacations was conducted by Sun
et al. [20]. Li et al. [21] considered M/M/1 queues with
breakdowns and studied equilibrium strategies. Yu et al. [22]
analyzed strategies of equilibrium in invisible queues with
delayed repairs and balking. Liu and Wang [23] analyzed
joining strategic in the queue which has only one server
with Bernoulli vacations. Hao et al. [24] considered joining
strategies in the Markovian queue which has setup times
and N-policy. Sun and Li [25] investigated equilibrium and
optimal social strategies under four information levels.

The structure of this paper is as follows. The strategies of
equilibrium threshold for customers and the expected social
benefit are discussed in Section 3. In Section 4, we get
the stationary probability through generating function and
develop several important performance measures. In addition,
we consider the customers’ individual strategy. Then the
expected social benefit is considered in fully unobservable
model. Next, numerical analysis are presented which in order
to determine the influence of the system parameters. Then,
the social benefit of two cases are compared. In Section 6,
we draw conclusions based on our findings.

II. MODEL DESCRIPTION

The Markovian queue with two-phase vacations, unreliable
machine and vacation interruptions is considered. Arriving
customers obey Poisson process with λ. The rate of the
service time is expected to be exponentially distributed with
the value of µ. Only in normal busy period the machine
maybe break down. The probability distribution of the ma-
chine’s lifetime is given by an exponential distribution with
the parameter η. When the server fails, it will be repaired
at once. The repair time is an exponentially distributed
random variable with ξ. When the system is empty, the
system enters a buffer period, which is characterized by an
exponential distribution with γ. The server transitions into
a working vacation state if no customer comes during the
buffer time. The working vacation duration is modeled by an
exponential distribution with θ1. Customers receive service at
µv (µv < µ) during the working vacation period. If there are
people during the working vacation, the server transitions
back to the normal condition. If not, the server proceeds
with the classical vacation phase, which is determined by
θ2. At the end of vacation comes, if there are customers in
the system, the normal busy period starts. Otherwise, another
vacation is continued.

Furthermore, the assumption is made that the inter-arrival
times, service times and vacation times are separate variables
that do not affect each other. Let (I(t), N(t)) represent the
system stste at time t, where I(t) and N(t) denote the
server’s state and the customers’ number. Define

I(t) =


0, the server is broken,
1, the server is busy,
2, the server is taking a working vacation,
3, the server is taking a vacation.

Clearly, the process {(I(t), N(t)) , t ≥ 0} is a continuous-
time Markov chain. Ω = {(i, n) |i = 0, 1, 2, n ≥ 0} is the
stste space.

Assume that the arriving customers are identical and that
the service is completed with a reward R. The system
incurs a waiting cost of C units per time. Expected benefit
is maximized by customers. In addition, the customer’s
decision is irrevocable.

In the following, we study fully observable and fully
unobservable queues. In the first case, arriving customers
know I(t) and N(t), while in another case, customers get
no information at all.

III. FULLY OBESERVABLE QUEUE

We first consider the threshold strategy in the fully ob-
servable case. Assuming that the customer arrives at the state
(i, n) and makes the decision whether to join the queue, they
receives the benefit upon completion of the service is

Sfo (i, n) = R− CT (i, n) ,

where T (i, n) is the expected sojourn time of a customer
joining the system at the state (i, n). When the customer
is over the threshold, the arriving customers refuse to join
the queue. The equilibrium threshold strategy of customers
is ne (i). The combined strategy can be represented as
(ne (0) , ne (1) , ne (2) , ne (3)).
Theorem 1 In the fully visible M/M/1 unreliable queue with
two-phase vacations and vacation interruption, there exists
an equilibrium threshold

(ne (0) , ne (1) , ne (2) , ne (3)) ,

where

ne (0) =
⌊

Rµξ
C(η+ξ)

⌋
− 1,

ne (1) =
⌊
µξ(Rξ−C)
Cξ(η+ξ)

⌋
− 1,

ne (2) =
⌊

µξ
η+ξ

(
R
C − 1

µv+θ − θ(η+ξ)
µξ(µν+θ)

)⌋
,

ne (3) =
⌊
µξ(Rθv−C)
Cθv(η+ξ)

⌋
− 1.

This strategy satisfies the unique Nash equilibrium strat-
egy.

Proof.
From assumption, we have

T (0, n) =
1

ξ
+ T (1, n) , n ≥ 0, (1)

T (1, 0) =
1

µ+ η
+

η

µ+ η
T (0, 0) , (2)

T (1, n) =
1

µ+ η
+

η

µ+ η
T (0, 0)

+
µ

µ+ η
T (1, n− 1) , n ≥ 1, (3)

T (2, 0) =
1

µv + θ
+

θ

µv + θ
T (1, 0) , (4)

T (2, n) =
µv

µv + θ
T (1, n− 1+)

θ

µv + θ
T (1, n)

+
1

µv + θ
, n ≥ 1, (5)
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Fig. 1: State transition diagram for fully observable case

T (3, n) =
1

θv
+ T (1, n) , n ≥ 0. (6)

Bringing (1) into (3) by iteration, we get

T (1, n) =
(n+ 1) (η + ξ)

µξ
, n ≥ 0, (7)

Plugging (7) into (1), (5) and (6), we have

T (0, n) =
(n+ 1) (η + ξ)

µξ
+

1

ξ
, n ≥ 0, (8)

T (2, n) =
n (η + ξ)

µξ
+

1

µv + θ
+

θ (η + ξ)

µξ (µv + θ)
, n ≥ 0, (9)

T (3, n) =
(n+ 1) (η + ξ)

µξ
+

1

θv
, n ≥ 0. (10)

T (i, n) is a function that monotonically increasing with
respect to n. So Sfo (i, n) is a monotonically decreasing
function. If Sfo (i, n) > 0, the customer joins the line. If
Sfo (i, n) = 0, it makes no difference whether the customer
chooses to join or balk. By (7)-(10) and Sfo (i, n) ≥ 0
solving for n, we get that if n ≤ ne (I (t)) then the queue
is joined by arriving customers.

If the threshold strategy described above are followed by
all customers, the system can be treated as a Markov chain
with a state space in steady condition. The state space is:

Qfo = {(i, n) |0 ≤ n ≤ ne (i) + 1, i = 0, 1, 2, 3} .

The state transition diagram of the fully observable case is
shown in Figure 1. The corresponding stationary distribution
{P (i, n) : (i, n) ∈ Qfo} are the following solutions.

(λ+ ξ)P (0, 0) = ηP (1, 0) , (11)

(λ+ ξ)P (0, n) = ηP (1, n) + λP (0, n− 1) , (12)
n = 1, 2, 3, ..., ne (0) ,

ξP (0, ne (0) + 1) = ηP (1, ne (0) + 1) + λP (0, ne (0)) ,
(13)

(λ+ η + γ)P (1, 0) = ξP (0, 0) + µP (1, 1) + µvP (2, 1)

+ θvP (3, 0) , (14)

(λ+ η + µ)P (1, n) = ξP (0, n) + µP (1, n+ 1)

+ µvP (2, n+ 1) + θvP (3, n)

+ λP (1, n− 1) + θP (2, n) , (15)
n = 1, 2, ..., 3, ne (0) + 1,

(λ+ µ)P (1, n) = µP (1, n+ 1) + µvP (2, n+ 1)

+ θvP (3, n) + λP (1, n− 1)

+ θP (2, n) , (16)
n = ne (0) + 2, · · · , ne (3) + 1,

(λ+ µ)P (1, ne (2) + 1) = µP (1, ne (2) + 1)

+ λP (1, ne (2))

+ θP (2, ne (2) + 1) , (17)

(λ+ µ)P (1, n) = µP (1, n+ 1) + λP (1, n− 1) , (18)
n = ne (2) + 2, · · · , ne (1) ,

µP (1, ne (1) + 1) = λP (1, ne (1)) , (19)

µP (1, ne (1) + 1) = λP (1, ne (1)) , (20)

P (2, n) = γP (2, n− 1) , n = 1, 2, · · · , ne (2) , (21)

(θ + µv)P (2, ne (2) + 1) = γP (2, ne (2)) , (22)

(λ+ θv)P (3, 0) = θP (2, 0) , (23)

(λ+ θv)P (3, n) = λP (3, n− 1) , (24)
n = 1, 2, · · · , ne (3) ,

θvP (3, ne (3) + 1) = λP (3, ne (3)) . (25)

Normalized equation:

ne(0)+1∑
n=0

P (0, n) +

ne(1)+1∑
n=0

P (1, n) +

ne(2)+1∑
n=0

P (2, n)

+

n2(3)+1∑
n=0

P (3, n) = 1. (26)
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All above, the unique solution of steady-state probability
is obtained. We get Pbalk and Lfo. Pbalk is the customer
balking probability. The queue length marked by Lfo.

Pbalk = P (0, ne (0) + 1) + P (1, ne (0) + 1)

+ P (2, ne (0) + 1) + P (3, ne (0) + 1) ,

Lfo =

ne(0)+1∑
n=0

nP (0, n) +

ne(1)+1∑
n=0

nP (1, n)

+

ne(2)+1∑
n=2

nP (2, n) +

ne(3)+1∑
n=0

nP (3, n).

SWfo = Rλ (1− Pbalk) − CLfo represents the average
social benefit per unit of time. Plugging Pbalk and Lfo into
SWfo we have

SWfo = Rλ(1− Pfo(0, ne(0) + 1− Pfo(1, ne(0) + 1)

− Pfo(2, ne(0) + 1)− Pfo(3, ne(0) + 1)

− C

ne(0)+1∑
n=0

nPfo(0, n) +

ne(1)+1∑
n=0

nPfo(1, n)

+

ne(2)+1∑
n=0

nPfo(2, n)+

ne(3)+1∑
n−0

nPfo(3, n)

 .

IV. FULLY UNBESERVABLE QUEUE

When dealing with fully invisible case, the arriving cus-
tomer knows nothing about the system. They join the queue
with probability q. Then, λeff = λq is defined as effective
arrival rate. Figure 2 shows the state transition diagram.

Let Pi (n) = lim
t→∞

P {I(t) = i,N(t) = n} , (i, n) ∈ Ω de-
note the stationary probability. Then we can get the stability
condition, which is µξ > λq (η + ξ). The followings are the
balance equations.

(λq + ξ)P0 (0) = ηP1 (0) , (27)

(λq + ξ)P0 (n) = ηP1 (n) + λqP0 (n− 1) , n ≥ 1, (28)

(η + λq + γ)P1 (0) = ξP0 (0) + µP1 (1) + µvP2 (1)

+ θvP3 (0) , n ≥ 1, (29)

(η + λq + µ)P1 (n) = ξP0 (n) + µP1 (n+ 1)

+ µvP2 (n+ 1) + θvP3 (n)

+ θP2 (n)

+ λqP1 (n− 1) , n ≥ 1, (30)

(λq + θ)P2 (0) = γP1 (0) , (31)

(λq + θ + µv)P2 (n) = λqP2 (n− 1) , n ≥ 1, (32)

(θv + λq)P3 (0) = θP2 (0) , (33)

(θv + λq)P3 (n) = λqP3 (n− 1) , n ≥ 1. (34)

Define the partial generating function:

Gi (z) =
∞∑

n=0

znP (i, n),i = 0, 1, 2, 3. (35)

Equations (27)-(34) are multiplied by zn, and summed over
all n to obtain:

(λq + ξ)G0 (z) = ηG1 (z) + λqzG0 (z) , (36)

(η + λq)G1 (z) + µ [G1 (z)− P1 (0)]

= −γP1 (0) + ξG0 (z) +
µ

z
[G1 (z)− P1 (0)]

+
µν

z
[G2 (z)− P2 (0)] + θvG3 (z)

+ θ [G2 (z)− P2 (0)] + λqzG1 (z) , (37)

(λq + θ)G2 (z) + µv [G2 (z)− P2 (0)]

= γP1 (0) + λqzG2 (z) , (38)

(θv + λq)G3 (z) = λqzG3 (z) + θP2 (0) . (39)

Combining (36)-(39), we get

(µ− λqz)G1 (z) = (µ− γ)P1 (0) + λqzG0 (z)

+ λqG2 (z) + λqzG3 (z)

+ θG2 (z) . (40)

Combining (36), (38) and (39) after a series of calculations,
we have

G0 (z) =K

[
(λq + θ) (µ− γ)

γ
+

(λq + θ) (λq + θ + µv)

λq (1− z) + θ + µv

+
λqzθ

λq (1− z) + θv

]
P2 (0) , (41)

where

K =
η

(µ− λqz) [λq (1− z) + ξ]− λqηz
.

Substituting (41) into (36), we get

G1 (z) =
λq (1− z) + ξ

η
G0 (z) . (42)

By (38) and (39), we obtain

G2 (z) =
λq + θ + µv

λq (1− z) + θ + µv
P2 (0) , (43)

G3 (z) =
θ

λq (1− z) + θv
P2 (0) . (44)

Substituting z = 1 into (41)-(44), and using the normaliza-
tion condition, we can get

P2 (0) =
θvγ (θ + µv) [ξ (µ− λq)− λqη]

A
, (45)

where

A = (ξ + η){θθv[µ(λq + θv + µv) + λqγ]

+ λq[γ
(
θ2 + θµv + λqθv

)
+ θvµµv]}

+ γ[ξ (µ− λq)− λqη][θv(λq + θ + µv) + θ(θ + µv)].

Then some important performance measures are presented.
First, we get the probability in different states.

(1) In breakdown state:

P0 = G0 (1)

=
η (θ + µv) [θv (µ− γ) (λq + θ) + λqθγ]

θvγ (θ + µv) [ξ (µ− λq)− λqη]
P2 (0)

=
ηθvγ (λq + θ) (λq + θ + µv)

θvγ (θ + µv) [ξ (µ− λq)− λqη]
P2 (0) . (46)
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Fig. 2: State transition diagram for the fully unobservable case

(2) In normal busy state:

P1 = G1 (1)

=
ξ (θ + µv) [θv (µ− γ) (λq + θ) + λqθγ]

θvγ (θ + µv) [ξ (µ− λq)− λqη]
P2 (0)

=
ξθvγ (λq + θ) (λq + θ + µv)

θvγ (θ + µv) [ξ (µ− λq)− λqη]
P2 (0) . (47)

(3) In working vacation state:

P2 = G2 (1) =
λq + θ + µv

θ + µv
P2 (0) . (48)

(4) In vacation state:

P3 = G3 (1) =
θ

θv
P2 (0) . (49)

Subsequently, we calculate the mean number of customers.
(5) In broken state:

E [N0] = G
′

0 (1)

=
η
[
B + λqθvD (θ + µv)

(
ξ2 + λqη + ηξ

)]
ξγθ2v(θ + µv)

2
[ξ (µ− λq)− λqη]

2 P2 (0)

+
λqηθvD (µ+ θv) [ξ (µ− λq)− λqη]

ξγθ2v(θ + µv)
2
[ξ (µ− λq)− λqη]

2 P2 (0) .

(50)

(6) In normal busy state:

E [N1] = G
′

1 (1)

=
B + λqθv (θ + µv)

(
ξ2 + λqη + ηξ

)
D

γθ2v(θ + µv)
2
[ξ (µ− λq)− λqη]

2 P2 (0) .

(51)

(7) In working vacation state:

E [N2] = G
′

2 (1) =
λq (λq + θ + µv)

(θ + µv)
2 P2 (0) . (52)

(8) In vacation state:

E [N3] = G
′

3 (1) =
λqθ

θ2v
P2 (0) . (53)

(9) In the system:

E [N ] = E (N0) + E (N1) + E (N2) + E (N3)

=

{
λqθ2v (η + ξ) (λq + θ) (λq + θ + µv)

θ2v(θ + µv)
2
[ξ (µ− λq)− λqη]

+
λqθ (η + ξ) (λq + θ) (θ + µv)

2

θ2v(θ + µv)
2
[ξ (µ− λq)− λqη]

+
λqD

[
(η + ξ)

2
+ ηµ

]
γθv (θ + µv) [ξ (µ− λq)− λqη]

2

+
λqθ2v (λq + θ + µv) + λqθ(θ + µv)

2

θ2v(θ + µv)
2

}
P2 (0) .

(54)

where

B = λqγξ(λq + θ)[ξ(µ− λq)− λqη]

×
[
θ2v(λq + θ + µv) + θ(θ + µv)

2
]
,

D = (θ + µv) [θv (µ− γ) (λq + θ) + λqθγ]

+ θvγ (λq + θ) (λq + θ + µv) .

(10) The average sojourn time is given by:

E [W ] =
E (N)

λq

=

{
θ2v (η + ξ) (λq + θ) (λq + θ + µv)

θ2v(θ + µv)
2
[ξ (µ− λq)− λqη]

+
θ (η + ξ) (λq + θ) (θ + µv)

2

θ2v(θ + µv)
2
[ξ (µ− λq)− λqη]

+
D

[
(η + ξ)

2
+ ηµ

]
νθv (θ + µv) [ξ (µ− λq)− λqη]

2

+
θ2v (λq + θ + µv) + θ(θ + µv)

2

θ2v(θ + µv)
2

}
P2 (0) . (55)
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(11) The balking probability of the system:

Pb = λ (1− q) [G0 (1) +G1 (1) +G2 (1)]

=
γλ (1− q) (θv − θ) (θ + µv) [ξ (µ− λq)− ληq]

A
.

(56)

(12) The proportion that the server is working when it is
in normal busy state:

PN = G1 (1)− P1 (1)

=
ξ (θ + µv) [θv (µ− γ) (λq + θ) + λqθγ]

A

+
ξθvγ (λq + θ) (λq + θ + µv)

A

− θv (λq + θ) (θ + µv) [ξ (µ− λq)− λqη]

A
. (57)

(13) The proportion that the machine is working when it
is in working vacation state:

Pw = G2 (1)− P2 (0)

=
λqθvγ (θ + µv) [ξ (µ− λq)− ληq]

A
. (58)

(14) The probability that the server remains unoccupied:

PI = G0 (1) +G3 (1) + P1 (0) + P2 (0)

=
(θ + µv) [ξ (µ− λq)− λqη] [θv (λq + ς + γ) + γθ]

A

+
ηθvγ (λq + θ) (λq + θ + µv)

A

+
η (θ + µv) [θv (µ− γ) (λq + θ) + λqθγ]

A
. (59)

Stochastic decomposition theory is an important part in
vacation queues. It is often to decompose the stationary
measures into two random variables. One part corresponds to
the measures in the classical queueing model, and the other
part is an additional variable caused by vacations. This theory
plays a crucial role in the vacation model by illustrating how
vacations affect performance measures. Next, we decompose
two measures in our model.
Theorem 2 For ρ < 1, the stationary queue length N can be
decomposed into a sum of two variables as N = Nc +Nd.
Nc is the length of the queue in the classical M/M/1 model.
The other Nd is the queue length under the effect of the
vacations policy. And Nd has the following PGF:

Nd(z) =

(
µ+ η − λq2z

)
(µ− λz) [λq (1− z) + ξ]G3 (z)

M

+

(
µ+ η − λq2z

)
(µ− λz) [λq (1− z) + ξ]G2 (z)

M

+

(
µ+ η − λq2z

)
(λqη + ηθ − λqηz)G2 (z)

M

=
(λq + θ) (µ− γ)

(
µ+ η − λq2z

)
N

× [λq (1− z) + ξ + η]

N
P2 (0) , (60)

where

M =
(
µ+ η − λq2

)
(µ− λqz) [λq (1− z) + ξ]−

λqηz
(
µ+ η − λq2

)
,

N = γ
(
µ+ η − λq2

)
[λq (1− z)− γ]−

λqγηz
(
µ+ η − λq2

)
.

Proof.

N (z) = G0 (z) +G1 (z) +G2 (z) +G3 (z)

=
(λq + θ) (µ− γ) [λq (1− z) + ξ + η]

γ (µ− λqz) [λq (1− z)− γ]− λqγηz
P2 (0)

+
η (λq + θ) + (µ− λqz) [λq (1− z) + ξ]

(µ− λqz) [λq (1− z) + ξ]− λqηz
G2 (z)

− λqηz

(µ− λqz) [λq (1− z) + ξ]− λqηz
G2 (z)

+
λqzη + (µ− λqz) [λq (1− z) + ξ]− λqηz

(µ− λqz) [λq (1− z) + ξ]− λqηz
G3 (z)

=

(
µ+ η − λq2

µ+ η − λq2z

)
×{(

µ+ η − λq2z
)
[η (λq + θ)− λqηz]

M
G2 (z)

+

(
µ+ η − λq2z

)
(µ− λqz) (λq − λqz + ξ)

M
G2 (z)

+

(
µ+ η − λq2z

)
(µ− λqz) (λq − λqz + ξ)

M
G3 (z)

+

(
µ+ η − λq2z

)
(λq + θ) (µ− γ)

N

× (λq − λqz + ξ + η)

N
P2 (0)

}
=

(
1− ρ

1− ρz

)
Nd (z)

Theorem 3 If ρ < 1, the stationary waiting time can be
decomposed a sum of two variables as W = Wc +Wd. Wc

is the customer’s waiting time in the classical M/M/1 queue.
Wd is the waiting under the effect of vacations. Wd has the
following LST:

W ∗
d (s) =

[
µ+ η + q2 (s− λ)

]
[G2 (z) +G3 (z)]

F

× µ− λq + s

F

+
η
[
µ+ η + q2 (s− λ)

]
(θ + s)G2 (z)

F

+

[
µ+ η + q2 (s− λ)

]
(λq + θ)

H

× (µ− γ) (s+ ξ + η)

H
P2 (0) , (61)

where

F =
(
µ+ η − λq2

)
(µ− λq + s) (s+ ξ)−

η (λq − s)
(
µ+ η − λq2

)
,

H = γ
(
µ+ η − λq2

)
(µ− λq + s) (s− γ)−

γη (λq − s)
(
µ+ η − λq2

)
.

Proof.
From the Little’s Law,

N(z) = W ∗ [λ (1− z)] .

Let s = λ (1− z), then we get z = 1− s
λ . Bringing them

into (60), we get the desired expression.
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Subsequently, we consider the strategy of customer in
individual equilibrium. The customer’s benefit is 0, if he
balks. Conversely, if he decides to enter the system to be
served, the average net is

S (q) = R− CE [W ] ,

where E [W ] is given by (55).
We define qe is the equilibrium joining probability.
If S(1) > 0, this means their expected individual is

positive, the customers choose to join the system, so qe = 1.
If S (0) < 0, this means their expected individual is

negative, the customers choose not to join the system, so
qe = 0.

In addition, when S (1) < 0 and S (0) > 0, qe is an
equilibrium joining probability, which means the customer’s
expected individual benefit is 0.

Then we establish the social benefit function per unit of
time:

SWuo = λq (R− CE [W ]) .

Due to the complexity of the expressions for individual and
social benefit, it is difficult to derive specific results through
traditional calculations. In the following, we directly perform
numerical analysis.

V. NUMERICAL ANALYSIS

We delved into the sensitivity analysis of ne (i) for the first
model and qe for the second model in this part. Subsequently,
we proceed to compare the equilibrium social gain of the two
cases.

As intuitively expected, customers are preferring to enter
the system when the server has the ability to serve more
people in Figure 3. The impact of the broken rate η on the
equilibrium threshold is examined in Figure 4. It is observed
that equilibrium threshold is decrease with η. It is because
when the server frequently transfers from a normal state to
a broken state, the waiting time of customers will increase.
In Figure 5, customers are perfer to join the line with higher
repair rate. In the next figure, we get the relationship between
the revenue R and the equilibrium threshold. As expected,
with the revenue increases, customers prefer to join the
queue. Also from Figure 3-6 we can see that the equilibrium
threshold for the broken state is always smaller than the
equilibrium threshold in the other states, this is because the
server stopping working. This can increase the waiting time.
So when people arrive and find the server in the broken state
they will be more reluctant to join the queue than in the other
states.

The impact of various parameters in second situation is
depicted in Figures 7-11. From figure 7, we can know the
effect of R and µ on the equilibrium joining probability. It
can be seen that the probability is increasing with µ and
becoming 1 after a certain point. The increased willingness
of customers to join the queue is a result of the server’s
higher rate of service, which effectively decreases the waiting
time. In addition, we learn that the system can add R to
attract customers to join the queue. Figure 8 shows that
the equilibrium joining probability starts at 1 and does not
change with λ, then decreases with the increase of λ after a
certain point. The reason of this phenomenon is that as the
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Fig. 3: Equilibrium thresholds for the fully observable
model versus µ for

R = 30, C = 3, ξ = 0.4, η = 0.4, µv = 0.5, θ = 2, θv = 1.
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Fig. 4: Equilibrium thresholds for the fully observable
model versus η for

R = 30, C = 3, ξ = 0.4, µ = 2, µv = 0.5, θ = 2, θv = 1.
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Fig. 5: Equilibrium thresholds for the fully observable
model versus ξ for

R = 30, C = 3, η = 0.4, µ = 2, µv = 0.5, θ = 2, θv = 1.
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Fig. 6: Equilibrium thresholds for the fully observable
model versus R for

C = 3, ξ = 0.4, η = 0.4, µ = 2, µv = 0.5, θ = 2, θv = 1.
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Fig. 8: Variation of the equilibrium probability of the fully
unobservable model with η and λ for R = 25, C = 3, γ =

1, ξ = 0.4, µ = 2, θv = 1, θ = 2, µv = 0.5.
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Fig. 9: Variation of the equilibrium probability of the fully
unobservable model with ξ and θ for R = 25, C = 3, γ =

1, η = 0.4, µ = 2, λ = 0.8, θv = 1, µv = 0.5.
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Fig. 10: Variation of equilibrium probability of fully
unobservable models with γ and µv for R = 25, C =
3, η = 0.4, ξ = 0.4, µ = 2, λ = 0.8, θv = 1, θ = 2.

2 3 4 5 6 7 8 9 10

v

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
q
u
ili

b
ri
u
m

 P
ro

b
a
b
ili

ti
e
s

C=3

C=6

C=9

Fig. 11: Variation of equilibrium probability of fully
unobservable models with C and θv for R = 25, C =

3, γ = 1, η = 0.4, ξ = 0.4, µ = 2, λ = 0.8, θ = 2, µv = 0.5.
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Fig. 12: Variation of equilibrium social benefit with λ
under the two cases for R = 30, C = 3, γ = 1, µ = 2, θv =

1, θ = 2, µv = 0.5, η = 0.6, ξ = 0.4.
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Fig. 13: Variation of equilibrium social benefit with θ under
the two cases for R = 30, C = 3, λ = 0.8, γ = 1, µ =

2, θv = 1, µv = 0.5, η = 0.4, ξ = 1.

number of expected customers increases with λ, the waiting
time of customers increases and customers are more inclined
not to join the queue. For the same λ, as η increases, the
queue fails to attract customers. Because the service will not
be provided service during server broken. From Figure 9, it
can be seen that at ξ = 0.4, the probability of equilibrium
joining starts at 0 and does not change with θ, then increases
suddenly, and decreases slowly after that point with the
increase of θ. At ξ = 0.5 and ξ = 0.6, the equilibrium
joining probability starts at 0 and does not change with the
increase of θ, after a certain point the equilibrium probability
becomes 1 with the increase of θ and then does not change
with θ. In Figure 10, it is clear that the probability of joining
the line increases with µv in the working vacation state, and
increase with γ for a certain level of µv . In Figure 11, the
equilibrium probability of customer joining system increases
with the vacation rate for vacation in the case of C = 3
and C = 6 and does not change with the vacation time after
increasing to 1. In the case of C = 9, it always increases
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Fig. 14: Variation of equilibrium social benefit with µ
under the two cases for R = 30, C = 3, λ = 0.8, γ =

1, θv = 1, θ = 2, µv = 0.5, η = 0.4, ξ = 0.4.
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Fig. 15: Variation of equilibrium social benefit with ξ under
the two cases for R = 30, C = 3, λ = 0.8, γ = 1, µ =

2, θv = 1, θ = 2, µv = 0.5, η = 0.4.

with θv .
Figures 12-15 examine the equilibrium social benefit

across various levels of information. The data presented in
Figure 12 indicates that the social benefit of equilibrium is
invariably greater in the fully visible case when compared
to the other case. In Figure 13, the fully visible case
demonstrates a noticeable trend where the social benefit
initially grows with θ, but eventually reaches a point where
it no longer increases. In the fully invisible case, the social
benefit initially increases, reaches a peak, then decreases as
θ. The data from Figure 14 clearly indicates that there is a
positive correlation between µ and social welfare. And the
social benefit is higher in the fully visible case compared to
the other case. With the increase of µ, more customers are
served, so the social benefits also increase accordingly. As we
can see in Figure 15, with an increase in ξ, the social welfare
rises in both cases. But the equilibrium joining probability
of customers is 0, when ξ changes between 0 and 0.4. As we
can see in Figures 12-15, the social benefit in the fully visible
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model is not always greater than it in the fully invisible
model. This suggests that in equilibrium case, increasing
in systemic information disclosure is not always conducive
to increased social benefits. In some cases, increasing the
accuracy of information can increase social gains, but in
some cases, it can also hurt customers.

VI. CONCLUSION

We analyze customers’ strategic behavior in the model
with breakdowns, vacation interruptions, and two-stage vaca-
tions at different information levels. Based on their expected
net benefits, arriving customers make a choice on whether or
not to join the queue. In the first case, we get the customers’
sojourn time and the strategies of equilibrium threshold.
And in the other case, the derivation includes the stationary
probability, performance measures, and equilibrium joining
probability. Equilibrium social benefits are also calculated
and compared for the two cases, and it is found that an
increase in the degree of system information disclosure does
not always benefit to an increase in social benefits.
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